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ABSTRACT

A comprehensive study of internal stability for a class of general
multivariable systems is presented in this paper. These systems consist of a
general plant model where the measured and the controlled variables are not
necessarily the same, and a two degrees of freedom controller. In this paper
we elucidate and extend the necessary and sufficient conditions for the
existence of internally stabilizing controllers for the plant, and introduce
two novel theorems to determine internal stability of the compensated systems
which clarify the relation between the stability conditions of two degrees of
freedom and single degree of freedom compensated systems. These theorems
lead naturally to parametric characterizations of all internally stabilizing
two degrees of freedom controllers. Furthermore, these results are extended
and a general internal stability criterion over a desirable region of the
complex plane is derived using factorizations of transfer function matrices
over an appropriate ring.
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O. R. Gonzélez and P. J. Antsaklis
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ABSTRACT

A comprehensive study of internal stability for a class of general
multivariable systems is presented in this paper. These systems consist of a
general plant model where the measured and the controlled variables are not
necessarily the same, and a two degrees of freedom controller. In this paper
we elucidate and extend the necessary and sufficient conditions for the
existence of internally stabilizing controllers for the plant, and introduce
two novel theorems to determine internal stability of the compensated systems
which clarify the relation between the stability conditions of two degrees of
freedom and single degree of freedom compensated systems. These theorems
lead naturally to parametric characterizations of all internally stabilizing
two degrees of freedom controllers. Furthermore, these results are extended
and a general internal stability criterion over a desirable region of the
complex plane is derived using factorizations of transfer function matrices
over an appropriate ring.

1The work was supported in part by the National Science Foundation under
Grant ECS 84-05714.
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1. INTRODUCTION

1.1 Introhuction

In this paper we study the stability of the linear, time-invariant,
finite dimensional, multivariable control systems represented in Figure 3 (in
Section 2). These systems consist of a general plant SP where the controlled
and measured variables are not necessarily the same, and a general linear
controller SC. We are interested in the two degrees of freedom controller
which has received renewed interest in the literature because of its
usefulness to address control problems with multiple objectives [1-11]. In
some of these papers, the relation between the stability conditions of a two
degrees of freedom compensated system and a well studied single degree of
freedom system is not clear. We show that the internal stability of the
compensated systems z(SP,SC) depicted in Figure 3 is an extension of a single
degree of freedom stability condition, and that if the plant SP and
controller SC are "admissible"” then the compensated system is internally
stable if and only if a single degree of freedom stability condition is
satisfied. The admissibility conditions extend the usual stabilizability and
detectability conditions to the more general plant and controller models used
here. It is shown that admissibility means that SP and SC are stabilizable
and detectable from a specific input and output, respectively. In particular
the plant SP {(controller Sc) is admisible if it is stabilizable from u {(u')
and detectable from Yo (yc').

The internal stability issue is made clear by using internal
descriptions [12,13,3] and by maintaining a direct relation to the internal
descriptions in the analysis. To satisfy the latter requirement

factorizations of transfer function matrices {13-16] are used. In Sections 2
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independently the system sensitivity (to the plant) and the input-output
transfer function matrix. By introducing an auxiliary output z, two
additional degrees of freedom are provided that can be uszd to epecify the
controller structure. These additional degrees of freedom are expected to
help in the design of reliable/fault-tolerant controller structures. The
theory developed in this paper does not address the controller structure
problem. Nevertheless, the basic internal stability result still holds, that

is, if the plant SP and the general controller S. are admissible as described

=F)
above then the general compensated system Z(SP,§C) is internally stable if
and only if a single degree of freedom stability condition is satisfied {see
{24, Corollary 201).

The paper is organized as follows. In Section 2 we derive the necessary
and sufficient conditions for the existence of a stabilizing controller SC
for the plant SP. The results in this section extend and complement previous
results [27,28]. The analysis of the internal stability of the compensated
system Z(SP,SC) is given in Section 3. In this section we also derive
several parametric characterizations of all stabilizing controllers. The
results are extended in Section 4 to solve the usual problem in control of
placing the eigenvalues of 2(SP,SC) in a desirable region of the complex
plane €.

