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Abstract— This paper extends some prior work by the X(t)
authors to address general robustness of solutions in multi-
agent coordination control problems. In particular, it focuses on
fault-tolerant formation control. In our prior work, symmetries v+(t) W(t)
in the system were exploited to simplify the nonlinear Lyapunov - -
stability analysis for symmetric systems. The type of symmetry
considered is a discrete symmetry where the system is composed
of many repeated instances of interacting identical agents. The
results are based on Lyapunov methods, and hence are of
general applicability and specifically these results are applicable
to both distributed as well as non-distributed coordination u(t)
methods. This paper considers the same types of systems
and extends the stability results to the cases of robustness of
formation stability under failure of individual agents.

Fig. 1. System building block in one spatial dimension.
[. INTRODUCTION

This paper considers fault-tolerant formation control foengineer to focus the analysis on a smaller, more tractable
multi-agent systems. Formation control for multiple mebil system with a guarantee that stability conclusions willdhol
robotic systems has a long history, with the main focugyr a much larger system. This paper extends those results to
being on the use of potential functions for coordinatiore(segetermine conditions under which a formation is still stabl
for example [1], [2], [3], [4]. [S]. [6]. [7] and the citati® (and in what sense it is stable) when individual agents fail.
therein). The use of potential functions has an obviousa@ppe some of our prior work [12], [13], [14], [15] considers
in that they facilitate stability analyses using Lyapunord-  system symmetries that are defined by a group action on
tions. The drawbacks are well-known also, which include thghe configuration manifold for a distributed system that was
existence of multiple local minima in complex environmentsjnduced by the action of a permutation group. The main
the fact that realistic potential functions representing@ t qrawback of such an approach is that, in the general case,
realities of sensor ranges introduce mathematical limitat  jgentifying such symmetries can be problematic. However,
on the potential functions which complicate and limit thgn the case of most engineering and robotics systems, where
stability analysisgetc. As observed in [8], many of the prior the individual robots are the components that are symmetric
efforts have assumed specific dynamics with the corregymmetry identification is much less of a problem. Rather
observation that they probably generalize. Motivated iy, th than using this prior approach, this paper is based on our
our approach has been to develop a general formulatifore straight-forward approach from [9]. However, it is
which is the foundational framework underlying many Ofemphasized that the prior approaches [12], [13], [14], [15]
the res_ults in the literature that focus on specific systef 6] offer a general approach to the problem that can be used
dynamics. in cases more general than the ones addressed here.

The contributions of our prior work in [9] included 1) a  This paper is organized as follows. Section Il defines the
nonlinear extension of the results in [10], [11] which is aypes of systems we consider, specifically symmetric system
more straight-forward representation of system symmeetrignd symmetric systems with periodic interconnections. The
than our previous work; 2) the presentation of a unified thenain result appears in Section IlI, which is a proposition
oretical framework that is underlying many of the formationhat provides conditions for the (asymptotic) stability af
control algorithms in the literature; and, 3) a generalifitgb  formation when one or more of the robots in the formation
theorem that is applicable to such systems regardless of . An example from the literature with second order
number of components. These results allow a control desigﬂlnamics is developed throughout the paper to illustrate th
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w(t) andw (t), and the inputs ara, v—(t) andv™(t). The 4 Txl(t) N sz(t) N Txg(t) - TX“(U "
. n . . 1 W V3 W Vg W3 v, w,
signalsv™ represent the effects of the coupling with the other—=. EN £ °, 2 f, -
components and are the usual control inputs which need Wi| Vi Wy Vo W3 Va3 Wy Va
to be designed for stability, performance, robustness,
We wish to express component-by-component, the usual Tul(t) TuZ(t) Tu3(t) Tu4(t)
dynamics of a nonlinear control system expressed by Fig. 2. System interconnected in one spatial dimension.

m
x=f(x)+ Y gj(x)uj,

=1 The simplest type of symmetric system would be when all
where x € R" and the vector fieldsf(x),gj(x) € TR". In  the components are identical with periodic interconnestio
the general case, the vector fieldsand g; depend on and example of which would be a fleet of autonomous robots
the coupling with the other components, so the equatiofi§at are in a formation where each robot communicates in
governing the dynamics of this component are given by an identical manner to its two nearest neighbors.

