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15 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-1
Bernard Friedland

SECTION III Design Methods for MIMO LTI Systems

16 Eigenstructure Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16-1
Kenneth M. Sobel, Eliezer Y. Shapiro, and Albert N. Andry, Jr.

17 Linear Quadratic Regulator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-1
Leonard Lublin and Michael Athans

18 H2 (LQG) and H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
Leonard Lublin, Simon Grocott, and Michael Athans

19 �1 Robust Control: Theory, Computation, and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19-1
Munther A. Dahleh

20 The Structured Singular Value (μ) Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20-1
Gary J. Balas and Andy Packard

21 Algebraic Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-1
Vladimír Kučera

22 Quantitative Feedback Theory (QFT) Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1
Constantine H. Houpis

23 Robust Servomechanism Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1
Edward J. Davison

24 Linear Matrix Inequalities in Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24-1
Carsten Scherer and Siep Weiland

25 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25-1
Frank L. Lewis

26 Decentralized Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26-1
M.E. Sezer and D.D. Šiljak

27 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27-1
Trevor Williams and Panos J. Antsaklis

28 Linear Model Predictive Control in the Process Industries . . . . . . . . . . . . . . . . . . . . . . . . . .28-1
Jay H. Lee and Manfred Morari



�

�

�

�

�

“73648_C000” — 2010/10/29 — 14:58 — page ix — #9

�

Contents ix

SECTION IV Analysis and Design of Hybrid Systems

29 Computation of Reach Sets for Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29-1
Alex A. Kurzhanskiy and Pravin Varaiya

30 Hybrid Dynamical Systems: Stability and Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-1
Hai Lin and Panos J. Antsaklis

31 Optimal Control of Switching Systems via Embedding into Continuous
Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-1
Sorin Bengea, Kasemsak Uthaichana, Milos Žefran, and Raymond A. DeCarlo
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Miroslav Krstić and Andrey Smyshlyaev

72 Stabilization of Fluid Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72-1
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Preface to the
Second Edition

As you may know, the first edition of The Control Handbook was very well received. Many copies were
sold and a gratifying number of people took the time to tell me that they found it useful. To the publisher,
these are all reasons to do a second edition. To the editor of the first edition, these same facts are a modest
disincentive. The risk that a second edition will not be as good as the first one is real and worrisome. I
have tried very hard to insure that the second edition is at least as good as the first one was. I hope you
agree that I have succeeded.

I have made two major changes in the second edition. The first is that all the Applications chapters
are new. It is simply a fact of life in engineering that once a problem is solved, people are no longer as
interested in it as they were when it was unsolved. I have tried to find especially inspiring and exciting
applications for this second edition.

Secondly, it has become clear to me that organizing the Applications book by academic discipline is
no longer sensible. Most control applications are interdisciplinary. For example, an automotive control
system that involves sensors to convert mechanical signals into electrical ones, actuators that convert
electrical signals into mechanical ones, several computers and a communication network to link sensors
and actuators to the computers does not belong solely to any specific academic area. You will notice that
the applications are now organized broadly by application areas, such as automotive and aerospace.

One aspect of this new organization has created a minor and, I think, amusing problem. Several
wonderful applications did not fit into my new taxonomy. I originally grouped them under the title
Miscellaneous. Several authors objected to the slightly pejorative nature of the term “miscellaneous.”
I agreed with them and, after some thinking, consulting with literate friends and with some of the
library resources, I have renamed that section “Special Applications.” Regardless of the name, they are
all interesting and important and I hope you will read those articles as well as the ones that did fit my
organizational scheme.

There has also been considerable progress in the areas covered in the Advanced Methods book. This
is reflected in the roughly two dozen articles in this second edition that are completely new. Some of
these are in two new sections, “Analysis and Design of Hybrid Systems” and “Networks and Networked
Controls.”

There have even been a few changes in the Fundamentals. Primarily, there is greater emphasis on
sampling and discretization. This is because most control systems are now implemented digitally.

I have enjoyed editing this second edition and learned a great deal while I was doing it. I hope that you
will enjoy reading it and learn a great deal from doing so.

William S. Levine
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1.1 Introduction

This chapter provides a survey of various aspects of the numerical solution of selected problems in linear
systems, control, and estimation theory. Space limitations preclude an exhaustive survey and extensive list
of references. The interested reader is referred to [1,4,10,14] for sources of additional detailed information.

∗ This material is based on a paper written by the same authors and published in Patel, R.V., Laub, A.J., and Van Dooren,
P.M., Eds., Numerical Linear Algebra Techniques for Systems and Control, Selected Reprint Series, IEEE Press, New York,
pp. 1–29 1994, copyright 1994 IEEE.
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1-2 Control System Advanced Methods

Many of the problems considered in this chapter arise in the study of the “standard” linear model

ẋ(t)= Ax(t)+Bu(t), (1.1)

y(t)= Cx(t)+Du(t). (1.2)

Here, x(t) is an n-vector of states, u(t) is an m-vector of controls or inputs, and y(t) is a p-vector of
outputs. The standard discrete-time analog of Equations 1.1 and 1.2 takes the form

xk+1 = Axk +Buk , (1.3)

yk = Cxk +Duk . (1.4)

Of course, considerably more elaborate models are also studied, including time-varying, stochastic, and
nonlinear versions of the above, but these are not discussed in this chapter. In fact, the above linear models
are usually derived from linearizations of nonlinear models regarding selected nominal points.

The matrices considered here are, for the most part, assumed to have real coefficients and to be
small (of order a few hundred or less) and dense, with no particular exploitable structure. Calculations
for most problems in classical single-input, single-output control fall into this category. Large sparse
matrices or matrices with special exploitable structures may significantly involve different concerns and
methodologies than those discussed here.

The systems, control, and estimation literature is replete with ad hoc algorithms to solve the compu-
tational problems that arise in the various methodologies. Many of these algorithms work quite well on
some problems (e.g., “small-order” matrices) but encounter numerical difficulties, often severe, when
“pushed” (e.g., on larger order matrices). The reason for this is that little or no attention has been paid to
the way algorithms perform in “finite arithmetic,” that is, on a finite word length digital computer.

A simple example by Moler and Van Loan [14, p. 649]∗ illustrates a typical pitfall. Suppose it is desired
to compute the matrix eA in single precision arithmetic on a computer which gives six decimal places of
precision in the fractional part of floating-point numbers. Consider the case

A=
[−49 24
−64 31

]

and suppose the computation is attempted with the Taylor series formula

eA =
+∞∑
k=0

1

k!A
k . (1.5)

This is easily coded and it is determined that the first 60 terms in the series suffice for the computation, in
the sense that the terms for k ≥ 60 of the order 10−7 no longer add anything significant to the sum. The
resulting answer is [−22.2588 −1.43277

−61.4993 −3.47428

]
.