The background needed can be obtained from [5,13-16]. Some of the
notation used is defined as follows. The set of all rational transfer
functions with real coefficients is denoted by R(s); some of its important

subsets are : Rp(s), R s(s) the sets of proper, and proper, stable transfer
1

P

functions, respectively, M(Rp S(s)) denctes the set of all matrices with

entries in R {s)
P8
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Example 1, Consider the following system interconnection

[+
o
e O
y-l'l'.l + Hs *
+
Wa

Figure 2 A classical plant-sensor configuration.

where P and HS are transfer function matrices which completely describe the
plant and sensor, respectively, and w,, w, are exogenous signails. The
input-output equations describing the system represented in Figure 2 are ¥, =
Pu + w,, Yo = HSPu + stl + Ww,. For this system we have that the exogenous

t

signal w = {w,", w,"1%, and the four transfer in (1) are given by P,, = HP,

P12 = [Hs’ I, P,, =P and P22 = {1, 01.

21
This simple example shows that the four transfer matrices in (1) do not
correspond to separate parts of the plant but rather they are a useful
mathematical way to represent an input-output description of a plant. This
general plant model is useful in the formulation and analysis of
multi-objective control problems [37], and the internal stability theory to

be developed here will assist in the solution of these problems.
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Let
_ _ ~-1~ -~
c = [Cy Cr] E Dc [Ny Nr] (4)
with (DC, [Ny Nf]) a l.c. factorization in R(s], that is, Dc’Ny’Nr €
M(R[=]) and Dc square and nonsingular; so that an irreducible realization of

the controller is:

Dczc = -Nyym + Nrr + Nynz
PR (5)
v, o= oz .
With the above definitions an internal description of the compensated
system is
z 0 Ué U1 0
Qo = ~ r + w o+ ql + - qz
z N 0 0 N
c r ¥
(6)
yh } V1 0 zZ
Ve VZ 0 zc
where
T i
D = | . . (7)
NV D
vy 1 [
Assume that the compensated system is well-defined, that is, (I + Cypll)—l
exists, then we say that the compensated gystem is intermally stable if Qo-l
is stable or if the zeros of
<7l 1D, - Nt
|Q°| = |T| |Dc - NyvlT U1| (8)

are in the "stable or good" region of the complex plane. Without loss of
generality consider €, the open left half of the complex plane, to be the
"stable” region. In this setting, internal stability corresponds to the
usual definition, that is, when all the exogenous inputs (w,r,ql,qz) are set
to zero and for all initial conditions the states of the compensated system
z(SP,SC) £0 to zero asymptotically. In Section 4 the theory is extended to

congider an appropriately defined "good" region of the complex plane.
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relating u to Yo when w=0 and is described by the triple [VI,T,Ull is
stabilizable and detectable, that is, the transfer matrix P , = V,T U must
contain all the poles of the plant SP in ¢¥ with the same McMillan degree and
some given structure. These comments are clear since T is the denominator
matrix of the plant description in (3) and since by (Al) and (A2) there are
no €' “cancellations" [25,26] in v;Tlu,. It is important to notice that
even though the plant SP is assumed to be controllable from [wt, ut]t and
observable from [ymt, yct]t that it might not even be stabilizable or
detectable from certain inputs or outputs, respectively. Theorem 1 shows
that the existence of a stabilizing controller which uses the measured
variables Y to come up with the control variables u requires that Sp be
stabilizable from u and detectable from Y which is the usual condition in
single degree of freedom systems. Otherwise, the controller SC would not
have available all the information about the unstable modes of the plant SP

and internal stability would not be possible.

From conditions (Bl) and conditions (Al) and (A2) it can be seen that
the existence of a stabilizing controller C can also be determined from the
dencminators of the plant transfer function matrix P (T) and of P11 (D1 or

~

DI)
Corollary 1.1 : There exists an internally stabilizing controller C for the
plant SP if and only if

(B1.1) |D,|™" |T| is & Hurwitz polynomial

where T and D1 are defined in (3) and (9), respectively.
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Sufficiency of (ii): Suppose (Al) and (A2) are satisfied and we want to show
that there exists a stabilizing controller C. In this case the subsystem
SP,, described by the triple {Vl’T’Ul} is stabilizable and detectablz {12,121
so that if V;T"'U=ND 1=, with (N,,D,) & r.c. factorization in R[s] then
the zeros of |T| and [D1| in c* are the same; furthermore, |D1| divides |T|.
A stabilizing controller SC exists if there exists a C that can place
all the compensated system’s eigenvalues in € . Consequently, consider the

compensated system’s characteristic polynomial :

