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Abstract— This paper extends some prior work by the
authors to address general robustness of solutions in multi-
agent coordination control problems. In particular, it focuses on
fault-tolerant formation control. In our prior work, symmetries
in the system were exploited to simplify the nonlinear Lyapunov
stability analysis for symmetric systems. The type of symmetry
considered is a discrete symmetry where the system is composed
of many repeated instances of interacting identical agents. The
results are based on Lyapunov methods, and hence are of
general applicability and specifically these results are applicable
to both distributed as well as non-distributed coordination
methods. This paper considers the same types of systems
and extends the stability results to the cases of robustness of
formation stability under failure of individual agents.

I. I NTRODUCTION

This paper considers fault-tolerant formation control for
multi-agent systems. Formation control for multiple mobile
robotic systems has a long history, with the main focus
being on the use of potential functions for coordination (see
for example [1], [2], [3], [4], [5], [6], [7] and the citations
therein). The use of potential functions has an obvious appeal
in that they facilitate stability analyses using Lyapunov func-
tions. The drawbacks are well-known also, which include the
existence of multiple local minima in complex environments,
the fact that realistic potential functions representing the
realities of sensor ranges introduce mathematical limitations
on the potential functions which complicate and limit the
stability analysis,etc. As observed in [8], many of the prior
efforts have assumed specific dynamics with the correct
observation that they probably generalize. Motivated by this,
our approach has been to develop a general formulation
which is the foundational framework underlying many of
the results in the literature that focus on specific system
dynamics.

The contributions of our prior work in [9] included 1) a
nonlinear extension of the results in [10], [11] which is a
more straight-forward representation of system symmetries
than our previous work; 2) the presentation of a unified the-
oretical framework that is underlying many of the formation
control algorithms in the literature; and, 3) a general stability
theorem that is applicable to such systems regardless of the
number of components. These results allow a control design
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Fig. 1. System building block in one spatial dimension.

engineer to focus the analysis on a smaller, more tractable
system with a guarantee that stability conclusions will hold
for a much larger system. This paper extends those results to
determine conditions under which a formation is still stable
(and in what sense it is stable) when individual agents fail.

Some of our prior work [12], [13], [14], [15] considers
system symmetries that are defined by a group action on
the configuration manifold for a distributed system that was
induced by the action of a permutation group. The main
drawback of such an approach is that, in the general case,
identifying such symmetries can be problematic. However,
in the case of most engineering and robotics systems, where
the individual robots are the components that are symmetric,
symmetry identification is much less of a problem. Rather
than using this prior approach, this paper is based on our
more straight-forward approach from [9]. However, it is
emphasized that the prior approaches [12], [13], [14], [15],
[16] offer a general approach to the problem that can be used
in cases more general than the ones addressed here.

This paper is organized as follows. Section II defines the
types of systems we consider, specifically symmetric systems
and symmetric systems with periodic interconnections. The
main result appears in Section III, which is a proposition
that provides conditions for the (asymptotic) stability ofa
formation when one or more of the robots in the formation
fail. An example from the literature with second order
dynamics is developed throughout the paper to illustrate the
application of the definition and result. Simulations are also
included to verify the theoretical results. Section IV presents
the conclusions and avenues of future work.

II. SYMMETRIC SYSTEMS

The “basic building block” in one spatial dimension is
illustrated in Figure 1. The outputs from the component are



w−(t) andw+(t), and the inputs areu, v−(t) andv+(t). The
signalsv± represent the effects of the coupling with the other
components andu are the usual control inputs which need
to be designed for stability, performance, robustness,etc.

We wish to express component-by-component, the usual
dynamics of a nonlinear control system expressed by

ẋ = f (x)+
m

∑
j=1

g j(x)u j,

where x ∈ R
n and the vector fieldsf (x),g j(x) ∈ TR

n. In
the general case, the vector fieldsf and g j depend on
the coupling with the other components, so the equations
governing the dynamics of this component are given by

ẋi(t) = fi
(

xi(t),v
+
i (t),v−i (t)

)

+
m

∑
j=1

g j,i
(

xi(t),v
+
i (t),v−i (t)

)

u j(t)

w−
i (t) = f̂−i

(

xi(t),v
+
i (t),v−i (t)

)

,

w+
i (t) = f̂ +

i

(

xi(t),v
+
i (t),v−i (t)

)

.