Surprisingly, the true answer is (correctly rounded)

[−0.735759 0.551819
−1.47152 1.10364

]
.

What happened here was that the intermediate terms in the series became very large before the factorial
began to dominate. The 17th and 18th terms, for example, are of the order of 107 but of opposite signs so

∗ The page number indicates the location of the appropriate reprint in [14].
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that the less significant parts of these numbers, while significant for the final answer, are “lost” because of
the finiteness of the arithmetic.

For this particular example, various fixes and remedies are available. However, in more realistic exam-
ples, one seldom has the luxury of having the “true answer” available so that it is not always easy to simply
inspect or test a computed solution and determine that it is erroneous. Mathematical analysis (truncation
of the series, in the example above) alone is simply not sufficient when a problem is analyzed or solved in
finite arithmetic (truncation of the arithmetic). Clearly, a great deal of care must be taken.

The finiteness inherent in representing real or complex numbers as floating-point numbers on a digital
computer manifests itself in two important ways: floating-point numbers have only finite precision
and finite range. The degree of attention paid to these two considerations distinguishes many reliable
algorithms from more unreliable counterparts.

The development in systems, control, and estimation theory of stable, efficient, and reliable algorithms
that respect the constraints of finite arithmetic began in the 1970s and still continues. Much of the research
in numerical analysis has been directly applicable, but there are many computational issues in control
(e.g., the presence of hard or structural zeros) where numerical analysis does not provide a ready answer
or guide. A symbiotic relationship has developed, especially between numerical linear algebra and linear
system and control theory, which is sure to provide a continuing source of challenging research areas.

The abundance of numerically fragile algorithms is partly explained by the following observation:

If an algorithm is amenable to “easy” manual calculation, it is probably a poor method if imple-
mented in the finite floating-point arithmetic of a digital computer.

For example, when confronted with finding the eigenvalues of a 2× 2 matrix, most people would
find the characteristic polynomial and solve the resulting quadratic equation. But when extrapolated
as a general method for computing eigenvalues and implemented on a digital computer, this is a very
poor procedure for reasons such as roundoff and overflow/underflow. The preferred method now would
generally be the double Francis QR algorithm (see [17] for details) but few would attempt that manually,
even for very small-order problems.

Many algorithms, now considered fairly reliable in the context of finite arithmetic, are not amenable
to manual calculations (e.g., various classes of orthogonal similarities). This is a kind of converse to
the observation quoted above. Especially in linear system and control theory, we have been too easily
tempted by the ready availability of closed-form solutions and numerically naive methods to implement
those solutions. For example, in solving the initial value problem

ẋ(t)= Ax(t); x(0)= x0, (1.6)

it is not at all clear that one should explicitly compute the intermediate quantity etA. Rather, it is the vector
etAx0 that is desired, a quantity that may be computed by treating Equation 1.6 as a system of (possibly
stiff) differential equations and using an implicit method for numerically integrating the differential
equation. But such techniques are definitely not attractive for manual computation.

The awareness of such numerical issues in the mathematics and engineering community has increased
significantly in the last few decades. In fact, some of the background material well known to numer-
ical analysts has already filtered down to undergraduate and graduate curricula in these disciplines.
This awareness and education has affected system and control theory, especially linear system theory.
A number of numerical analysts were attracted by the wealth of interesting numerical linear algebra
problems in linear system theory. At the same time, several researchers in linear system theory turned to
various methods and concepts from numerical linear algebra and attempted to modify them in develop-
ing reliable algorithms and software for specific problems in linear system theory. This cross-fertilization
has been greatly enhanced by the widespread use of software packages and by developments over the last
couple of decades in numerical linear algebra. This process has already begun to have a significant impact
on the future directions and development of system and control theory, and on applications, as evident
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1-4 Control System Advanced Methods

from the growth of computer-aided control system design (CACSD) as an intrinsic tool. Algorithms
implemented as mathematical software are a critical “inner” component of a CACSD system.

In the remainder of this chapter, we survey some results and trends in this interdisciplinary research
area. We emphasize numerical aspects of the problems/algorithms, which is why we also spend time
discussing appropriate numerical tools and techniques. We discuss a number of control and filtering
problems that are of widespread interest in control.

Before proceeding further, we list here some notations to be used:

F
n×m the set of all n×m matrices with coefficients in the field F (F is generally R or C )

AT the transpose of A ∈ R
n×m

AH the complex-conjugate transpose of A ∈ C
n×m

A+ the Moore–Penrose pseudoinverse of A
‖A‖ the spectral norm of A (i.e., the matrix norm subordinate to the Euclidean vector

norm: ‖A‖ =max‖x‖2=1 ‖Ax‖2)

diag (a1, . . . , an) the diagonal matrix

⎡
⎢⎣

a1 0
. . .

0 an

⎤
⎥⎦

Λ(A) the set of eigenvalues λ1, . . . ,λn (not necessarily distinct) of A ∈ F
n×n

λi(A) the ith eigenvalue of A
Σ(A) the set of singular values σ1, . . . , σm (not necessarily distinct) of A ∈ F

n×m

σi(A) the ith singular value of A

Finally, let us define a particular number to which we make frequent reference in the following. The
machine epsilon or relative machine precision is defined, roughly speaking, as the smallest positive number
ε that, when added to 1 on our computing machine, gives a number greater than 1. In other words, any
machine representable number δ less than ε gets “ rounded off” when (floating-point) added to 1 to give
exactly 1 again as the rounded sum. The number ε, of course, varies depending on the kind of computer
being used and the precision of the computations (single precision, double precision, etc.). But the fact
that such a positive number ε exists is entirely a consequence of finite word length.

1.2 Numerical Background

In this section, we give a very brief discussion of two concepts fundamentally important in numerical
analysis: numerical stability and conditioning. Although this material is standard in textbooks such as [8],
it is presented here for completeness and because the two concepts are frequently confused in the systems,
control, and estimation literature.

Suppose we have a mathematically defined problem represented by f which acts on data d belonging to
some set of data D, to produce a solution f (d) in a solution set S. These notions are kept deliberately vague
for expository purposes. Given d ∈D, we desire to compute f (d). Suppose d∗ is some approximation to d.
If f (d∗) is “near” f (d), the problem is said to be well conditioned. If f (d∗) may potentially differ greatly
from f (d) even when d∗ is near d, the problem is said to be ill-conditioned. The concept of “near” can be
made precise by introducing norms in the appropriate spaces. We can then define the condition of the
problem f with respect to these norms as

κ[f (d)] = lim
δ→0

sup
d2(d,d∗)=δ

[
d1(f (d), f (d∗))

δ

]
, (1.7)
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where di (· , ·) are distance functions in the appropriate spaces. When κ[f (d)] is infinite, the problem of
determining f (d) from d is ill-posed (as opposed to well-posed). When κ[f (d)] is finite and relatively large
(or relatively small), the problem is said to be ill-conditioned (or well-conditioned).