} O
| = T} D, - NV, T
S F
= T} D, - NND, T
N -1 2 :
= 7| [Dy|7 DDy - NN, | (12)

Clearly from (12) and the discussion above it is observed that all the zeros
of |T} in ¢’ cancel in |T| ]Dll-l, so that any C that sets the zeros of
|SCD1 - ﬁlel in € will be a stabilizing controller. Since Sp,, is
stabilizable there exists a Cy that will stabilize it, and Cr can be chosen
to be stable, meking IBCDI -~ ﬁlel a Hurwitz polynomial. Therefore, there
exists a C that will make Qo-l stable and hence the compensated system will
be internally stable.

Necessity : Suppose there exists a stabilizing controller C and suppose that
(Al) or (A2) is not satisfied, then at least one of the zeros of IT| in ¢’
will not be a zeroc of IDll' In this case there is no controller C that can
make |D | Hurwitz, since |D |=|T| |1)1|'1 |5CD1 - ﬁyN1| will have at least
one of the zeros of |T| in ct. Therefore, (Al) and (A2) are necessary

conditions too.e

Before showing that (i) and (iv) in Theorem 1 are equivalent consider

another way to determine when the compensated system will be internally

11
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‘ -1~ -1~
Dp Dy "Ny NBy N
e ¥
; ) ~ _q~ ~ 3~
Hop = | PatPiP, Do PorP1Px Mg
¥y y
-1~ -1
“Ne Dy Ny Ne Dy
¥ y
p. D, "Ip P D. D, ~IN,C
cypk 112 cypk 1%
Pog = PoyDyDy NCYP12 Py1P1 Dk Dcypr (17)
B cka D,Pys D,y Dbycr

Proof of Theorem 1: Sufficiency of (iv) : Assume P21D1, DIPIZ’ P22 -

P21D1x2P12 € M(Rp,s(s)) then we want to show that there exists a stabilizing

_ . s R | -1
controller C-[Cy Cr]' Note that if Cy stabilizes SP:;' then Dk and Dk -
are stable, and that if Cr is chosen appropriately, eg. stable, then every
block matrix of qu is stable except for the 2,3-block matrix. It helps to
rewrite the 2,3-block matrix using Cy from the set of stabilizing controllers
of so that

P

- My _1 b
cy = (x1 - KNl) (x2 + KDI) (18)

where NI’ Dl’ Xyr Xy € M{R[s]) satisfy (9)~(11), and K is a stable rational

transfer function matrix with poles the zeros of ]Dk|=a|Dk|, a € R. Then

_1 - v
Pag = Ppy (I + CPyy) CoPip = Poy - PyuD(x, + KD, )Py, (19)

(Pag = Py D1XoPqp) = Py DyED Py,
The first term in parenthesis on the right hand side is stable by hypothesis;

the last term on the right hand side is also stable since it is the product

of three stable transfer function matrices: P21D1, K, D,P Therefore, the

1712°
2,3-block matrix is stable, showing that qu is stable and thus the existence

of a stabilizing controller has been established.

13



0. R. Gonzalez and P. J. Antsaklis, "Existence and Characterization of Two Degree of Freedom.StabiIizing
Controllers,” Control Systems Technical Report #52, Dept. of Electrical and Computer Engr., Univ. of
Notre Dame, May 1986.

The following two examples illustrate the use of some of the conditions

developed in this section.

Example 2. Consider the system used in Example 1 (see Figure 2). An
internally stabilizing controller for this system exists if and only if
u+(P11)=u+(HSP)=v+(HS)+v+(P) (Theorem 1, condition Bl) which is the usual

assumption made when analyzing such systems.

The next example clarifies another aspect of the general plant: how the
exogenous signal w affects the measured and controlled variables. Since Sc
uses the measured variables yﬁ of the plant to come up with the control
variables u, it is of interest to examine the way how the exogenous signal w
can affect the controlled variables Y This is done by comparing P,, and
P,2» since P,, and P,, are the transfer functions from the where the
exogenous signals affect the plant model to the measured and controlled

variables, respectively (as an illustration see Example 1}.

