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Abstract— Event-triggered control has been recently pro-
posed as an alternative approach to the traditional periodic
implementation of control tasks. The possibility of reduc-
ing the number of executions while guaranteeing stability
makes event-triggered control very appealing in the context
of sensor/actuator networked control systems. In this paper,
we revisit the event-triggered control from an input-to-output
perspective and we propose a simple event-triggered control
strategy for stabilization of passive and output feedback passive
systems. The triggering condition is derived based on the output
information of the control system and an estimate of the lower
bound on inter-sampling time is also provided.

I. I

The majority of feedback control laws nowadays are
implemented on digital platforms since microprocessors offer
many advantages of running real-time operating systems.
This creates the possibility of sharing the computational
resources among control and other kinds of applications
thus reducing the deployment costs of complex control
systems [12]. Since we are dealing with resource-limited
microprocessors, it becomes important to assess to what
extent we can increase the functionality of these embedded
devices through novel real-time scheduling algorithms.

Traditionally, the control task is executed periodically,
since this allows the closed-loop system to be analyzed
and the controller to be designed using the well-developed
theory on sampled-data systems, see [1]-[3]. However, the
control strategy obtained based on this approach is conser-
vative in the sense that resource usage(i.e., sampling rate,
CPU time) is more frequent than necessary to assure a
specified performance level, since stability is usually guar-
anteed under sufficiently fast periodic execution of control
action. To overcome the drawback of the periodic paradigm,
several researchers suggested the idea of event-based con-
trol. The terminology refers to the triggering mechanism
as event-based-sampling[14], to event-driven sampling[15],
Lebesgue sampling[7], deadband control[16], level-crossing
sampling[17], state-triggered sampling[8] and self-triggered
sampling[11] with slight different meaning. However in all
cases control signals are kept constant until the violation of
a condition on certain signals of the plant triggers the re-
computation of the control actions. In event-triggered real-
time scheduling algorithms, the control tasks are executed
whenever a novelty error becomes large compared with the
state of the plant[8] (so the triggering mechanism usually
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needs full-state information of the plant). The possibility of
reducing the number of re-computations, and thus of trans-
missions, while guaranteeing desired levels of performance
makes event-triggered control very appealing in networked
control systems(NCSs). One should be aware that the event-
triggered technique reduces resource usage while providing a
high degree of robustness, since embedded hardware is used
to monitor the state of the plant continuously.

Most of the results on event-triggered control are obtained
under the assumption that the feedback control law provides
input-to-state stability(ISS) in the sense of [18] with respect
to the measurement errors, see [8]-[12]. Note that some
results on designing ISS stabilizing control laws can be
found in [19]-[22]. The ISS framework provides insight into
the triggering condition by exploring the relation between
stabilization and the current full-state information. However,
in many control applications the full state information is
not available for measurement, so it is important to study
stability and performance of event-triggered control systems
with dynamic and static output feedback controllers.

In this paper, a static output feedback based event-
triggered control scheme is introduced for stabilization of
passive and output feedback passive(OFP) NCSs. For passive
system, the triggering condition is derived such that the size
of the output novelty error should be less than or equal to
the size of the current output, and any static positive definite
output feedback gain could stabilize the system if the system
is also detectable; for OFP system, the triggering condition
and the stabilization output feedback gain are derived based
on the output feedback passivity index of the system. Anal-
yses on the inter-sampling time without and with network
induced delays are both provided followed by discussions
and examples. The rest of this paper is organized as follows:
we introduce some background on passive and OFP systems
in section II; the problem is formulated in section III; the
main results are stated in section IV; concluding remarks are
given in section V.

II. B M

We first introduce some basic concepts on passive and
OFP systems.