A simple example of an ill-conditioned problem is the following. Consider the n× n matrix

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
· · · · · · ·
· · · · · ·
· · · · 0
· · · 1
0 · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with n eigenvalues at 0. Now, consider a small perturbation of the data (the n2 elements of A) consisting
of adding the number 2−n to the first element in the last (nth) row of A. This perturbed matrix then
has n distinct eigenvalues λ1, . . . ,λn with λk = 1/2 exp(2kπj/n), where j := √−1. Thus, we see that this
small perturbation in the data has been magnified by a factor on the order of 2n resulting in a rather
large perturbation in solving the problem of computing the eigenvalues of A. Further details and related
examples can be found in [9,17].

Thus far, we have not mentioned how the problem f above (computing the eigenvalues of A in the
example) was to be solved. Conditioning is a function solely of the problem itself. To solve a problem
numerically, we must implement some numerical procedures or algorithms which we denote by f ∗. Thus,
given d, f ∗(d) is the result of applying the algorithm to d (for simplicity, we assume d is “representable”; a
more general definition can be given when some approximation d∗∗ to d must be used). The algorithm f ∗
is said to be numerically (backward) stable if, for all d ∈D, there exists d∗ ∈D near d so that f ∗(d) is near
f (d∗), (f (d∗) = the exact solution of a nearby problem). If the problem is well-conditioned, then f (d∗)
is near f (d) so that f ∗(d) is near f (d) if f ∗ is numerically stable. In other words, f ∗ does not introduce
any more sensitivity to perturbation than is inherent in the problem. Example 1.1 further illuminates this
definition of stability which, on a first reading, can seem somewhat confusing.

Of course, one cannot expect a stable algorithm to solve an ill-conditioned problem any more accurately
than the data warrant, but an unstable algorithm can produce poor solutions even to well-conditioned
problems. Example 1.2, illustrates this phenomenon. There are thus two separate factors to consider in
determining the accuracy of a computed solution f ∗(d). First, if the algorithm is stable, f ∗(d) is near f (d∗),
for some d∗, and second, if the problem is well conditioned, then, as above, f (d∗) is near f (d). Thus, f ∗(d)
is near f (d) and we have an “accurate” solution.

Rounding errors can cause unstable algorithms to give disastrous results. However, it would be virtually
impossible to account for every rounding error made at every arithmetic operation in a complex series of
calculations. This would constitute a forward error analysis. The concept of backward error analysis based
on the definition of numerical stability given above provides a more practical alternative. To illustrate this,
let us consider the singular value decomposition (SVD) of an arbitrary m× n matrix A with coefficients
in R or C [8] (see also Section 1.3.3),

A= UΣV H . (1.8)

Here U and V are m×m and n× n unitary matrices, respectively, andΣ is an m× n matrix of the form

Σ=
[
Σr 0
0 0

]
; Σr = diag{σ1, . . . , σr} (1.9)

with the singular values σi positive and satisfying σ1 ≥ σ2 · · · ≥ σr > 0. The computation of this decom-
position is, of course, subject to rounding errors. Denoting computed quantities by an overbar, for some
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error matrix EA,

A= A+EA = UΣV
H

. (1.10)

The computed decomposition thus corresponds exactly to a perturbed matrix A. When using the SVD
algorithm available in the literature [8], this perturbation can be bounded by

‖ EA ‖≤ πε ‖ A ‖, (1.11)

where ε is the machine precision and π is some quantity depending on the dimensions m and n, but
reasonably close to 1 (see also [14, p. 74]). Thus, the backward error EA induced by this algorithm has
roughly the same norm as the input error Ei resulting, for example, when reading the data A into the
computer. Then, according to the definition of numerical stability given above, when a bound such as
that in Equation 1.11 exists for the error induced by a numerical algorithm, the algorithm is said to be
backward stable [17]. Note that backward stability does not guarantee any bounds on the errors in the
result U ,Σ, and V . In fact, this depends on how perturbations in the data (namely, EA = A−A) affect
the resulting decomposition (namely, EU = U −U , EΣ =Σ−Σ, and EV = V −V ). This is commonly
measured by the condition κ[f (A)].

Backward stability is a property of an algorithm, and the condition is associated with a problem and
the specific data for that problem. The errors in the result depend on the stability of the algorithm
used and the condition of the problem solved. A good algorithm should, therefore, be backward stable
because the size of the errors in the result is then mainly due to the condition of the problem, not to the
algorithm. An unstable algorithm, on the other hand, may yield a large error even when the problem is
well conditioned.

Bounds of the type Equation 1.11 are obtained by an error analysis of the algorithm used, and the
condition of the problem is obtained by a sensitivity analysis; for example, see [9,17].

We close this section with two simple examples to illustrate some of the concepts introduced.

Example 1.1:

Let x and y be two floating-point computer numbers and let fl(x ∗ y) denote the result of multiplying
them in floating-point computer arithmetic. In general, the product x ∗ y requires more precision to
be represented exactly than was used to represent x or y. But for most computers

fl(x ∗ y)= x ∗ y(1+ δ), (1.12)

where |δ|< ε (= relative machine precision). In other words, fl(x ∗ y) is x ∗ y correct to within a unit in
the last place. Another way to write Equation 1.12 is as follows:

fl(x ∗ y)= x(1+ δ)1/2 ∗ y(1+ δ)1/2, (1.13)

where |δ|< ε. This can be interpreted as follows: the computed result fl(x ∗ y) is the exact prod-
uct of the two slightly perturbed numbers x(1+ δ)1/2 and y(1+ δ)1/2. The slightly perturbed data
(not unique) may not even be representable as floating-point numbers. The representation of
Equation 1.13 is simply a way of accounting for the roundoff incurred in the algorithm by an ini-
tial (small) perturbation in the data.
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Example 1.2:

Gaussian elimination with no pivoting for solving the linear system of equations

Ax = b (1.14)

is known to be numerically unstable; see for example [8] and Section 1.3. The following data
illustrate this phenomenon. Let

A=
[

0.0001 1.000
1.000 −1.000

]
, b=

[
1.000
0.000

]
.

All computations are carried out in four-significant-figure decimal arithmetic. The “true answer”
x = A−1b is [

0.9999
0.9999

]
.

Using row 1 as the “pivot row” (i.e., subtracting 10,000× row 1 from row 2) we arrive at the equivalent
triangular system [

0.0001 1.000
0 −1.000× 104

] [
x1
x2

]
=
[

1.000
−1.000× 104

]
.

The coefficient multiplying x2 in the second equation should be−10, 001, but because of roundoff,
becomes −10, 000. Thus, we compute x2 = 1.000 (a good approximation), but back substitution in
the equation

0.0001x1 = 1.000− fl(1.000 ∗ 1.000)

yields x1 = 0.000. This extremely bad approximation to x1 is the result of numerical instability. The
problem, it can be shown, is quite well conditioned.