Example 3. Consider the following input-output representation of a plant:

- 1 C,
m T (sta)(s+p) * s-B W
c
Yo = §2%-u + Pya(s)w

where «,8 > 0 and a#-g. The problem is to characterize the set of transfer
functions P;,(s) so that the plant is stabilizable.

For this problem the conditions (C1),(C2) and (C3) of Theorem 1 will be
most useful. Let P,,=n,/d,=1/[(s+a)(s~g)] then x,=0, x,=1 satisfy the
Diophantine equation x,d,+x,n,=1. Clearly, P,,d,=c,(s+a) and d,P,,=c, (s+«a)
are stable transfer functions. Hence the plant is internally stabilizable if

and only if (C3) is satisfied. (C3) is given by P,;-P,,d,x,P,, is stable

15
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description of the plant (1). Whereas the third set, (Cl), (C2) and (C3),
combines the input-output description of the plant (1) with an intermal
description of the subsystem SP“ { Yy © Pllu" So that depending upori the
plant’s characteristics one of the sets of conditions in Theorem 1 could be
more useful. For example, if 1?12 = 0 and P11 and P22 are square then from
(Bl) and the conditions (Cl), (C2) and (C3) it is clear that Py, must be
stable for the existence of a stabilizing controller. This fact is not as
evident from (Al) and (A2).
3) The necessity of conditions (Al},(A2) and {Cl1),(C2)is well known in the
regulation problem literature [29-31] where {Al), (A2) and (C1),(C2) are
stated as assumptions needed to guarantee internal stability.
4) The transfer matrix in (C3) can be rewritten in the following form

Pa2 = PorP1¥oP12 = Pap = Py xD1Pyy » Sy
since Dlx2 = ;2131 as seen from (10) and (11). The transfer matrix on the
left hand side in (23) has to be stable for a particular factorization of
P11 and polynomial matrix Xy satisfying (11). The transfer matrix will remain
stable for all other coprime factorizations of P11 and polynomial matrices X
that satisfy (11).
5) The transfer matrix in (C3):

P.,, - P,,D.x (24)

22 ~ F21P1%P12
was obtained by using a particular parameterization of all stabilizing

controllers Cy of SP . The parameterization uses the stable rational matrix
11

K introduced in [17]; but the condition is independent of the choice of K
and holds for any coprime parameterization of Pll' A question that arises
is: what is the form of (C3)} when other parameters (see Section 3) are used
to parameterize the set of stabilizing controllers of SP“? It can be shown

that when other parameterizations are used to derive the transfer matrix in

17
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Theorem 2., If the plant SP is admissible then the compensated system
Z(SP,SC).is internally stable if and only if

{a) the control law u = -nyﬁ stabilizes the subsystem SP,, (yh=P11u), and

1
transfer matrix, where Cy satisfies (a) and PH=N1D1-1 is a coprime

1]

(b) C_ is such that M = (I + cypu)“lcr satisfies D, M = X, a stable

polynomial matrix factorization.

Theorem 2 shows that stability in a two degrees of freedom configuration
is based on the stability of a well studied single degree of freedom
configuration ~ condition (a), while condition {b) represents an extension of
previous results because of using a two degrees of freedom controller.
Observe that for a single degree of freedom controller condition (b) follows

immediately from (a).

Proof of Theorem 2: Internal stability is not affected if the input signals

w=0, q1=0, q2=0 or if we let

el - 11 51 (25)
v i N
2 21
where ([Nllt, NZIt]t, D) is a r.c. factorization in R{s]. Using {25), an
irreducible realization of the plant is given by Dz=u, [yht, yct]=[N11t,

N21t]tz and an irreducible realization of the controller C was given in (%),
combining these two realizations gives an internal description of the

compensated system Z(SP,SC):

(DCD + Nlel) zZ = Nrr
(26)
Ymi [ Mn
= Z
Ve N21

19
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~

Sufficiency: Let C=[Cy Cr] satisfy (a) and (b) of Theorem 2. If C:DC-I[Ny
Nr] is a .l.c. factorization in R[s] and Ge is a g.c.l.d. of (Dc, Ny) then