For a system of interconnected components where the in-
coming signals,v±(t) are from the outgoing signals from
the component’s neighbors, the entire system is coupled
because thew±(t) signals depend on the component’s input
signals,v±(t). The class of the types of coupling that could
be represented by this formulation is very broad and could
include, for example, when there is a physical joining of
agents, as with reconfigurable, modular robots.

For mobile robots where there is no physical contact
between the robots and the topology of the structure of the
system is such that a component only receives a limited num-
ber of inputs (from its nearest neighbors, for example), the
nature of the coupling between the robots can be expressed in
a simpler manner. In particular, it is only through the control
inputs that the output from the other components affects the
dynamics of an agent, which is expressed by

ẋi(t) = fi (xi(t))+
m

∑
j=1

g j,i (xi(t))u j,i(t)

w−
i (t) = f̂−i (xi(t)) , w+

i (t) = f̂ +
i (xi(t)) ,

(1)

where writing

u j,i(t) = u j,i
(

xi(t),v
+
i (t),v−i (t)

)

(2)

makes the coupling of the agent dynamics through feedback
in the input explicit.

We can build up a system withN components by requiring
periodic interconnections in one dimension, i.e.,

v+
i+1(t) = w+

i (t), v−i−1(t) = w−
i (t),

where all mathematical operations on indices are mod(N).
A segment from such a periodically interconnected system is
illustrated in Figure 2. In this case, feedback can be expressed
in terms of the outputs from the neighbors and Equation 2
can be written as

u j,i = u j,i
(

xi(t),w
+
i−1(xi−1(t)),w

−
i+1(xi+1(t)

)

.
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Fig. 2. System interconnected in one spatial dimension.

The simplest type of symmetric system would be when all
the components are identical with periodic interconnections,
and example of which would be a fleet of autonomous robots
that are in a formation where each robot communicates in
an identical manner to its two nearest neighbors.

Definition 1 Consider a system of the form of Equation 1.
This system is asymmetric system spatially connected in one
dimension if it has periodic interconnections and

fi(x) = fk(x), g j,i(x) = g j,k(x),

f̂−i (x) = f̂−k (x), f̂ +
i (x) = f̂ +

k (x)

for x ∈R
n, for all i,k = 1, . . . ,N and for eachj = 1, . . . ,m. A

system under state feedback is afeedback symmetric system
if it is a symmetric system and

u j,i(x1,w
+
i−1(x2),w

−
i+1(x3)) = u j,k(x1,w

+
k−1(x2),w

−
k+1(x3))

for (x1,x2,x3) ∈ R
n ×R

n ×R
n, for all i,k = 1, . . . ,N and for

each j = 1, . . . ,m. �

To allow more general topologies than connections in one
spatial dimension, define the index setsVi and Wi which
index multiple inputs and outputs respectively for component
i. The outputs from componenti are denoted bywl

i(t), l ∈Wi

and the inputs are denoted byvl
i(t), l ∈ Vi.

The dynamics of a component are given by

ẋi(t) = fi (xi(t))+
m

∑
j=1

g j,i (xi(t))u j(t)

wl
i(t) = f̂ l

i (xi(t)) , ∀l ∈Wi

(3)

with

u j,i(t) = u j,i

(

xi(t),v
l1
i (t),vl2

i (t),vl3
i (t), . . .

)

wherel1, l2, . . . ∈ Vi.
Periodic interconnections are defined in a manner similar

to the case of one spatial dimension. In particular, if there
exist orderings of each of the setsVi andWi and

v j
i (t) = wi

j(t) ∀ j ∈ Vi,∀i ∈W j

then the system has periodic interconnections, which requires
thatVi andWi have the same size. For periodic interconnec-
tions, the input under feedback can be written as

u j,i(t) = u j,i

(

xi(t),w
l1
i (xl1(t)),w

l2
i (xl2(t)),w

l3
i (xl3(t)), . . .