1.3 Fundamental Problems in Numerical Linear Algebra

In this section, we give a brief overview of some of the fundamental problems in numerical linear algebra
that serve as building blocks or “tools” for the solution of problems in systems, control, and estimation.

1.3.1 Linear Algebraic Equations and Linear Least-Squares Problems

Probably the most fundamental problem in numerical computing is the calculation of a vector x which
satisfies the linear system

Ax = b, (1.15)

where A ∈ R
n×n(or C

n×n) and has rank n. A great deal is now known about solving Equation 1.15 in finite
arithmetic both for the general case and for a large number of special situations, for example, see [8,9].

The most commonly used algorithm for solving Equation 1.15 with general A and small n (say n≤ 1000)
is Gaussian elimination with some sort of pivoting strategy, usually “partial pivoting.” This amounts to
factoring some permutation of the rows of A into the product of a unit lower triangular matrix L and an
upper triangular matrix U . The algorithm is effectively stable, that is, it can be proved that the computed
solution is near the exact solution of the system

(A+E)x = b (1.16)

with |eij| ≤ φ(n) γ β ε, where φ(n) is a modest function of n depending on details of the arithmetic used, γ
is a “growth factor” (which is a function of the pivoting strategy and is usually—but not always—small),
β behaves essentially like ‖A‖, and ε is the machine precision. In other words, except for moderately
pathological situations, E is “small”—on the order of ε ‖A‖.
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The following question then arises. If, because of rounding errors, we are effectively solving Equa-
tion 1.16 rather than Equation 1.15, what is the relationship between (A+E)−1b and A−1b? To answer
this question, we need some elementary perturbation theory and this is where the notion of condition
number arises. A condition number for Equation 1.15 is given by

κ(A) : = ‖A‖ ‖A−1‖. (1.17)

Simple perturbation results can show that perturbation in A and/or b can be magnified by as much as
κ(A) in the computed solution. Estimating κ(A) (since, of course, A−1 is unknown) is thus a crucial
aspect of assessing solutions of Equation 1.15 and the particular estimating procedure used is usually the
principal difference between competing linear equation software packages. One of the more sophisticated
and reliable condition estimators presently available is implemented in LINPACK [5] and its successor
LAPACK [2]. LINPACK and LAPACK also feature many codes for solving Equation 1.14 in case A has
certain special structures (e.g., banded, symmetric, or positive definite).

Another important class of linear algebra problems, and one for which codes are available in LINPACK
and LAPACK, is the linear least-squares problem

min ‖Ax− b‖2, (1.18)

where A ∈ R
m×n and has rank k, with (in the simplest case) k = n≤m, for example, see [8]. The solution

of Equation 1.18 can be written formally as x = A+b. The method of choice is generally based on the QR
factorization of A (for simplicity, let rank(A)= n)

A= QR, (1.19)

where R ∈ R
n×n is upper triangular and Q ∈ R

m×n has orthonormal columns, that is, QT Q = I . With
special care and analysis, the case k < n can also be handled similarly. The factorization is effected through
a sequence of Householder transformations Hi applied to A. Each Hi is symmetric and orthogonal and
of the form I − 2uuT/uT u, where u ∈ R

m is specially chosen so that zeros are introduced at appropriate
places in A when it is premultiplied by Hi . After n such transformations,

HnHn−1 . . . H1A=
[

R
0

]
,

from which the factorization Equation 1.19 follows. Defining c and d by

[
c
d

]
:= HnHn−1 . . . H1b,

where c ∈ R
n, it is easily shown that the least-squares solution x of Equation 1.18 is given by the solution

of the linear system of equations

Rx = c . (1.20)

The above algorithm is numerically stable and, again, a well-developed perturbation theory exists from
which condition numbers can be obtained, this time in terms of

κ(A) : = ‖A‖ ‖A+‖.

Least-squares perturbation theory is fairly straightforward when rank(A)= n, but is considerably more
complicated when A is rank deficient. The reason for this is that, although the inverse is a continuous
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function of the data (i.e., the inverse is a continuous function in a neighborhood of a nonsingular matrix),
the pseudoinverse is discontinuous. For example, consider

A=
[

1 0
0 0

]
= A+

and perturbations

E1 =
[

0 0
δ 0

]
and E2 =

[
0 0
0 δ

]

with δ being small. Then

(A+E1)+ =
⎡
⎣ 1

1+ δ2

δ

1+ δ2

0 0

⎤
⎦ ,

which is close to A+ but

(A+E2)+ =
⎡
⎣1 0

0
1

δ

⎤
⎦ ,

which gets arbitrarily far from A+ as δ is decreased toward 0.
In lieu of Householder transformations, Givens transformations (elementary rotations or reflections)

may also be used to solve the linear least-squares problem [8]. Givens transformations have received
considerable attention for solving linear least-squares problems and systems of linear equations in a
parallel computing environment. The capability of introducing zero elements selectively and the need for
only local interprocessor communication make the technique ideal for “parallelization.”

1.3.2 Eigenvalue and Generalized Eigenvalue Problems

In the algebraic eigenvalue/eigenvector problem for A ∈ R
n×n, one seeks nonzero solutions x ∈ C

n and
λ ∈ C, which satisfy

Ax = λx. (1.21)

The classic reference on the numerical aspects of this problem is Wilkinson [17]. A briefer textbook
introduction is given in [8].

Quality mathematical software for eigenvalues and eigenvectors is available; the EISPACK [7,15]
collection of subroutines represents a pivotal point in the history of mathematical software. The suc-
cessor to EISPACK (and LINPACK) is LAPACK [2], in which the algorithms and software have been
restructured to provide high efficiency on vector processors, high-performance workstations, and shared
memory multiprocessors.

The most common algorithm now used to solve Equation 1.21 for general A is the QR algorithm
of Francis [17]. A shifting procedure enhances convergence and the usual implementation is called the
double-Francis-QR algorithm. Before the QR process is applied, A is initially reduced to upper Hessenberg
form AH (aij = 0 if i− j ≥ 2). This is accomplished by a finite sequence of similarities of the Householder
form discussed above. The QR process then yields a sequence of matrices orthogonally similar to A and
converging (in some sense) to a so-called quasi-upper triangular matrix S also called the real Schur form
(RSF) of A. The matrix S is block upper triangular with 1× 1 diagonal blocks corresponding to real
eigenvalues of A and 2× 2 diagonal blocks corresponding to complex-conjugate pairs of eigenvalues. The
quasi-upper triangular form permits all arithmetic to be real rather than complex as would be necessary
for convergence to an upper triangular matrix. The orthogonal transformations from both the Hessenberg
reduction and the QR process may be accumulated in a single orthogonal transformation U so that

UT AU = R (1.22)

compactly represents the entire algorithm. An analogous process can be applied in the case of symmetric
A, and considerable simplifications and specializations result.
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Closely related to the QR algorithm is the QZ algorithm for the generalized eigenvalue problem

Ax = λMx, (1.23)

where A, M ∈ R
n×n. Again, a Hessenberg-like reduction, followed by an iterative process, is implemented

with orthogonal transformations to reduce Equation 1.23 to the form

QAZy = λQMZy, (1.24)

where QAZ is quasi-upper triangular and QMZ is upper triangular. For a review and references to results
on stability, conditioning, and software related to Equation 1.23 and the QZ algorithm, see [8]. The
generalized eigenvalue problem is both theoretically and numerically more difficult to handle than the
ordinary eigenvalue problem, but it finds numerous applications in control and system theory [14, p. 109].