(28b) is true for some left coprime rolyncmial matrices DC and NC
¥y y

13 1

(Cy_:DC}r Ncy). Similarly, if P11=N11D and Gr is a g.c.r.d. of Nll and D
then (28a) is true for some coprime polynomial matrices N1 and Dl
(Pn:NlDl'l). Because (a) is satisfied, 5 D +1; N =13k where Dk a M(mfs]) is

C'1°C1
y y

such that Dk-1 is stable. The expression for Dk can be premultiplied and
postmultiplied by Ge and Gr’ respectively, to obtain

DcD + Nlel = GénkGr . (31)
In view of (27) and Dk-1 stable, for internal stability it suffices to

1 1

show that Ge- and Gr_ are stable. First observe that Gr is a common right

divisor of V, and T defined in (3), since vl'r'lulznun‘l. Then, since (A2)
1

must be satisfied, GI_"1 is stable. This in turn implies that Ge_
1 1

must be

stable, since (31) can be written as G‘F Do=DkGr or as Ge Nr=DkX with

(Ge,Nr) l.c. in BR8] (if they were not prime, C:D(__:"I[Ny N_1 would not have

been a l.c. factorization in R(s]). Therefore, D0=GeDkGr in {31) satisfies

-1

Do stable, that is, the compensated system z(SP,SC) is internally stable.e«

QquD.

The proof of Theorem 2 shows that a necessary condition for the

1

compensated system 2(8p,8,) to be internally stable is that Ge- must be

stable., This condition can be written as DC Dc—1 is stable or as
Yy

|Da |-1 [D,| is a Hurwitz polynomial. In this form the similarity between

¥y
this condition and the admissibility of SP is evident (see Corollary 1.1).
This leads to a similar definition of admissibility for the two degrees of '

freedom controller Sc .

21
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H Puy ¥y=Piu
u ym
+ C + u=-

y ¥

Figure 4. A single degree of freedom system.

These comments are formalized in a theorem.

Theorem 2.1 : If the plant SP and the controller SC are admissible then the
compensated system z(SP,SC) is internally stable if and only if the control

law u = -nym stabilizes the subsystem SP“ (ym =P, u).

11

Theorem 2 shows a way to parameterize all stabilizing compensators
C=[Cy Cr]' First, use any of the lnown characterizations of Cy that
stabilize the subsystem SP“, then use condition (b) of the theorem to
parameterize Cr. This fact is used in the following proposition and
corollaries to give several controller parameterizations. The choices in
parametrically characterizing all feedback stabilizing controllers Cy are

extensively discussed by Antsaklis and Sain in [10].

Proposition 3, All stabilizing controllers C are given by any of the

following characterizations:

() c= (¢ - W) (x, + KD) ]
where K and X are stable transfer matrices so that |x1-Kl:I1 |#0.
For C proper need D1"‘1‘m}1) biproper {that is, Dl(xi-K{:il) and its
inverse are proper) and D, {x, + Kﬁl) proper, or K:(El-xz)lsl-l =
(Dl-lQ-xz)]«)'ll'1 igs such that 1:1 or @ satisfy the causality

conditions.

23



0. R. Gonzalez and P. J. Antsaklis, "Existence and Characterization of Two Degree of Freedom Stabilizing
Controllers,” Control Systems Technical Report #52, Dept. of Electrical and Computer Engr., Univ. of
Notre Dame, May 1986.

» C = (x1 - Kﬁl)_l X
since M = DIX, with X a stable rational matrix. Therefore,
C = (x; - N ((x, + KD, X,

The other cases can be proven in a similar manner, starting with the
parameterizations of Cy which can be found in [19,21}.

The additional conditions given to restrict the characterizations to
proper controllers C can be obtained as follows. First, observe that C is
proper if and only if Cy and Cr are proper. Consider the parameterization in
(4}, if Q proper and (I—QPH) biproper, then Cy is proper. With these
additional conditions C. is proper too, since Cr=(I—QP11)_1D1X where
(I-QPH) is biproper and D1X=M is proper (one of the matrices in Huq)'
Therefore, (4) is a characterization of proper stabilizing controllers C if
in addition Q is proper and (I-QPH) is biproper. The causality conditions
on Q are easily extended for the other parameters by considering the

relations between parameters given below in (32).e Q.E.D.