)

.

for l1, l2, . . . ,∈Wi.



A. Equivalent Symmetric Systems

Finally, we want to “build up” a system. AnN + 1
component system will be equivalent to theN component
system if

fi(x) = fk(x), g j,i(x) = g j,k(x)

for x ∈ R
n, for all k = 1, . . . ,N and for all i = 1, . . . ,N + 1

and for eachj = 1, . . . ,m and there exists an ordering for
eachWi such thatf̂ j

i (x) = f̂ l
k(x) for j ∈Wi andl ∈Wk. The

N +1 system isfeedback equivalent to theN system if

u j,i

(

xi(t),w
i
l1
(xl1(t)),w

i
l2
(xl2(t)),w

i
l3
(xl3(t)), . . .

)

=

u j,k

(

xk(t),w
k
m1

(xm1(t)),w
k
m2

(xm2(t)),w
k
m3

(xm3(t)), . . .
)

(4)

for (x1,x2,x3) ∈ R
n × R

n × R
n, for all k = 1, . . . ,N, i =

1, . . . ,N + 1, for each j = 1, . . . ,m, for l1, l2, . . . ,∈ Wi and
for m1,m2, . . . ,∈Wk.

For notational convenience, we will stack all the states
and vector fields from each component into one system
description, ˙x = f (x)+g(x)u(t) where

x =











x1

x2
...

xN











,u =











u1

u2
...

uN











, f (x) =











f1(x1)
f2(x2)

...
fN(xN)











,g(x) =











g1(x1)
g2(x2)

...
gN(xN)











.

Example 1 A recurring example in this paper will be planar
agents with second order dynamics used in [3]. Each robot
has a location and velocity inR2, with equations of motion
for the ith robot given by

d
dt









xi

ẋi

yi

ẏi









=









ẋi

0
ẏi

0









+









0
1
0
0









u1,i +









0
0
0
1









u2,i.

The goal formation is a regularN-polygon and each robot
communicates with its two neighbors and the next two
agents, as is illustrated in Figure 3. In Figure 3, each node
in the graph is a component similar to that illustrated in
Figure 1; however, in this case each component has four
outputs, each of which is simply its position and similarly
each node has four inputs which are the outputs of the
connected components,i.e.,

w j
i =

[

xi

yi

]

, v j
i =

[

x j

y j

]

where j ∈ {i−2, i− i, i+1, i+2} . In the figure, each arrow
represents both an input and output.

Let the desired distance between componentsi and j be

di j =







1, |i− j| = 1
sin( 2π

N )
sin( π

N )
, |i− j| = 2

which are the distances between the corresponding vertices
for a regularN-polygon with unit side length.
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Fig. 3. System topology for Example 1.

Define the inputs to be as in [3] by

[

u1,i

u2,i

]

= −∑
j









2
(√

(xi−x j)2+(yi−y j)2−di j

)

(xi−x j)√
(xi−x j)2+(yi−y j)2

2
(√

(xi−x j)2+(yi−y j)2−di j

)

(yi−y j)√
(xi−x j)2+(yi−y j)2









− kd

[

ẋi

ẏi

]

where kd is a positive constant damping gain andj ∈
{i−2, i−1, i+1, i+2}.

This is a feedback symmetric system. In detail, by con-
struction the dynamics for each agent are the same,i.e.,
fi(x) = f j(x) andg j,i = g j,k. The index sets are

Vi = Wi = {i−2, i−1, i+1, i+2} .

Each agent outputs its position, sowl
i (x) = f̂ l

i (x) =
[

xi yi
]T

.
Finally, since the inputs are a function of the state of
componenti and the components to which it is connected

[

u1,i

u2,i

]

=

[

u1,i
(

xi,v
i−2
i ,vi−1

i ,vi+1
i ,vi+2

i

)

u2,i
(

xi,v
i−2
i ,vi−1

i ,vi+1
i ,vi+2

i

)

]

.

Thus, the system satisfies all the elements of the definition
of a symmetric feedback system.