1.3.3 The Singular Value Decomposition and Some Applications

One of the basic and most important tools of modern numerical analysis, especially numerical linear
algebra, is the SVD. Here we make a few comments about its properties and computation as well as its
significance in various numerical problems.

Singular values and the SVD have a long history, especially in statistics and numerical linear algebra.
These ideas have found applications in the control and signal processing literature, although their use
there has been overstated somewhat in certain applications. For a survey of the SVD, its history, numerical
details, and some applications in systems and control theory, see [14, p. 74].

The fundamental result was stated in Section 1.2 (for the complex case). The result for the real case is
similar and is stated below.

Theorem 1.1:

Let A ∈ R
m×n with rank(A)= r. Then there exist orthogonal matrices U ∈ R

m×m and V ∈ R
n×n so that

A= UΣV T , (1.25)

where

Σ=
[
Σr 0
0 0

]

and Σr = diag {σ1, . . . , σr} with σ1 ≥ · · · ≥ σr > 0.

The proof of Theorem 1.1 is straightforward and can be found, for example, in [8]. Geometrically, the
theorem says that bases can be found (separately) in the domain and codomain spaces of a linear map
with respect to which the matrix representation of the linear map is diagonal. The numbers σ1, . . . , σr ,
together with σr+1 = 0, . . . , σn = 0, are called the singular values of A, and they are the positive square
roots of the eigenvalues of AT A. The columns {uk , k = 1, . . . , m} of U are called the left singular vectors
of A (the orthonormal eigenvectors of AAT ), while the columns {vk , k = 1, . . . , n} of V are called the right
singular vectors of A (the orthonormal eigenvectors of AT A). The matrix A can then be written (as a
dyadic expansion) also in terms of the singular vectors as follows:

A=
r∑

k=1

σkukvT
k .

The matrix AT has m singular values, the positive square roots of the eigenvalues of AAT . The r
[= rank(A)] nonzero singular values of A and AT are, of course, the same. The choice of AT A rather than
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AAT in the definition of singular values is arbitrary. Only the nonzero singular values are usually of any
real interest and their number, given the SVD, is the rank of the matrix. Naturally, the question of how to
distinguish nonzero from zero singular values in the presence of rounding error is a nontrivial task.

It is not generally advisable to compute the singular values of A by first finding the eigenvalues of AT A,
tempting as that is. Consider the following example, where μ is a real number with |μ|<√ε (so that
fl(1+μ2)= 1, where fl(·) denotes floating-point computation). Let

A=
⎡
⎣1 1
μ 0
0 μ

⎤
⎦ .

Then

fl(AT A)=
[

1 1
1 1

]
.

So we compute σ̂1 =
√

2, σ̂2 = 0 leading to the (erroneous) conclusion that the rank of A is 1. Of course,
if we could compute in infinite precision, we would find

AT A=
[

1+μ2 1
1 1+μ2

]

with σ1 =
√

2+μ2, σ2 = |μ| and thus rank(A)= 2. The point is that by working with AT A we have
unnecessarily introduced μ2 into the computations. The above example illustrates a potential pitfall in
attempting to form and solve the normal equations in a linear least-squares problem and is at the heart
of what makes square root filtering so attractive numerically. Very simplistically, square root filtering
involves working directly on an “A-matrix,” for example, updating it, as opposed to updating an “AT A-
matrix.”

Square root filtering is usually implemented with the QR factorization (or some closely related algo-
rithm) as described previously rather than SVD. Moreover, critical information may be lost irrecoverably
by simply forming AT A.

Returning now to the SVD, two features of this matrix factorization make it attractive in finite arith-
metic: first, it can be computed in a numerically stable way, and second, singular values are well con-
ditioned. Specifically, there is an efficient and numerically stable algorithm by Golub and Reinsch [8]
which works directly on A to give the SVD. This algorithm has two phases. In the first phase, it computes
orthogonal matrices U1 and V1 so that B= U1

T AV1 is in bidiagonal form, that is, only the elements on
its diagonal and first superdiagonal are nonzero. In the second phase, the algorithm uses an iterative
procedure to compute orthogonal matrices U2 and V2 so that U2

T BV2 is diagonal and nonnegative. The
SVD defined in Equation 1.25 is then Σ= UT BV , where U = U1U2 and V = V1V2. The computed U
and V are orthogonal approximately to the working precision, and the computed singular values are the
exact σi ’s for A+E, where ‖E‖/‖A‖ is a modest multiple of ε. Fairly sophisticated implementations of
this algorithm can be found in [5,7]. The well-conditioned nature of the singular values follows from the
fact that if A is perturbed to A+E, then it can be proved that

‖σi(A+E)− σi(A)‖ ≤ ‖E‖.

Thus, the singular values are computed with small absolute error although the relative error of sufficiently
small singular values is not guaranteed to be small.

It is now acknowledged that the singular value decomposition is the most generally reliable method of
determining rank numerically (see [14, p. 589] for a more elaborate discussion). However, it is consider-
ably more expensive to compute than, for example, the QR factorization which, with column pivoting [5],
can usually give equivalent information with less computation. Thus, while the SVD is a useful theoretical
tool, its use for actual computations should be weighed carefully against other approaches.
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The problem of numerical determination of rank is now well understood. The essential idea is to try
to determine a “gap” between “zero” and the “smallest nonzero singular value” of a matrix A. Since the
computed values are exact for a matrix near A, it makes sense to consider the ranks of all matrices in
some δ-ball (with respect to the spectral norm ‖ · ‖, say) around A. The choice of δ may also be based
on measurement errors incurred in estimating the coefficients of A, or the coefficients may be uncertain
because of rounding errors incurred in a previous computation. However, even with SVD, numerical
determination of rank in finite arithmetic is a difficult problem.