Additional parameterizations of the controller C can be found for
special cases of the plant S.p The following two corollaries consider two
special cases of SP’ but are not meant to consider every possible case. In

Corollary 3.1 SP is assumed to be stable, that is, P,., is stable [19,21].

11

Corollary 3.1. Assume that the plant SP is stable then all stabilizing

controllers C are given by any of the following characterizations :

(6) C= ((1I - L1N1) D1 ) £L1 X1
where I..1 and X are stable transfer matrices with ]I-LlNI}#O.
_ -1

where @ and X are stable transfer matrices with |I-QP11 |#0.

25
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G,DGz = Nr
(4 r

k T
(33)
[ ym] N
= z
[ Yej Na1

which is an alternate way to write the internal description in (26)., In this
way the effect of the particular choice of the parameter on the compensated
system’s eigenvalues and, in general in the overall system description can be
determined. It turns out that with some of the parameterizations it is
easier to place the compensated system’s peles and to minimize the number of
hidden modes. This ig true if the parameterization in (1) or the polynomisal

parameterization in (2) is used.

A very useful internal stability result was given in Theorem 2. Other
ways to analyze internal stability of }:(SP,SC) which help understand the
properties of z{SP,SC) are given next. Let ?}:' ?P and *C denote the

characteristic polynomials of Z(SP,SC), SP and SC’ respectively and define

) -1 } -1
s, = (T+Pc)h, s, = (T+cp 7 (34)
]
n
u

= H n {35)

u? un .

W

where
—C S.P Cs —C S.P s.C
Hur,= vy 111 v 1 y 1712 1°r ) (36)
-5,P14 ~5,P11% -8,P12 P115:5,
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When SP and Sc are admissible only a subset of the block matrices in
qu or H&q needs to be checked to determine internal stability of Z(SP,SC).
In particular only the matrices related to a single degrec of freedom
stability need to be tested. This and other well known single degree of

freedom stability conditions are presented in the following corollary.

Corollary 4,1, If SP and SC are admissible, then the following statements
are equivalent.

(i) z(SP,SC) is internally stable.

I C
(ii) The zero polynomial of BT Hurwitz.
-p I
11
S2 -Q
{iii) is stable.
P52 8

. -1 .
(iv) D {SZCy 32] is stable,

Proof: Under the assumption of admissibility of SP and SC the proofs are the

same as in {19].e

Remarks

1) The study of the stability of a two degrees of freedom compensated
system z(SP,Sc) has been broken down into two conditions via Theorem 2. The
first condition reduces the problem to the known case of the stability of a
single degree of freedom configuration. The second step is peculiar to the
two degrees of freedom configuration, showing how the additional degree of
freedom affects internal stability. Theorem 2 is also useful to parameterize
all stabilizing controllers C.

2) The study of the stability of a two degrees of freedom compensated

system was simplified in Theorem 2.1 where it is shown that the admissibility
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4, RgHSTABILITY
In this section the internal stability theory developed so far is
extended to solve the usual problem in control of placing the compensated
system’s eigenvalues in a desirable region of the complex plane €. let Sg

denote this region which corresponds to the "good" portion of the complex

plane so that Sg is symmetric with respect to the real axis and contains at

least one real point.

Let Rg(s) be a nonempty subset of Rp(s), the ring of proper rational
functions with real coefficients, consisting of the proper rational functions
which have all their poles in Sg. Then it can be shown that Rg(s) is a
proper Euclidean domain [33,34]). In particular Rg(s) is a principal ideal
domain [35], giving Rg(s) the same nice algebraic properties of the
polynomial ring R[s]. Furthermore, the theory of pelynomial matrix
factorizations [13] is easily extended to mgtrix factorizations over Rg(s) by
using [5-Chapter 4, 15, 16]. A fundamental concept is that a given transfer
function can be represented as the ratio of two rational functions in Rg(s).

The problem is to place all the compensated system’s eigenvalues in Sg,

using the two degrees of freedom control law defined in (2).

Definition 3. (i) A system is said to be Rg~stab1e if all its eigenvalues
are in Sg.
{ii) Sc is said to be an Rg-stabilizing controller if the

compensated system Z(SP,SC) is Rg-stable.