Finally, if we orderWi = {i−2, i−1, i+2i+2} for each
i, the requirement of Equation 4 is satisfied. Hence, a system
of sizeN +1 and a system of sizeN are equivalent. �

B. Stability of Symmetric Systems

Based upon the definition of equivalent symmetric sys-
tems, it is possible to show that the stability of a larger
symmetric system follows from the stability of a smaller one
if the associated Lyapunov function is of a particular form.
In this paper we always refer to stability asstability in the
sense of Lyapunov.

Proposition 1 Given a feedback symmetric system in one
spatial dimension of sizeN, assume that it is stable (resp.
asymptotically stable) in the sense of Lyapunov and further-
more that the Lyapunov function is of the form

V (x) =
N

∑
i=1

Vi(xi,w
+
i−1(xi−1),w

−
i−1(xi+1)),

V̇ (x) = ∇V · ( f (x)+g(x)u(x)) ≤ 0,

(5)



and theVi are symmetric in the sense that

Vi
(

xi,w
+
i−1(xi−1),w

−
i+1(xi+1)

)

=

Vj

(

x j,w
+
j−1(x j−1),w

−
j+1(x j+1)

)

∀i, j = 1, . . . ,N.

Then an equivalent feedback system of sizeN +1 is also sta-
ble (resp. asymptotically stable) in the sense of Lyapunov.�

For a proof, see [9]. The idea is that due to the structure
of the Lyapunov function given in Equation 5, as long as
the larger system is equivalent, then each of the terms in the
Lyapunov function corresponding to each agent must be of
a similar form. The logic of the proof is analogous to the
proofs appearing subsequently in this paper, therefore, the
details are omitted.

Remark 1 For the rest of this paper, we will specifically
focus on the problem of formation control for a system
of multiple robotic agents. Specifically, only the relative
position of each agent with respect to the others is controlled
and hence any configuration wherein the relative positions
are the desired ones will satisfy the formation objective, in
other words, the formation is only defined up to an arbitrary
rotation and translation. We will assume that there is a
function,V (x)≥ 0 that is equal to zero only when the robots
are in the desired formation. In general, there are an infinite
number of configurations that satisfy the formation since the
formation can be translated and rotated; hence, LaSalle’s
invariance principle is the basis for the stability proof. See
[3] for a complete exposition. �

Example 2 Continuing Example 1, for a fleet of 5 agents,
define a Lyapunov function as

V =
1
2

5

∑
i=1

[

(

ẋ2
i + ẏ2

i

)

+∑
j

(

√

(xi − x j)2 +(yi − y j)2−di j

)2
]

,

where j ∈ {i−2, i− i, i+1, i+2} and di j is the desired
distance between robots defined previously. By construction,
this Lyapunov function satisfies the hypothesis of Proposi-
tion 1. ComputingV̇ gives

V̇ = ∇V · ( f +gu)

=
5

∑
i=1

















∑ j 2

(√
(xi−x j)2+(yi−y j)2−di j√

(xi−x j)2+(yi−y j)2
(xi − x j)

)

ẋi

∑ j 2

(√
(xi−x j)2+(yi−y j)2−di j√

(xi−x j)2+(yi−y j)2
(yi − y j)

)

ẏi

















·

















ẋi

−∑ j
2
(√

(xi−x j)2+(yi−y j)2−di j

)

(xi−x j)√
(xi−x j)2+(yi−y j)2

− kd ẋi

ẏi

−∑ j
2
(√

(xi−x j)2+(yi−y j)2−di j

)

(yi−y j)√
(xi−x j)2+(yi−y j)2

− kd ẏi

















=
5

∑
i=1

−kd
(

ẋ2
i + ẏ2

i

)

.

By Proposition 1, this will also hold for anyN. LaSalle’s
invariance principle guarantees that the system converges
asymptotically to the desired formation. Simulation results
for this system are included in [9], and simulations illustrat-
ing the extension for robustness will appear subsequently in
this paper. �

Two issues that are encompassed by the framework devel-
oped here but not addressed in detail are collision avoidance
and uniqueness of the formation. Both are addressed in [3]
and are equivalently handled by the approach in this paper.