That other methods of rank determination are potentially unreliable is demonstrated by the following
example. Consider the Ostrowski matrix A ∈ R

n×n whose diagonal elements are all −1, whose upper
triangle elements are all+1, and whose lower triangle elements are all 0. This matrix is clearly of rank n,
that is, is invertible. It has a good “solid” upper triangular shape. All of its eigenvalues (−1) are well away
from zero. Its determinant (−1)n is definitely not close to zero. But this matrix is, in fact, very nearly
singular and becomes more nearly so as n increases. Note, for example, that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 +1 · · · · · · +1

0
. . .

. . .
...

...
. . .

. . .
. . .
. . .

. . .
...

...
. . .

. . . +1
0 · · · · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
2−1

...
2−n+1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
−2−n+1

−2−n+1

...
−2−n+1

⎤
⎥⎥⎥⎦→

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ (n→+∞).

Moreover, adding 2−n+1 to every element in the first column of A gives an exactly singular matrix.
Arriving at such a matrix by, say, Gaussian elimination would give no hint as to the near singularity.
However, it is easy to check that σn(A) behaves as 2−n+1. A corollary for control theory is that eigenvalues
do not necessarily give a reliable measure of “stability margin.” It is useful to note that in this example
of an invertible matrix, the crucial quantity, σn(A), which measures nearness to singularity, is simply
1/‖A−1‖, and the result is familiar from standard operator theory. There is nothing intrinsic about
singular values in this example and, in fact, ‖A−1‖ might be more cheaply computed or estimated in
other matrix norms.

Because rank determination, in the presence of rounding error, is a nontrivial problem, the same diffi-
culties naturally arise in any problem equivalent to, or involving, rank determination, such as determining
the independence of vectors, finding the dimensions of certain subspaces, etc. Such problems arise as basic
calculations throughout systems, control, and estimation theory. Selected applications are discussed in
more detail in [14, p. 74] and in [1,4,10].

Finally, let us close this section with a brief example illustrating a totally inappropriate use of SVD. The
rank condition

rank [B, AB, . . . , An−1B] = n (1.26)

for the controllability of Equation 1.1 is too well known. Suppose

A=
[

1 μ

0 1

]
, B=

[
1
μ

]

with |μ|<√ε. Then

fl[B, AB] =
[

1 1
μ μ

]
,

and now even applying SVD, the erroneous conclusion of uncontrollability is reached. Again the problem
is in just forming AB; not even SVD can come to the rescue after that numerical faux pas.
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Further Reading

Kautsky et al. [11] suggested that eigenstructure
assignment can be used to obtain a design with eigen

values, which are least sensitive to parameter variation,
by reducing one of several sensitivity measures.

Among these measures are the quadratic norm condition
number of the closed-loop modal matrix and

the sum of the squares of the quadratic norms of the left
eigenvectors. Burrows et al. [4] have proposed a

stability augmentation system for a well-behaved light
aircraft by using eigenstructure assignment with an

optimization which minimizes the condition number of the
closed-loop modal matrix. Such an approach

may sometimes produce an acceptable controller. In contrast
to eigensensitivity, Doyle and Stein [7]

have characterized the stability robustness of a
multi-input, multi-output system by the minimum of the

smallest singular value of the return difference matrix at
the plant input or output. Gavito and Collins [8]

have proposed an eigenstructure assignment design in which
a constraint is placed on the minimum of

the smallest singular value of the return difference matrix
at the inputs of both an L-1011 aircraft and

a CH-47 helicopter. Several authors have proposed different
approaches to eigenstructure assignment.

Clarke et al. [6] present a method to trade exact
closed-loop eigenvalue location against an improvement



in the associated eigenvector match. Bruyere et al. [3] use
eigenstructure assignment in a polynomial

framework. Satoh and Sugimoto [25] present a regional
eigenstructure assignment using a linear matrix

inequalities (LMI) approach. Nieto-Wire and Sobel [19]
applied eigenstructure assignment to the design

of a flight control system for a tailless aircraft. Other
applications of eigenstructure assignment include

air-to-airmissiles [36],mechanical systems [26], and power
systems [16]. Jiang [9], Konstantopoulos [12],

and Ashari et al. [2] have proposed methods for
reconfiguration using eigenstructure assignment. Nieto

Wire and Sobel [20] used eigenstructure assignment for the
accomodation of symmetric lock in place

actuator failures for a tailless aircraft.

Appendix

Data for the F-18 HARV Lateral Directional Dynamics at M =
0.38, H = 5000 ft., and α = 5 ◦ A = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
−30.0000 0 0 0 0 0 0 0 0 −30.0000 0 0 0 0 0 0 0 0 −30.0000
0 0 0 0 0 −0.0070 −0.0140 0.0412 −0.1727 0.0873 −0.9946
0.0760 0 15.3225 12.0601 2.2022 −11.0723 −2.1912 0.7096 0 0
−0.3264 0.2041 −1.3524 2.1137 −0.0086 −0.1399 0 0 0 0 0 0
1.0000 0.0875 0 0 0 0 0 0 0 0.5000 0 −0.5 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎥ ⎥ ⎦ , “73648_C016” — #20 B = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
30.0000 0 0 0 30.0000 0 0 0 30.0000 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , C = ⎡ ⎢ ⎢ ⎣ 0 0 0 0 0 1 0
−1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 ⎤ ⎥ ⎥ ⎦
,

Data for the FPCC Lateral Directional Dynamics A = ⎡ ⎢ ⎢ ⎢
⎢ ⎣ −0.340 0.0517 0.001 −0.997 0 0 0 1 0 0 −2.69 0 −1.15
0.738 0 5.91 0 0.138 −0.506 0 −0.340 0.0517 0.001 0.0031 0
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , B = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0.0755 0 0.0246 0 0 0 4.48
5.22 −0.742 −5.03 0.0998 0.984 0.0755 0 0.0246 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
.
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18.1 Introduction

The fundamentals of output feedback H2 (linear quadratic Gaussian or LQG) and H∞ controllers, which
are the primary synthesis tools available for linear time-invariant systems, are presented in an analogous
and tutorial fashion without rigorous mathematics. Since H2 and H∞ syntheses are carried out in the
modern control design paradigm, a review of the paradigm is presented, along with the definitions of the
H2 and H∞ norms and the methods used to compute them. The state-space formulae for the optimal
controllers, under less restrictive assumptions than are usually found in the literature, are provided in an
analogous fashion to emphasize the similarities between them. Rather than emphasizing the derivation
of the controllers, we elaborate on the physical interpretation of the results and how one uses frequency
weights to design H∞ and H2 controllers. Finally, a simple disturbance rejection design for the longi-
tudinal motion of an aircraft is provided to illustrate the similarities and differences between H∞ and
H2 controller synthesis.