Consider the following control system, which could be
linear or nonlinear:

H :










ẋ = f (x,u)

y = h(x)
(1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the
state, input and output variables, respectively, and X, U and
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Y are the state, input and output spaces, respectively. The
representation φ(t, t0, x0,u) is used to denote the state at time
t reached from the initial state x0 at t0.
Definition 1(Supply Rate)[4]: The supply rate ω(t) =
ω(u(t),y(t)) is a real valued function defined on U ×Y, such
that for any u(t) ∈ U and x0 ∈ X and y(t) = h(φ(t, t0, x0,u)),
ω(t) satisfies

∫ t1

t0

|ω(τ)|dτ <∞. (2)

Definition 2(Dissipative System)[4]: System H with supply
rate ω(t) is said to be dissipative if there exists a nonnegative
real function V(x) : X→R+, called the storage function, such
that, for all t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U,

V(x1)−V(x0) ≤
∫ t1

t0

ω(τ)dτ, (3)

where x1 = φ(t1, t0, x0,u) and R+ is a set of nonnegative real
numbers.
Definition 3(Passive System)[4]: System H is said to be
passive if there exists a storage function V(x) such that

V(x1)−V(x0) ≤
∫ t1

t0

u(τ)T y(τ)dτ, (4)

if V(x) is C1, then we have

V̇(x) ≤ u(t)T y(t), ∀t ≥ 0. (5)

One can see that passive system is a special case of dissipa-
tive system with supply rate ω(t) = u(t)T y(t).
Definition 4(Output Feedback Passive System)[5]: System
H is said to be Output Feedback Passive(OFP) if it is
dissipative with respect to the supply rate

ω(u,y) = uT y−ρyT y, (6)

for some ρ ∈ R.
Remark 1. Note that if ρ > 0, then H is strictly output
passive, and H is said to have excessive output feedback
passivity of ρ; if ρ < 0, H is said to lack output feedback
passivity. We call ρ the output feedback passivity index of
the system, and denote a dissipative system with supply rate
given in (6) by OFP(ρ). Also note that if a system is OFP(ρ),
then it is also OFP(ρ− ε), ∀ε > 0.
Definition 5[5]: Consider the system H with zero input,
that is ẋ = f (x,0), y = h(x,0), and let Z ⊂ Rn be its largest
positively invariant set contained in {x ∈ Rn |y = h(x,0) =
0}. We say H is Zero-State Detectable(ZSD) if x = 0 is
asymptotically stable conditionally to Z. If Z = {0}, we say
that H is Zero-State Observable (ZSO).

III. P S

We consider a control system as given in (1). We first
assume H is a passive system, and there exists a nonnegative
storage function V(x) such that (5) is satisfied. We know that
if H is ZSD, then under the feedback control law

u(t) = −Ky(t), (7)

where K could be any positive scalar or any m×m positive
definite matrix, the origin of H is asymptotically stable. For
the rest of this paper, we assume for simplicity that K > 0 is
scalar.

In real time, the implementation of the feedback control
law is typically done by sampling the output y(t) at time
instants t0, t1, . . . , computing the control action and updating
the input to the plant at time instants t0 +∆0, t1 +∆1, . . . ,

where ∆k ≥ 0, for k = 0,1,2, . . . represents the network in-
duced delay from the sampler to the remote controller at each
sampling time(here, we assume the delay from the controller
to the actuator is negligible). In event-triggered NCSs, a new
sampled output information is sent to the remote controller
only when the size of the output novelty error ẽ(t) = y(t)−
y(tk) for t ∈ [tk, tk+1) at the event-detector (an embedded
hardware in the sampler) exceeds a certain threshold, where
y(tk) denotes the last sampled output information of the plant,
see the event-triggered network control scheme as shown in
Fig. 1.

Fig. 1: Event-triggered control for NCSs (we assume that the
actuator is collocated with the plant)

We summarize the problems we try to solve in this paper
as follows: if we restrict the plant to be passive or OFP,
when should a new sampled output information be sent to
the remote controller for stabilization? What is the triggering
condition and what is the stabilization controller? How about
the inter-sampling time?