xi(t) = fi (x. (t)7vi+(t)7vi—(t)) Definition 1 Consider a system of the form of Equation 1.
m This system is aymmetric system spatially connected in one
+ Z 0j, (xi (1), Vi (t), v (t)) u;j(t) dimension if it has periodic interconnections and
=1
W (t) = £ (x(t), v (1), v (1)), fi (%) = fi(x), 95 (%) = 9jk(x),
Wi (t) = i+ (% (1), v (1), v (1)) fim () = f (%), fit(x) = £ (x)

For a system of interconnected components where the ifer xe R", for alli,k=1,...,N and for eachj =1,...,m. A

coming signalsy®(t) are from the outgoing signals from system under state feedback i$eadback symmetric system

the component’s neighbors, the entire system is couplédit is a symmetric system and

because thev* (t) signals depend on the component’s input

signals,v=(t). The class of the types of coupling that could Uji(X1, W, 1 (X2), Wi, 1(X3)) = Uj k(X1, W_1(X2), W, 1 (X3))

be represented by this formulation is very broad and could .

include, for example, when there is a physical joining of®" (X1,%2:X3) € R" xR xR", for alli,k=1,...,N and for

agents, as with reconfigurable, modular robots. eachj=1,....m o
For mobile robots where there is no physical contacto allow more general topologies than connections in one

between the robots and the topology of the structure of thgyatial dimension, define the index sétsand W which

system is such that a component only receives a limited nunrdex multiple inputs and outputs respectively for compune

ber of inputs (from its nearest neighbors, for example), the The outputs from componenare denoted byd (t), | € Wi

nature of the coupling between the robots can be expressedif the inputs are denoted (), | € V.

a simpler manner. In particular, it is only through the cohtr  The gynamics of a component are given by
inputs that the output from the other components affects the

dynamics of an agent, which is expressed by (1) = f (6 (1) + g g1 (% (1) U ()
=

KOZ RO anOIa® ) w0 = (1), Ve

w(t) = f (), wit)=f"(x(), with
where writing

uji(t) = uji (% (1), %" (1), v (1)) 2
makes the coupling of the agent dynamics through feedba
in the input explicit.

We can build up a system with components by requiring
periodic interconnections in one dimension, i.e.,
() =w(t), vi_y(t)=w (b), MO =w(t) Yienview,

®3)

ji (1) = uji (OO O 1),

g\‘(herell,lz, ... €V
Periodic interconnections are defined in a manner similar

to the case of one spatial dimension. In particular, if there
exist orderings of each of the safs and W, and

JF
Vit
where all mathematical operations on indices are (hNgd then the system has periodic interconnections, which regui
A segment from such a periodically interconnected system thatV; and}; have the same size. For periodic interconnec-
illustrated in Figure 2. In this case, feedback can be egpies tions, the input under feedback can be written as

in terms of the outputs from the neighbors and Equation 2

can be written as ugi(t) = uj, (xi (t),V\)il(x|1(t))7vv:2(x|2(t)),vv{3(>q3(t)),...) .

uji = Upi (6 (1), Wi (xi-2(8)), Wi (41 (1)) for Iy,la,...,€ Wi.



A. Equivalent Symmetric Systems

Finally, we want to “build up” a system. AN + 1
component system will be equivalent to tihkecomponent
system if

fi(x) = f(®),  9j.i(x) = gjk(X)

for xe R", for all k=1,...,N and for alli=1,...,N+1
and for eachj = 1,...,m and there exists an ordering for
eachW, such thatf] (x) = fl(x) for j € W; andl € Wk. The

N+ 1 system isfeedback equivalent to the N system if

g1 (3%4(0), W, (04, (1)), W (% ()W, (%5 (1)) =
U (X0), Wl O (1)), W, Oy (1), W Oty (1)), )+ (4)

Fig. 3. System topology for Example 1.

for (xi,%2,x3) € R"x R" x R", for all k=1,...,N, i = Define the inputs to be as in [3] by

1,...,N+1, for eachj=1,...,m, for Iy,lo,...,€ W; and

for m,mp, ..., € Wi J e | 2/ P dy) (6%) .

For notational convenience, we will stack all the states Bl'} --31, \/Mﬂg)z |~k [X'}

and vector fields from each component into one systeml 2! T | AV Hy‘?") _ "2("'*”') Y

description x = f(x) +g(x)u(t) where V06X 20—y
%4 U f10x0) 010x0) V\{herze.kd1|§ a1 pos;tlve constant damping gain ande
X V) fz(Xz) gz(Xz) {I - .’I _ I+ LI+ } . .