III. F ORMATION ROBUSTNESS UNDERAGENT FAILURES

This section presents the main contributions of this paper,
both of which, as will be demonstrated subsequently, follow
from logic similar to the proof of Proposition 1. In this paper
the result is limited to the formation control problem, but the
results are clearly of general applicability. First we define a
formation Lyapunov function.

Definition 2 Let x ∈ R
m×n denote the configuration of a set

of m agents. LetV : R
m×n →R be continuously differentiable

with V (x) = 0 when the agents are in the desiredrelative
formation. If the largest invariant set of points inRm×n is
equal to the the set of points whereV (x) = 0, thenV (x) is
a formation Lyapunov function. �

The following proposition contains two parts. First, given
a formation Lyapunov function, ifone agent fails in a
manner such that it stays at rest, then the formation is still
asymptotically stable. Second, if more than one agent fails
in a manner in which their velocities are zero, the system
is stable in the sense of Lyapunov. Stable in the sense of
Lyapunov does not imply asymptotic convergence to the
formation, but rather loosely speaking, is a guarantee that
the formation does not blow up. For a generic system, this
latter property is not necessarily apparenta priori.

Proposition 2 Given a feedback symmetric system in one
spatial dimension of sizeN, and a formation Lyapunov
function of the form

V (x) =
N

∑
i=1

Vi(xi,w
+
i−1(xi−1),w

−
i−1(xi+1)),

V̇ (x) = ∇V · ( f (x)+g(x)u(x)) ≤ 0,

(6)

if the Vi are symmetric in the sense that

Vi
(

xi,w
+
i−1(xi−1),w

−
i+1(xi+1)

)

=

Vj

(

x j,w
+
j−1(x j−1),w

−
j+1(x j+1)

)

∀i, j = 1, . . . ,N

then
1) if the only one agent fails in such a manner that ˙xi(t) =

0, then the formation is still asymptotically stable;
2) if multiple agents fail in such a manner that ˙xi(t) = 0

for i ∈
{

i1, . . . , ip
}

, then the system is stable in the
sense of Lyapunov.

If either case is true for a system withN agents, then it
also holds for an equivalent symmetric system withM > N
agents. �



Proof: First we consider the nature of a symmetric
system and Lyapunov function. Then we will consider the
two cases.

By direct computation

V̇ =
N

∑
i=1

V̇i

=
N

∑
i=1

N

∑
j=1

m

∑
k=1

∂Vi

∂x j

[

f j(x j)

+g j,k(x j)u j,k(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

]

=
N

∑
i=1

i+1

∑
j=i−1

m

∑
k=1

∂Vi

∂x j

[

f j(x j)

+g j,k(x j)u j,k(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

]

.

By the assumption of symmetry inV and the fact that the
system is symmetric,

V̇ = N ∑
j=N,1,2

m

∑
k=1

∂Vi

∂x j

[

f j(x j)

+g j,k(x j)u j,k(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

]

for eachi ∈ {1, . . . ,N}. SinceV̇ (t) ≤ 0,

∑
j=N,1,2

m

∑
k=1

∂Vi

∂x j

[

f j(x j)

+g j,k(x j)u j,k(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

]

≤ 0. (7)

By the same construction, for the equivalent system with
M > N agents

V̇ = M ∑
j=N,1,2

m

∑
k=1

∂Vi

∂x j

[

f j(x j)

+g j,k(x j)u j,k(x j,w
−
j+1(x j+1),w

+
j−1(x j−1))

]

for eachi ∈ {1, . . . ,M}, which is less than or equal to zero
by Equation 7.

Now consider the two cases.
1) SinceV (x) is a formation Lyapunov function, for a

fixed xi there exist formations such thatV (x) = 0. Due
to the assumed symmetry ofV , i.e., V = ∑ j Vj, then
V̇ = ∑ j V̇j. With the failure of one agent, if ˙xi = 0,
then it follows from the second line of Equation 6
that V̇i = 0 and henceV̇ = ∑ j 6=i V̇j. However, this is
still negative semi-definite due to Equation 5 and by
LaSalle’s invariance principle, the system converges
asymptotically to the desired formation.