IV. M R

In this section, we first derive the triggering condition for
stabilization of passive and OFP systems without considering
network induced delay ∆k.
Theorem 1. Consider the networked control system as shown
in Fig.1, where the plant is passive and ZSD as given in (1).
Assume that the network induced delay ∆k ≡ 0, ∀k. If the
sampling time tk is determined by the following triggering
condition

‖ẽ(t)‖2 = δ‖y(t)‖2, ∀t ≥ 0, (8)

where δ ∈ (0,1], then with any K > 0 being the output
feedback gain, the control system is asymptotically stable.
Proof: Since the plant is passive, with u(t) = −Ky(tk) and
ẽ(t) = y(t)− y(tk) for t ∈ [tk, tk+1), we can obtain

V̇(x) ≤ uT y = −K(y− ẽ)T y = −KyT y+KẽT y

≤ K‖ẽ‖2‖y‖2 −K‖y‖22, t ∈ [tk, tk+1),
(9)
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where V(x) is the storage function of the plant. So if a new
sampled output information is sent to the remote controller
whenever the triggering condition (8) is satisfied, then we can
guarantee that ‖ẽ‖2 ≤ ‖y‖2, thus V̇(x)≤ 0 for t ≥ 0 . Moreover,
since the plant is ZSD, one can further conclude that the
control system is asymptotically stable.
Remark 2. One can verify that the triggering condition (8)
actually assures that the sampled output information y(tk)
to have the same sign with the output y(t) at any sampling
instant tk (y(tk)T y(t) ≥ 0, ∀tk). Since

V̇(x) = −Ky(tk)T y, for t ∈ [tk, tk+1) ,

this further assures that V̇(x) ≤ 0, for t ≥ 0.
Theorem 2. Consider the networked control system as shown
in Fig.1, where the plant is OFP(ρ) with ρ < 0 and ZSD as
given in (1). Assume that the network induced delay ∆k ≡ 0,
∀k. If the sampling time tk is determined by the following
triggering condition

‖ẽ(t)‖2 = δσo‖y(t)‖2, ∀t ≥ 0, (10)

where δ ∈ (0,1], and σo =
ρ+K

K , then with any K > −ρ being
the output feedback gain, the control system is asymptoti-
cally stable.

The proof is similar to the proof shown in the Theorem
1, thus it is omitted here.
Remark 3. Intuitively, if the triggering threshold δσo has a
larger value, then the triggering condition will be satisfied
less frequently. The value of σo depends on the ration of ρK ,
so if K is larger, then we have a larger triggering threshold;
if K,−ρ, the δσo→ δ.

The triggering conditions (8) in Theorem 1 and (10)
in Theorem 2 explicitly determine when a new sampled
output information of the plant should be sent to the remote
controller for control action update to assure stability of the
system in the absence of network induced delay ∆k. Another
problem that needs to be addressed is how often should we
sample the output of the plant? This problem is not easy
in general, especially when the dynamics of the plant are
highly nonlinear and only output information can be used
to generate control action. The following proposition gives a
way to estimate the lower bound on the inter-sampling time
when we restrict the output of the plant to be a memoryless
function belonging to a bounded sector of the state.
Proposition 1. Consider the networked control system shown
in Fig.1, where the plant is passive with storage function
V(x). Assume that the network induced delay from the
sampler to the controller ∆k ≡ 0, ∀k. Let the following
assumptions be satisfied:

1) f (x,u) : Rn ×Rn → Rn is locally Lipschitz continuous
in x on a compact set S x ⊂ R

n with Lipschitz constant
Lx;

2) ‖ f (x,u)− f (x,0)‖2 ≤ Lu‖u‖2 for all x ∈ S x with some
nonnegative constant Lu;

3) h(x) : Rn → Rn belongs to a sector (K1,K2), with
K1xT x ≤ xT h(x) ≤ K2xT x, where K1 ∈ R, K2 ∈ R and
0 < K1K2 <∞;