So the problem is to find an Rg-stabilizing controller Sc for the plant SP'

The first step is to find the necessary and sufficient conditions for the

existence of an Rg-stabilizing controller SC for the plant SP. The second
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where

T U
D! = (41)

0 ~! (] ~l
| NyV1 Dc
where _126 € M(R g(s)) is square, nonsingular and biproper. A relation between
|Qé|, the characteristic determinant of z(SP,Sc) [51, and ]I_)°| from (6), the
characteristic polynomial, can be obtained from the Appendix and [36]. It
can be shown that |Q‘;| and IDol are associatesg, that is, ]Q(')| and |go| differ
by a unit in Rg(s), a miniphase function in Rg(s). So, all the compensated
system’s eigenvalues in @ = €\S g if any, will be zeros of |_D,6| Therefore,
z(SP,SC} is said to be Rg-st.able if and only if Qé is a unimodular matrix in
. . 1
Rg(s),that is, _120, go € M(Rg(s)).
The necessary and sufficient conditions for the existence of an
R g-stabilizin.g controller C are similar in form to the ones given in Theorem
1. The following definitions are needed. Let
- ' --1 = ~l—1~l
P11 = NIDI = D1 N1 (42)
be coprime Rg—factorizations, that is, (Ni,Di) and (D',Ni) are r.c. and l.c.

in R g(3), respectively, with D! and D! nonsingular and biproper, and let

1 1
xl xl Dl __xl
U = ...1 ..2 , U'“1 = ) ..2 (43)
-Ni Di Ni xl'
be two unimodular matrices in R g(:-';) satisfying

vtz ad uvly sr. (44)

Consider the partial fraction expansion Pi,j = P;j

- + . +
the poles of Pij (PiJ.) are in Sg (xz:c\sg), and let v [Pi,j] denote the

+ P;J. i,j=1,2 where all

McMillan degree of P;J.,t.hat is, v[P;J.].
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Proof of Theorem 5: The proofs of the above conditions are very similar to
the proofs of the conditions in Theorem 1 so only the sufficiency proof of
(ii) is given.

Sufficiency of (ii): Suppose (Al') and (A2') are satisfied and we want to

show that there exists an R g-stabilizing controller C. Note that P11 =

ViT "'Uy where (V{,T*,U1,0) is a bicoprime factorization of P, in ® (s), and

P11 = N'D'-1 is a coprime Rg-factorization. Then by Theorem 4.3.22 of [5]

171
|T*| and |Di| are associates, so that the zeros of |T*| and |D'1| in  are the

same.

Consider the compensated system’s characteristic determinant :

t = ’ ~| ~| ' |-1 |
|_DO| = T |Dc - NyV1T U1|

[] [} -1 ~I [ ] ~l [ 3
= |T'] pjI7" [Dgby - NiNi) (45)
Now, from (5.8) and the discussion above it is clear that all the zeros of

-1

IT'| in 2 cancel in |T| |Di| , S0 that any C that sets the zeros of

|DéDi - N&N“ in Sg will do. Since conditions (Al') and (A2') are satisfied,
the subsystem SP of SP relating u to y_ when w=0 and is described by the
11 m

triple {VI’T’UI} is stabilizable and detectable in S " then it can be shown

- 1 |—1 1 ]
1 =T U

can be picked to be stable. Therefore, there exists a C that will make Qc"

that there exists an R g—stabilizing controller Cy of P1 and Cr

unimodular in Rg(s).o Q.E.D.

The study of Rg—stabilit.y is simplified by writing
\'

ju—g—

Nl
T-"lui = 1 p! (46)
2 Na1

where ([Nilt Nélt]t,D') ig r.c. in Rg(s), and by setting the input signals
w=0, 0y=0, and n,=0. Note that {{V;® Vét]t,T',Ui,O} and (IN;, ¢ Ny, ©1%,D0,

0,0} are bicoprime factorizations in R g(:a;) of the same transfer matrix,
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Theorem 6.

To show (b) consider

- -1 = ~'n 1 ~| ' -1~| ~r-1~a
M = (I + CyPll) CI‘ S [Di(DC D1 + NC Nl) DC ](Dc Nr)
~ 4 1~ A ¥ ¥
= Dy G "N}
= DiX (50)

with X = (G3Dy) Ny « M(Rg(s)), since G;Dy is unimodular in Ry(s) and N: e

M{Rg(s)). This shows that (b) is necessary too.