X — 2 U= f(x) = g(x) = . This is a feedback symmetric system. In detail, by con-
S S : ’ : struction the dynamics for each agent are the saeg,
XN UN fn(Xn) W NMEN) fi(x) = fj(x) andgj; = g; k. The index sets are

Example 1 A recurring example in this paper will be planar Vi=Wi={i—-2,i—1i+1i+2}.

agents with second order dynamics used in [3]. Each robot ) - o T

has a location and velocity iR2, with equations of motion Each agent outputs its position, sp(x) = fl (x) =[x yi| -

for theith robot given by Finally, since the inputs are a function of the state of
component and the components to which it is connected

Xi Xi 0 0 S
d |x 0 1 0 uri] _ funi (6,M 2 v v
a yi - yi + 0 Ul"i—'_ 0 u27i u2,i U2,i (Xiv\/=727\4717\/=+17\/=+2) .
Vi 0 0 1

Thus, the system satisfies all the elements of the definition

The goal formation is a reguld¥-polygon and each robot Of @ symmetric feedback system.

communicates with its two neighbors and the next two Finally, if we orderWj = {i—2,i—1,i+2i+2} for each
agents, as is illustrated in Figure 3. In Figure 3, each nodethe requirement of Equation 4 is satisfied. Hence, a system
in the graph is a component similar to that illustrated i?f sizeN+1 and a system of sizd are equivalent.
Figure 1; however, in this case each component has four . .

outputs, each of which is simply its position and similarly™ Stability of Symmetric Systems

each node has four inputs which are the outputs of the Based upon the definition of equivalent symmetric sys-

connected componentse., tems, it is possible to show that the stability of a larger
symmetric system follows from the stability of a smaller one
vvij = [X'] , vl = {XJ} if the associated Lyapunov function is of a particular form.
yi Yi In this paper we always refer to stability asbility in the
wherej e {i —2,i—i,i+1,i+2}. In the figure, each arrow Sense of Lyapunov.
represents both an input and output. _ _ Proposition 1 Given a feedback symmetric system in one
Let the desired distance between componértsd j be  spatial dimension of sizé&l, assume that it is stable (resp.
. asymptotically stable) in the sense of Lyapunov and further
d 17 &3 i—il=1 more that the Lyapunov function is of the form
ij sin( | T
Sin(ﬁ)’ ||_J|_2 N

V(X) = -;Vi (%, Wi (Xi—1), W1 (Xi41)),

(®)

which are the distances between the corresponding vertices
for a regularN-polygon with unit side length. V(x) =0V - (f(x)+g(x)u(x)) <0,



and theV; are symmetric in the sense that By Proposition 1, this will also hold for aniN. LaSalle’s
invariance principle guarantees that the system converges
Vi (xi,witl(xi_l),will(xiﬂ)) = asymptotically to the desired formation. Simulation ré&sul
v (x- W (Xj_1), Wo s (X )) Vi1 N for this system are included in [9], gnd simulations illastr .
AN R e A e R A =50 ing the extension for robustness will appear subsequently i

Then an equivalent feedback system of sike 1 is also sta- tHiS Paper. O

ble (resp. asymptotically stable) in the sense of Lyapunov. Two issues that are encompassed by the framework devel-

For a proof, see [9]. The idea is that due to the structur%ped here but not addressed in detail are collision avo&anc
of the Lyapunov function given in Equation 5, as long a@nd uniqueness of the formation. Both are addressed in [3]

the larger system is equivalent, then each of the terms in tﬁé‘d are equivalently handled by the approach in this paper.
Lyapunov function corresponding to each agent must be dfl. FORMATION ROBUSTNESS UNDERAGENT FAILURES

a similar form. The logic of the proof is analogous to the g gection presents the main contributions of this paper,

proofs appearing subsequently in this paper, therefor, o of which, as will be demonstrated subsequently, follow
details are omitied. from logic similar to the proof of Proposition 1. In this pape

Remark 1 For the rest of this paper, we will Speciﬁca”y the result is limited to the formation control problem, b t
focus on the problem of formation control for a systenfesults are clearly of general applicability. First we defa
of multiple robotic agents. Specifically, only the relativeformation Lyapunov function.