4)
∥

∥

∥

∂h
∂x

∥

∥

∥

2 ≤ γ, where 0 < γ <∞;

then for any initial condition x(0) in a compact set S 0 ⊂ S x,
with the control action given by u(t) = −Ky(tk),K > 0, the
inter-sampling time {tk+1 − tk} implicitly determined by the
triggering condition (8) is lower bounded by

τ =
1
γζLx

ln
(

1+
Lxζδ

Lxζ + LuK + δLuK

)

(11)

where ζ =max
{

1
|K1 |
, 1
|K2 |

}

.
Proof: Since ẽ(t) = y(t)− y(tk) for t ∈ [tk, tk+1), we can

get for t ∈ [tk, tk+1)

d

dt

‖ẽ‖2

‖y‖2
=

d

dt

(ẽT ẽ)
1
2

(yT y)
1
2

=
(ẽT ẽ)−

1
2 ẽT ˙̃e(yT y)

1
2 − (yT y)−

1
2 yT ẏ(ẽT ẽ)

1
2

yT y

=
ẽT ˙̃e
‖ẽ‖2‖y‖2

−
yT ẏ

‖y‖2‖y‖2

‖ẽ‖2

‖y‖2
,

(12)
since y(tk) is kept constant for t ∈ [tk, tk+1), ∀k, we have ˙̃e(t)=
ẏ(t), ∀t ≥ 0, and we can further get

d

dt

‖ẽ‖2

‖y‖2
≤
‖ẽ‖2‖ẏ‖2

‖ẽ‖2‖y‖2
+
‖y‖2‖ẏ‖2‖ẽ‖2

‖y‖2‖y‖2‖y‖2
=
(

1+
‖ẽ‖2

‖y‖2

)‖ẏ‖2

‖y‖2
.

(13)
Based on assumptions 1) and 2), we have

‖ f (x,u)‖2 = ‖ f (x,0)+ f (x,u)− f (x,0)‖2
≤ ‖ f (x,0)‖2 + ‖ f (x,u)− f (x,0)‖2
≤ Lx‖x‖2 + Lu‖u‖2

≤ Lx‖x‖2 + LuK‖y‖2+ LuK‖ẽ‖2,

(14)

thus
∥

∥

∥ẏ
∥

∥

∥

2 =
∥

∥

∥

∂h(x)
x

ẋ
∥

∥

∥

2 ≤
∥

∥

∥

∂h(x)
x

∥

∥

∥

2‖ẋ‖2

≤ γ
(

Lx‖x‖2 + LuK‖y‖2+ LuK‖ẽ‖2
)

.
(15)

Moreover, since y = h(x) belongs to sector [K1,K2] such
that K1xT x ≤ xT h(x) ≤ K2 xT x, where 0 < K1K2 <∞, one can
verify that

‖x‖2 ≤max
{ 1
|K1|
,

1
|K2|

}

‖y‖2 = ζ‖y‖2, (16)

so we can obtain
d

dt

‖ẽ‖2

‖y‖2
≤
(

1+
‖ẽ‖2

‖y‖2

)‖ẏ‖2

‖y‖2

≤ γ
(

1+
‖ẽ‖2

‖y‖2

)(

Lx
‖x‖2

‖y‖2
+ LuK + LuK

‖ẽ‖2

‖y‖2

)

≤ γ
(

1+
‖ẽ‖2

‖y‖2

)(

Lxζ + LuK+ LuK
‖ẽ‖2

‖y‖2

)

.

(17)

So the evolution of ‖ẽ‖2‖y‖2 during the time-interval [tk, tk+1) is
upper bounded by the solution to

ṗ = γ(1+ p)(Lxζ + LuK + LuK p), (18)

for t ∈ [tk, tk+1) with p(tk)= 0. Thus the time for ‖ẽ‖2‖y‖2 to evolve
from 0 to δ is lower bounded by the solution to p(tk+τ) = δ.
One can verify that

τ =
1
γζLx

ln
(

1+
Lxζδ

Lxζ + LuK + δLuK

)