Sufficiency : Let C = [Cy Crl satisfy (a) and (b) of Theorem (iii). If
= ~|-1 ~| ~| 0 - g q v o3 ~l ~l

C = Dc [Ny Nr] ig a l.c. Rg factorization and G‘g is a g.c.l.d. of (Dc,Ny)

then (48) is satisfied for some 1l.c. pair in Rg(s) (Dé ,Né }. Because (a) is

y b
satisfied we have that D}'( = éyD' + }Nil is a unimodular matrix in Rg(s).
Premultiply the last equation by Gé to obtain
DéD' + I~I“}Ni1 = GEDL': = Dc-, . {51)

In view of (47) and Dl'( being a unimodular matrix in Rg(s), it suffices to

show that Gé is a unimodular matrix in Rg(s) to prove that Z(SP,SC) is

Rg-stable.

Since (b) is satisfied, X = D;"'M = Dy lg;7IN:  M(R (s)). This implies
that Gé-ll‘:l]'? = BﬁX € M(Rg(s)) or that Gé_l is a unimodular matrix in Rg(s),
since G, and I:Iz.' are l.c. in Rg(s) (if they were not l.c., C = ]56-1[;I£r IGI"]
would not have been a l.c. factorization in ng(s)). Therefore, Dc') = G;Bl-[ in
(51) is a unimodular matrix in Rg(s).o Q.E.D.

The proof of Theorem 6 shows that a necessary condition for internal
stability in this case is that Ge' be unimodular in M(Rg(s)). This condition

implies that |DC '| and |Dc'| are associates which is a generalization of
y

controller admissibility as described in Definition 2.
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- [ -1 [ ] [ ] 1]
(3) C=(I~-Q Pll) [Q DIX ]
where Q*,X' € M(Rg(s}) are such that [I-Q'P11 Q']Di-1 € M(Rg(s))
with |I - Q'Plli # 0 and (I - Q'Pll) biproper.
- ~| 1 |-1 -1 ~| '
{4) C= ((I - LINI)D1 ) [L1 X1
where Li,X' ¢ M(R_(s)) such that (I - LiNi)Di—l & M(R_(s)) with

T - LiNi] #0and (I - L{Nj) biproper.
Additional characterizations for special cases of the plant SP and the
relations between the parameters can be found as in Section 3 in & similar

way.

Remarks

1)  An extension of the results in Sections 2 and 3 has been made using
matrix factorizations over Rg(s). It was shown that all the results
developed in Sections 2 and 3 carry over to this more general setting and
have a similar form. For example, the characterizations in Proposition 7 are
similar in form to the ones given in Proposition 3 except that in this case
they parameterize the Rg-stabilizing controllers C. A disadvantage of using
this method in control systems design is that there is no "tight control” of
the compensated system’s eigenvalues since not all of the compensated
system’s eigenvalues are zeros of lgél, the characteristic determinant of
Z(Sp,Sy) . There could be additional eigenvalues which are not zeros of {D! ]
although they would be in Sg. The presence of these additional eigenvalues
could lead to unnecessarily high order controllers.

2) The theory developed in this section can be easily extended to consider
matrix factorizations over other rings. In this way the results presented

here can be used to analyze the stability of continuous and discrete systems,
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Let
NeD AN = NepeTl
r ¢
with (Ni,Di) r.c. in Rg(s) and with Di square, nonsingular and biproper.
Then P:NiDi-l, and |Di[, |D'| are associates (5, Theorem 4.3.22) meaning that
the zeros of |Di| and |D'| in @ are the same. The relation between a
bicoprime factorization of P in R g(s) and internal descriptions can be

obtained from the following lemmsa:

Lemma [36]. The pair (Ni, Di) with Ni, Di € M(Rg(s)) defines a right coprime

factorization of P in Rg(s) if and only if

”i i [:]n

where P = ND-I, a r.c. factorization in R{s] and 7,0

-

1 ¢ MR (s)) with Dz

biproper.

Notice that a bicoprime factorization of P in ® g(S) can be used to

described the system S:

o
N
n

Néu
y = N;_z'
since by the above Lemma the relation between the triple [NI",D' ,NE,} and an

irreducible differential operator description of 8 is given by Dz=u, y=Nz.
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