position of each agent with respect to the others is coetloll peafinition 2 Let x € R™" denote the configuration of a set
and hence any configuration wherein the relative positions magents. LeV : R™" _ R be continuously differentiable
are the desired ones will satisfy the formation objective, i, V(x) = 0 when the agents are in the desinethtive
other words, the formation is only defined up to an arbitraryyrmation. If the largest invariant set of points B™" is

rotation and translation. We will assume that there is 8qual to the the set of points whevex) = 0, thenV (x) is
function,V (x) > 0 that is equal to zero only when the robots, formation Lyapunov function. .

are in the desired formation. In general, there are an iefinit . - _ . _
number of configurations that satisfy the formation sinee th  The following proposition contains two parts. First, given
formation can be translated and rotated; hence, LaSalleds formation Lyapunov function, ifone agent fails in a

invariance princip'e is the basis for the Stabmty prooées manner such that it StayS at reSt, then the formation is still
[3] for a complete exposition. o asymptotically stable. Second, if more than one agent fails

o in a manner in which their velocities are zero, the system
Example 2 Continuing Example 1, for a fleet of 5 agents,is staple in the sense of Lyapunov. Stable in the sense of

define a Lyapunov function as Lyapunov does not imply asymptotic convergence to the
15 formation, but rather loosely speaking, is a guarantee that
V==
22,

2

(x,2+y,2) +z <\/(Xi —Xj)2+ (¥ —yj)z—dij> 1 , the formation does not blow up. For a generic system, this
] latter property is not necessarily apparargpriori.

where j € {i—2,i—i,i+1,i+2} and dij is the desired Proposition 2 Given a feedback symmetric system in one

distance between robots defined previously. By constnuctiospatial dimension of sizéN, and a formation Lyapunov

this Lyapunov function satisfies the hypothesis of Proposfunction of the form

tion 1. Computingv gives N
V00 = 3 V06 W3 (06-2) W ().
=

V=0V (f+gu) _ (6)
. < Xi—X}) %+ (yi—y})?—dij (% x)) V(x) =0V (f(x) +9(x)u(x)) <0,
5 2 \/(Xi*Xj>2+'(Yi*Yi)2 ! if the V; are symmetric in the sense that
— XI
B i; 5.2 (6 =%))%+(yi—yj)?—dij (yi— i) Vi (6, Wi g (%i-1), Wi 4 (X)) =
P\ Ve (i W (X 1) W (X i
g Vi (X, Wi_q(Xj-1), Wi 1 (Xj1) ) Vi, j=1,...,N
|
v then
2( X2+ ,yj)z,dij>(xi,xj) _ 1) if the only one agent fails in such a manner thét) =
=2 VX2 iy} —kax 0, then the formation is still asymptotically stable;
Vi 2) if multiple agents fail in such a manner thaft) =0
5 2( (Xi*Xj)Z‘F(Yi*yj)z*dij)(Yi*yj) ki fszrn;ee c#1L,).h;jl.p,L,;]}O,Vthen the system is stable in the
) V=X 2+ (vi—y;)? ! :
5 l J If either case is true for a system witk agents, then it
=Y ke (R+V?). also holds for an equivalent symmetric system with> N

= agents. O



Proof: First we consider the nature of a symmetric 4
system and Lyapunov function. Then we will consider the
two cases. 3+
2

By direct computation

N
V=SV L
i; i > 1
N N m \V/ L
=353 el °
& Sé 9% 1
+ 05,k 06)Uj k(% Wi 1 (Xj2), W1 (Xj-1))] ,

i+1 m dV|

N
— IV Ty -3
i;j Z ugl 28 L)

+ i k(XU (X, Wi 4 (K1), Wi (Xi—1))].

93 k(X5 U4 H'l( i+1); J_l( J 1))} Fig. 4. Simulation results illustrating formation robustnesith the failure
By the assumption of symmetry i and the fact that the ©of one agent.

system is symmetric,

. D oV;
V=N > 5 i)
j=N12k=1 "7 case, appealing to the invariance principle is not needed.
+ 0 k(X)) Uj ik (X; 7Wj7+l(Xj+1),WJ+_l(Xjfl>):| Consequently, the former guarantees asymptotic conveggen

to the desired formation; whereas, the latter does not. In

for eachi € {1,...,N}. SinceV(t) <0, fact, the latter cannot possibly asymptotically converge t

m V. the formation unless the initial conditions for the agehtst t
, g EM [fi(x) failed are in the desired formation. The result is still usef
j=N.1,2k=1 7 however, because it guarantees that the control law will not
+ 05k k(X W4 (Xj+1), W[4 (X-1))] 0. (7)  cause the formation to blow up when an arbitrary number of
By the same construction, for the equivalent system witRgents fails.
M > N agents The following example demonstrates the result.
Vil < Vi, o Example 3 Continuing from Example 2, assume that the
V=M —[fi(x) _ oo . .
i—fr12é51 9% first agent fails in a manner such thet = 0. This could