.
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The proof is completed.
Remark 4. When y(t) = x(t), then we can directly measure
the state of the plant and apply state feedback control. This
corresponds to the case when ζ = 1.
Remark 5. For OFP(ρ)(ρ < 0) system, the analysis is the
same, but the triggering condition is (10) and the output
feedback gain should be chosen based on the index ρ of
the plant. In this case, one can verify that

τ =
1
γζLx

ln
(

1+
Lxζδσo

Lxζ + LuK+ δσoLuK

)

,

with σo =
ρ+K

K and K > −ρ.
Remark 6. The analysis shown in Proposition 1 requires
that the output of the plant belongs to a bounded sector of
the state. This is actually a conservative condition and it
requires that the input and output have the same dimension
as the state. Note that in many control systems, we can only
use partial state information to generate the control action.
In this case, if the plant is passive or OFP with respect to
those states which can be measured, then we can still use the
method in Proposition 1 to get an estimate of inter-sampling
time. This situation is illustrated by the following example.
Example 1. Consider the output feedback passive system
given by

ẋ1(t) = −3x3
1(t)+ x1(t)x2(t)

ẋ2(t) = 3x2(t)+2u(t)
y(t) = x2(t),

(19)

we can see that the system is ZSD but unstable, and we can
only measure x2. If we choose the storage function V(x) =
1
4 x2

2(t), we can get

V̇(x) = u(t)y(t)+1.5y2(t), (20)

and in this case ρ= −1.5, the plant is OFP(-1.5) with respect
to x2. Moreover, we have

‖ẏ‖2

‖y‖2
=
‖ẋ2‖2

‖y‖2
=
‖3x2−2K(y− ẽ)‖2

‖y‖2

≤ 3
‖x2‖2

‖y‖2
+2K+2K

‖ẽ‖2

‖y‖2
= 3+2K+2K

‖ẽ‖2

‖y‖2
,

(21)

we can further get

d

dt

‖ẽ‖2

‖y‖2
≤
(

1+
‖ẽ‖2

‖y‖2

) ‖ẏ‖2

‖y‖2

≤
(

1+
‖ẽ‖2

‖y‖2

)(

3+2K+2K
‖ẽ‖2

‖y‖2

)

.

(22)

So in this case, with no network induced delay, the evolution
of ‖ẽ‖2‖y‖2 during each inter-sampling time is upper bounded by
the solution to

ṗ =
(

1+ p
)(

3+2K+2K p
)

with p(tk) = 0, and we can get an estimate on the lower
bound of the inter-sampling time τ based on the solution to
p(tk+τ) = δσo. According to Theorem 2, we need to choose
K > −ρ > 0 as the stabilization output feedback gain. If we
choose K = 3 and δ = 1, then the triggering condition in
Theorem 2 becomes ‖e(t)‖2 =

K+ρ
K ‖y(t)‖2 = 0.5‖y(t)‖2. We add

external disturbance at the input to the plant which is an
uniformly distributed random signal on the interval [0,0.5],
the simulation result is shown in Fig.2, where σ(t) shows
the evolution of ‖ẽ‖2

‖y‖2
, {tk+1 − tk} shows the evolution of the

inter-sampling time, xp1 and xp2 show the evolution of the
state of the plant.

0 5 10
0

0.2

0.4

0.6

0.8

1

t(s)

t
k
+

1
−

t
k
(s

)

0 5 10
0

0.1

0.2

0.3

0.4

0.5

t(s)

σ
(t

)

0 5 10
−5

−4

−3

−2

−1

0

t(s)

 

 

xp1

0 5 10
0

5

10

15

20

t(s)

 