18.2 The Modern Paradigm

H2 and H∞ syntheses are carried out in the modern control paradigm. In this paradigm both performance
and robustness specifications can be incorporated in a common framework along with the controller
synthesis. In the modern paradigm, all of the information about a system is cast into the generalized
block diagram shown in Figure 18.1 [1–3]. The generalized plant, P, which is assumed to be linear and
time-invariant throughout this article contains all the information a designer would like to incorporate
into the synthesis of the controller, K . System dynamics, models of the uncertainty in the system’s
dynamics, frequency weights to influence the controller synthesis, actuator dynamics, sensor dynamics,
and implementation hardware dynamics from amplifiers, and analog-to-digital and digital-to-analog
converters are all included in P. The inputs and outputs of P are, in general, vector valued signals. The
sensor measurements that are used by the feedback controller are denoted y, and the inputs generated

18-1
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P

K

w

u y

z

FIGURE 18.1 Generalized block diagram of the modern paradigm.

by the controller are denoted u. The components of w are all the exogenous inputs to the system.
Typically these consist of disturbances, sensor noise, reference commands, and fictitious signals that
drive frequency weights and models of the uncertainty in the dynamics of the system. The components
of z are all the variables we wish to control. These include the performance variables of interest, tracking
errors between reference signals and plant outputs, and the actuator signals which cannot be arbitrarily
large and fast.

The general control problem in this framework is to synthesize a controller that will keep the size of
the performance variables, z, small in the presence of the exogenous signals, w. For a classical disturbance
rejection problem, z would contain the performance variables we wish to keep small in the presence of the
disturbances contained in w that would tend to drive z away from zero. Hence, the disturbance rejection
performance would depend on the “size” of the closed-loop transfer function from w to z, which we shall
denote as Tzw(s). This is also true for a command following control problem in which z would contain
the tracking error that we would like to keep small in the presence of the commands in w that drive the
tracking error away from zero.

Clearly then, the “size” of Tzw(s) influences the effect that the exogenous signals in w have on z. Thus,
in this framework, we seek controllers that minimize the “size” of the closed-loop transfer function Tzw(s).
Given that Tzw(s) is a transfer function matrix, it is necessary to use appropriate norms to quantify its size.
The two most common and physically meaningful norms that are used to classify the “size” of Tzw(s) are
the H2 and H∞ norms. As such, we seek controllers that minimize either the H2 or H∞ norm of Tzw(s)
in the modern control paradigm.

18.2.1 System Norms

Here we define and discuss the H2 and H∞ norms of the linear, time-invariant, stable system with transfer
function matrix

G(s)= C(sI −A)−1B

This notation is meant to be general, and the reader should not think of G(s) as only the actuator
to sensor transfer function of a system. Realize that G(s) is a system and thus requires an appro-
priate norm to classify its size. By a norm, we mean a positive, scalar number that is a measure
of the size of G(s) over all points in the complex s-plane. This is quite different from, for exam-
ple, the maximum singular value of a matrix, σmax[A], which is a norm that classifies the size of the
matrix A.
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The H2 Norm

Definition 18.1: H2 Norm

The H2 norm of G(s), denoted ‖G‖2, is defined as

‖G‖2 =
(

1

2π

∫ ∞

−∞
trace

[
G(jω)G∗(jω)

]
dω

) 1
2 =

(
1

2π

∫ ∞

−∞

r∑
i=1

σ2
i [G(jω)]dω

) 1
2

where σi denotes the ith singular value, G∗(jω) is the complex conjugate transpose of G(jω), and r is the
rank of G(jω).

The H2 norm has an attractive, physically meaningful interpretation. If we consider G(s) to be the
transfer function matrix of a system driven by independent, zero mean, unit intensity white noise, u, then
the sum of the variances of the outputs y is exactly the square of the H2 norm of G(s). That is

E
[

yT (t)y(t)
]
= ‖G(s)‖2

2 (18.1)

The H2 norm of G(s) thus gives a precise measure of the “power” or signal strength of the output of a
system driven with unit intensity white noise. Note that in the scalar case

√
E[yT (t)y(t)] is the RMS or

root mean squared value for y(t) so the H2 norm specifies the RMS value of y(t). A well-known fact
for stochastic systems is that the mean squared value of the outputs can be computed by solving the
appropriate Lyapunov equation [4]. As such, a state space procedure for computing the H2 norm of G(s)
is as follows [2].

Computing the H2 Norm

If Lc denotes the controllability Gramian of (A, B) and Lo the observability Gramian of (A, C), then

ALc + LcAT +BBT = 0 AT Lo+ LoA+CT C = 0

and

‖G‖2 =
[

trace(CLcCT )
] 1

2 =
[

trace(BT LoB)
] 1

2

Note that this procedure for computing the H2 norm involves the solution of linear Lyapunov equations
and can be done without iteration.

The H∞ Norm

Definition 18.2: H∞ Norm

The H∞ norm of G(s), denoted ‖G‖∞, is defined as

‖G‖∞ = sup
ω
σmax[G(jω)]

In this definition “sup” denotes the supremum or least upper bound of the function σmax[G(jω)], and
thus the H∞ norm of G(s) is nothing more than the maximum value of σmax[G(jω)] over all frequencies
ω. The supremum must be used in the definition since, strictly speaking, the maximum of σmax[G(jω)]
may not exist even though σmax[G(jω)] is bounded from above.
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H∞ norms also have a physically meaningful interpretation when considering the system y(s)=
G(s)u(s). Recall that when the system is driven with a unit magnitude sinusoidal input at a specific
frequency, σmax[G(jω)] is the largest possible output size for the corresponding sinusoidal output. Thus,
the H∞ norm is the largest possible amplification over all frequencies of a unit sinusoidal input. That is,
it classifies the greatest increase in energy that can occur between the input and output of a given system.
A state space procedure for calculating the H∞ norm is as follows.

Computing the H∞ Norm

Let ‖G‖∞ = γmin. For the transfer function G(s)= C(sI −A)−1B with A stable and γ > 0, ‖G‖∞ < γ if
and only if the Hamiltonian matrix

H =
[

A 1
γ2 BBT

−CT C −AT

]

has no eigenvalues on the jω-axis. This fact lets us compute a bound, γ, on ‖G‖∞ such that ‖G‖∞ < γ.
So to find γmin, select a γ > 0 and test if H has eigenvalues on the jω-axis. If it does, increase γ. If it does
not, decrease γ and recompute the eigenvalues of H. Continue until γmin is calculated to within the desired
tolerance.

The iterative computation of the H∞ norm, which can be carried out efficiently using a bisection search
over γ, is to be expected given that by definition we must search for the largest value of σmax[G(jω)] over
all frequencies.