N e e o N happen, for example, if all the inputs fail and the agentstar
XUk Wi 1 (X +2). Wy (X)) from rest, or, more realistically, a fault-detection altfum in
for eachi € {1,...,M}, which is less than or equal to zerothe agent commands it to stop upon the event of some failure.
by Equation 7. All the requirements of Proposition 2 are met, and thus
Now consider the two cases. the formation must still be asymptotically stable. Figure 4
1) SinceV(x) is a formation Lyapunov function, for a illustrates the trajectories for simulation results instease
fixed Xi there exist formations such th‘a(x) =0. Due where the initial condition for each agent is indicated veith
tlo the a-ssumed Symmetry M, i_e_, V = Z]VJ’ then X and the final Configuration for eaCh agen_t is marked with a
V =75,V;. With the failure of one agent, ik =0, © illustrating the fact that the formation objective is, acf,
then it follows from the second line of Equation 6Met even though one agent remains stationary. Furthermore,
thatV, = 0 and hence/ = z#i\'/j. However, this is the formation will be stable for ani > 5. O
still negative semi-definite due to Equation 5 and by )
LaSalle’s invariance principle, the system converges The following example demonstrates the second result.
asymptotically to the desired formation.
2) In this case, assume agenmisi,,...,ip failed in the
indicated manner. TheW = 3;Vj =3, i V. As

Example 4 Continuing from Example 3, assume that the
first and second agents fail in a manner such that they remain
stationary. Proposition 2 are met, and thus the formatiostmu
still be stable. Figure 5 illustrates the trajectories iis tase
with the initial conditions marked with axx and the final
] configurations marked with an. The formation does not
Observe that the proof for the first part depends oggympotically converge to the desired formation; however
LaSalle’s invariance principle but that the proof for they s siill stable in the sense of Lyapunov. The robots that

second does not. This is due to the fact that the first resylfieq are located approximately at the top center and right
is for asymptotic stability to the desired formation whitet .cnier of the figure. 5

latter is simply stability in the sense of Lyapunov. In thitda

before,V < 0 which implies stability in the sense of
Lyapunov.
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Fig. 5. Simulation results illustrating formation robustmesth the failure
of two agents.

IV. CONCLUSIONS [1]

This paper develops generally-applicable conditions for
stability of formations of multiple robotic vehicles when 3
robots fail. Under the specified conditions, when one agent
fails, the formation is still asymptotically stable. Fueth 3]
more, when more than one agent fails, the system is still
stable in the sense of Lyapunov. Also, at the cost of symmetry4]
and the ability to decompos€é given in Equation 5, the
results apply to any system with an arbitray number of agentg;
greater tharN. It is based upon our prior work in [9] which
was directed toward spatially periodic systems “built-up”
from periodically interconnected components. Obsenrvirag t
many of the formation control algorithms in the literature
are not limited by the number of components, but often ard’!
limited by assuming specific dynamics, the main contrilbutio
of this paper is to formulate a theoretical framework in vishic
stability of many distributed systems can be considereg. Th!®l
result was demonstrated using two different failure sdesar
Generalizing the results to allow for only a limited number [9]
of the components to be symmetric resulting in, for example,
line formations, is the subject of current research efforts [1q;

Current efforts are also directed toward the problem of
boundedness. This arises in the context of formation cbntr&l]
when, for example, in surveillance problems where the regio
corresponding to each agent defines a formation, but each
agent is needed to explore that region. In such a case, tittél
varying inputs may be added to the formation control system.
Simulations for the same example considered in this papg8]
indicate that such systems have bounded solutions, as is
illustrated in Figure 6, where the ellipses are the steaalg st [14]
responses due to additional forces on each robot given by
fx(t) = 0.25sint and fy = 0.5cod. A system of this type 15
would be expected to have a response that has bouna[ecJ
deviations from the desired formation. However, proving th
result is difficult because asymptotic convergence is to
set rather than the origin. Hence, proving boundedness will
require considering the dynamics on a quotient space and
will be the focus of a future publication.

(6]

Fig. 6.

-3

Simulation results illustrating bounded formatiotugons.
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