 

xp2

Fig. 2: simulation result of example 1

When there is non-trivial network induced delay from the
sampler to the controller (∆k ! 0), we need to be careful
about the triggering condition, and the admissible network
induced delay is related to the triggering condition: usually
a larger triggering threshold implies a longer inter-sampling
time, thus more tolerance to the network induced delay.
Since ‖ẽ‖2 = ‖y− y(tk)‖2, we have ‖ẽ‖2 ≥ ‖y(tk)‖2−‖y‖2, thus
‖y‖2 ≥ ‖y(tk)‖2 − ‖ẽ‖2, for t ∈ [tk, tk+1). One can verify that
a sufficient condition for ‖ẽ‖2 ≤ ‖y‖2 to be satisfied for all
t ≥ 0 is given by ‖ẽ‖2 ≤ 0.5‖y(tk)‖2, for t ∈ [tk, tk+1), ∀k. So
alternative triggering conditions to (8) and (10) are given by

‖ẽ‖2 = 0.5δ‖y(tk)‖2, if the plant is passive (23)

‖ẽ‖2 =
δσo

1+σo
‖y(tk)‖2, if the plant is OFP(ρ), ρ < 0 (24)

with δ ∈ (0,1], and for t ∈ [tk, tk+1), ∀k. Note that they are
tighter triggering conditions compared with (8) and (10). We
use them for analysis on the upper bound of the admissible
network induced delay as provided in the following propo-
sition.
Proposition 2. Consider the networked control system shown
in Fig.1, where the plant is passive with storage function
V(x). Let assumptions 1)-4) in Proposition 1 be satisfied.
Then for any initial condition x(0) ∈ S 0 ⊂ S x, there exists
ηk > 0, such that for ∆k ∈ [0,ηk] and with control action
u(t) = −Ky(tk),K > 0, t ∈ [tk + ∆k, tk+1 + ∆k+1), the inter-
sampling time {tk+1 − tk} implicitly determined by the trig-
gering condition (23) is strictly positive.

Proof: Let e(t) denote the output novelty error at the
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controller, and we have

e(t) =










y(t)− y(tk−1), for t ∈ [tk, tk +∆k)

y(t)− y(tk), for t ∈ [tk +∆k, tk+1),
(25)

while
ẽ(t) = y(t)− y(tk), for t ∈ [tk, tk+1) . (26)

For t ∈ [tk, tk +∆k), we have

d

dt
‖ẽ‖2 ≤ ‖ ˙̃e‖2 = ‖ẏ‖2 ≤ γ‖ẋ‖2

≤ γ
[

Lx‖x‖2 + LuK‖y(tk−1)‖2
]

≤ γ
[

Lxζ‖y‖2 + LuK‖y− e‖2
]

≤ γ
[(

Lxζ + LuK
)

‖y‖2 + LuK‖e‖2
]

= γ
[(

Lxζ + LuK
)

‖ẽ+ y(tk)‖2+ LuK‖ẽ+ y(tk)− y(tk−1)‖2
]

≤ γ
(

Lxζ +2LuK
)

‖ẽ‖2+γ
(

Lxζ + LuK
)

‖y(tk)‖2
+γLuK‖y(tk)− y(tk−1)‖2,

(27)
so the evolution of ‖ẽ‖2 during [tk, tk+∆k) is bounded by the
solution to

ṗ = γ
(

Lxζ +2LuK
)

p+γ
(

Lxζ + LuK
)

‖y(tk)‖2
+γLuK‖y(tk)− y(tk−1)‖2

(28)

with p(tk)= 0. Assume ‖ẽ(tk+∆k)‖2 = 0.5δ1‖y(tk)‖2, with δ1 ∈
(0, δ), then ∆k is lower bounded by the solution to p(tk+ε−k )=
0.5δ1‖y(tk)‖2, we can obtain

ε−k =
1

γ(Lxζ +2LuK)
ln
(

1+
0.5δ1(Lxζ +2LuK)

Lxζ + (1+0.5δ1)LuK

)

. (29)

Assume ∆k ≤ ε
−
k

, then for t ∈ [tk + ε−k , tk+1), we have

d

dt
‖ẽ‖2 ≤ γ

(

Lx‖x‖2 + LuK‖y(tk)‖2
)

≤ γ
(

Lxζ‖y‖2 + LuK‖y(tk)‖2
)