2) In this case, assume agentsi1, i2, . . . , ip failed in the
indicated manner. TheṅV = ∑ j V̇j = ∑ j 6=i1,...,ip Vi. As
before,V̇ ≤ 0 which implies stability in the sense of
Lyapunov.

Observe that the proof for the first part depends on
LaSalle’s invariance principle but that the proof for the
second does not. This is due to the fact that the first result
is for asymptotic stability to the desired formation while the
latter is simply stability in the sense of Lyapunov. In the latter
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Fig. 4. Simulation results illustrating formation robustness with the failure
of one agent.

case, appealing to the invariance principle is not needed.
Consequently, the former guarantees asymptotic convergence
to the desired formation; whereas, the latter does not. In
fact, the latter cannot possibly asymptotically converge to
the formation unless the initial conditions for the agents that
failed are in the desired formation. The result is still useful,
however, because it guarantees that the control law will not
cause the formation to blow up when an arbitrary number of
agents fails.

The following example demonstrates the result.

Example 3 Continuing from Example 2, assume that the
first agent fails in a manner such that ˙x1 = 0. This could
happen, for example, if all the inputs fail and the agent starts
from rest, or, more realistically, a fault-detection algorithm in
the agent commands it to stop upon the event of some failure.
All the requirements of Proposition 2 are met, and thus
the formation must still be asymptotically stable. Figure 4
illustrates the trajectories for simulation results in this case
where the initial condition for each agent is indicated withan
× and the final configuration for each agent is marked with a
◦, illustrating the fact that the formation objective is, in fact,
met even though one agent remains stationary. Furthermore,
the formation will be stable for anyN > 5. �

The following example demonstrates the second result.

Example 4 Continuing from Example 3, assume that the
first and second agents fail in a manner such that they remain
stationary. Proposition 2 are met, and thus the formation must
still be stable. Figure 5 illustrates the trajectories in this case
with the initial conditions marked with an× and the final
configurations marked with an◦. The formation does not
asymptotically converge to the desired formation; however,
it is still stable in the sense of Lyapunov. The robots that
failed are located approximately at the top center and right
center of the figure. �
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Fig. 5. Simulation results illustrating formation robustness with the failure
of two agents.

IV. CONCLUSIONS

This paper develops generally-applicable conditions for
stability of formations of multiple robotic vehicles when
robots fail. Under the specified conditions, when one agent
fails, the formation is still asymptotically stable. Further-
more, when more than one agent fails, the system is still
stable in the sense of Lyapunov. Also, at the cost of symmetry
and the ability to decomposeV given in Equation 5, the
results apply to any system with an arbitray number of agents
greater thanN. It is based upon our prior work in [9] which
was directed toward spatially periodic systems “built-up”
from periodically interconnected components. Observing that
many of the formation control algorithms in the literature
are not limited by the number of components, but often are
limited by assuming specific dynamics, the main contribution
of this paper is to formulate a theoretical framework in which
stability of many distributed systems can be considered. The
result was demonstrated using two different failure scenarios.
Generalizing the results to allow for only a limited number
of the components to be symmetric resulting in, for example,
line formations, is the subject of current research efforts.

Current efforts are also directed toward the problem of
boundedness. This arises in the context of formation control
when, for example, in surveillance problems where the region
corresponding to each agent defines a formation, but each
agent is needed to explore that region. In such a case, time
varying inputs may be added to the formation control system.
Simulations for the same example considered in this paper
indicate that such systems have bounded solutions, as is
illustrated in Figure 6, where the ellipses are the steady state
responses due to additional forces on each robot given by
fx(t) = 0.25sint and fy = 0.5cost. A system of this type
would be expected to have a response that has bounded
deviations from the desired formation. However, proving the
result is difficult because asymptotic convergence is to a
set rather than the origin. Hence, proving boundedness will
require considering the dynamics on a quotient space and
will be the focus of a future publication.
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Fig. 6. Simulation results illustrating bounded formation solutions.
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