≤ γLxζ‖ẽ‖2+γ(Lxζ + LuK)‖y(tk)‖2,

(30)

so the evolution of ‖ẽ‖2 during [tk + ε−k , tk+1) is bounded by
the solution to

ṗ = γLxζp+γ(Lxζ + LuK)‖y(tk)‖2, (31)

with p(tk + ε−k ) = 0.5δ1‖y(tk)‖2. Assume ‖ẽ(tk+1)‖2 =
0.5δ2‖y(tk)‖2, where δ2 ∈ (δ1,1), then [tk+1−(tk+ε−k )] is lower
bounded by the solution to p(tk + ε−k + εk) = 0.5δ2‖y(tk)‖2,
we can obtain

εk =
1
γLxζ

ln
(

LuK+ (1+0.5δ2)Lxζ

LuK+ (1+0.5δ1)Lxζ

)

. (32)

Note that for t ∈ [tk+ε−k , tk+1), e = ẽ, and at t = tk+1, ẽ is reset
to zero while ‖e‖2 is continuing growing due to the delay
from the sampler to the controller. To assure stability, we
need ‖e‖2 ≤ 0.5‖y(tk)‖2 for t ∈ [tk+1, tk+1+∆k+1). The evolution
of ‖e‖2 during [tk+1, tk+1 +∆k+1) is bounded by

d

dt
‖e‖2 ≤ ‖ė‖2 ≤ γ

(

Lx‖x‖2 + LuK‖y(tk)‖2
)

≤ γ
(

Lxζ‖y‖2 + LuK‖y(tk)‖2
)

≤ γLxζ‖e‖2+γ(Lxζ + LuK)‖y(tk)‖2.

(33)

Assume ‖e(tk+1+∆k+1)‖2 = 0.5δ‖y(tk)‖2, where δ ∈ (δ2,1), one
can verify that ∆k+1 is lower bounded by

ε+k =
1
γLxζ

ln
(

LuK+ (1+0.5δ)Lxζ

LuK + (1+0.5δ2)Lxζ

)

. (34)

Let ηk = min
{

ε−
k
, ε+

k

}

, then one can verify that for any ∆k ∈

[0,ηk], the inter-sampling time implicitly determined by the
triggering condition (23) is lower bounded by

tk+1 − tk ≥ τk = ∆k + εk > 0 ,

and the proof is completed.
Remark 7. For OFP(ρ) system with ρ < 0, the analysis on
the admissible network induced delay should be the same
with the analysis shown in Proposition 2. One can verify
that in this case

ε−k =
1

γ(Lxζ +2LuK)
ln
(

1+
δ1σo

σo+1 (Lxζ +2LuK)

Lxζ + (1+ δ1σo

σo+1 )LuK

)

, (35)

ε+k =
1
γLxζ

ln
(

LuK+ (1+ δσo
σo+1 )Lxζ

LuK+ (1+ δ2σo

σo+1 )Lxζ

)

, (36)

εk =
1
γLxζ

ln
(

LuK + (1+ δ2σo
σo+1 )Lxζ

LuK + (1+ δ1σo

σo+1 )Lxζ

)

. (37)

Example 2. Consider again the OFP system studied in
Example 1. We can get Lx = 3, Lu = 2, ζ = 1, γ = 1. Choose
K = 3, δ1 = 0.2, δ2 = 0.8 and δ = 1, one can verify that
ε−k = ε

+
k = 0.0067s in this case. We add randomly generated

network induced delay from the sampler to the controller
into the system studied in Example 1, and impose ∆k to
be uniformly distributed on the interval [0,0.0067s], the
simulation result is shown in Fig.3.
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Fig. 3: simulation result of example 2

V. C

In this paper, we propose an output feedback based event-
triggered control strategy for stabilization of passive and

#D>?



OFP NCSs. The triggering condition and the stabilization
output feedback controller are obtained based on the output
feedback passivity index of the plant. Analyses on the inter-
sampling and the admissible network induced delay from the
sampler to the controller are derived by restricting the output
to belong to a bounded sector of the state.
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