Note, the H2 norm is not an induced norm, whereas the H∞ norm is. Thus, the H2 norm does not
obey the submultiplicative property of induced norms. That is, the H∞ norm satisfies

‖G1G2‖∞ ≤ ‖G1‖∞‖G2‖∞
but the H2 norm does not have the analogous property. This fact makes synthesizing controllers that
minimize ‖Tzw(s)‖∞ attractive when one is interested in directly shaping loops to satisfy norm bounded
robustness tests∗. On the other hand, given the aforementioned properties of the H2 norm, synthe-
sizing controllers that minimize ‖Tzw(s)‖2 is attractive when the disturbances, w, are stochastic in
nature. In fact, H2 controllers are nothing more than linear quadratic Gaussian (LQG) controllers
so the vast amount of insight into the well-understood LQG problem can be readily applied to H2

synthesis.

Example 18.1:

In this example the H2 and H∞ norms are calculated for the simple four-spring, four-mass system
shown in Figure 18.2. The equations of motion for this system can be found in Example 17.2 in
Chapter 17. The system has force inputs on the second and fourth masses along with two sensors that
provide a measure of the displacement of these masses. The singular values of the transfer function
from the inputs to outputs, which we denote by G(s), are shown in Figure 18.3. The H∞ norm of
the system is equal to the peak of σ1 = 260.4, and the H2 norm of the system is equal to the square
root of the sum of the areas under the square of each of the singular values, 14.5. Note that when
considering the H2 norm, observing the log log plot of the transfer function can be very deceiving,
since the integral is of σi , not log(σi ), over ω, not logω.

As pointed out in the example, the differences between the H∞ and H2 norms for a system G(s) are best
viewed in the frequency domain from a plot of the singular values of G(jω). Specifically, the H∞ norm is
the peak value of σmax[G(jω)] while the H2 norm is related to the area underneath the singular values of
G(jω). For a more in-depth treatment of these norms the reader is referred to [1,2,5,6].

∗ See Chapter 20 for a detailed exposition of this concept.
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q1(t)

u1(t) u2(t)
k1 k2 k3 k4

c4c3c2c1

m1 m2 m3 m4

q3(t)q2(t) = y1(t) q4(t) = y2(t)

FIGURE 18.2 Mass, spring, dashpot system from Example 18.1. For the example ki =mi = 1 ∀i, and ci = 0.05 ∀i.

18.3 Output Feedback H∞ and H2 Controllers

Given that all the information a designer would like to include in the controller synthesis is incorporated
into the system P, the synthesis of H2 and H∞ controllers is quite straightforward. In this respect all of
the design effort is focused on defining P. Below, we discuss how to define P using frequency weights to
meet typical control system specifications. Here we simply present the formulas for the controllers.

All the formulas will be based on the following state-space realization of P,

P :=
⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦

Singular values of G(s)

Si
ng

ul
ar

 v
al

ue
s

103

102

101

100

10–1

10–2

10–3

10–4

10–2 10–1

Frequency (Hz)
100

max{σ1( jω)}

||G||∞ = 260.4
||G||2 = 14.5

σ1

σ2

FIGURE 18.3 Singular values of the transfer function between the inputs and outputs of the mass, spring system
shown in Figure 18.2.
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This notation is a shorthand representation for the system of equations

ẋ(t)= Ax(t)+B1w(t)+B2u(t) (18.2)

z(t)= C1x(t)+D11w(t)+D12u(t) (18.3)

y(t)= C2x(t)+D21w(t)+D22u(t) (18.4)

Additionally, the following assumptions concerning the allowable values for the elements of P are made.

Assumptions on P

1. D11 = 0 (A.1)

2. [A B2] is stabilizable (A.2)

3. [A C2] is detectable (A.3)

4. V =
[

B1

D21

] [
BT

1 DT
21

] :=
[

Vxx Vxy

V T
xy Vyy

]
≥ 0 with Vyy > 0 (A.4)

5. R =
[

CT
1

DT
12

] [
C1 D12

] :=
[

Rxx Rxu

RT
xu Ruu

]
≥ 0 with Ruu > 0 (A.5)

Assumption A.1 ensures that none of the disturbances feed through to the performance variables which
is necessary for H2 synthesis but may be removed for H∞ synthesis (see [7] for details.) Assumptions A.2
and A.3 are needed to guarantee the existence of a stabilizing controller while the remaining assumptions
are needed to guarantee the existence of positive semidefinite solutions to the Riccati equations associated
with the optimal controllers.

Theorem 18.1: H2 Output Feedback

Assuming that w(t) is a unit intensity white noise signal, E[w(t)wT (τ)] = Iδ(t− τ), the unique, stabilizing,
optimal controller which minimizes the H2 norm of Tzw(s) is

K2 :=
[

A+B2F2+ L2C2+ L2D22F2 −L2

F2 0

]
(18.5)

where

F2 =−R−1
uu

(
RT

xu+BT
2 X2

)

L2 =−
(

Y2CT
2 +Vxy

)
V−1

yy (18.6)

and X2 and Y2 are the unique, positive semidefinite solutions to the following Riccati equations

0= X2Ar +AT
r X2+Rxx −RxuR−1

uu RT
xu−X2B2R−1

uu BT
2 X2 (18.7)

0= AeY2+Y2AT
e +Vxx −VxyV−1

yy V T
xy −Y2CT

2 V−1
yy C2Y2 (18.8)

where

Ar =
(

A−B2R−1
uu RT

xu

)
and Ae =

(
A−VxyV−1

yy C2

)
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Theorem 18.2: H∞ Output Feedback [8]

Assuming that w(t) is a bounded L2 signal,
∫∞
−∞ wT (t)w(t) dt <∞, a stabilizing controller which satisfies

‖Tzw(jω)‖∞ < γ is

K∞ :=
[

A −Z∞L∞
F∞ 0

]
(18.9)

where

A∞ = A+ (B1+ L∞D21
)

W∞+B2F∞+Z∞L∞C2+Z∞L∞D22F∞

where

F∞ =−R−1
uu

(
RT

xu+BT
2 X∞

)
W∞ = 1

γ2 BT
1 X∞

L∞ =−
(

Y∞CT
2 +Vxy

)
V−1

yy Z∞ =
(

I − 1

γ2 Y∞X∞
)−1

and X∞ and Y∞ are the solutions to the following Riccati equations

0= X∞Ar +AT
r X∞+Rxx −RxuR−1

uu RT
xu−X∞

(
B2R−1

uu BT
2 −

1

γ2 B1BT
1

)
X∞ (18.10)

0= AeY∞+Y∞AT
e +Vxx −VxyV−1

yy V T
xy −Y∞

(
CT

2 V−1
yy C2− 1

γ2 CT
1 C1

)
Y∞ (18.11)

that satisfy the following conditions

1. X∞ ≥ 0
2. The Hamiltonian matrix for Equation 18.10,

⎡
⎣ A−B2R−1

uu RT
xu −B2R−1

uu BT
2 + 1

γ2 B1BT
1

−Rxx +RxuR−1
uu RT

xu − (A−B2R−1
uu RT

xu

)T

⎤
⎦

has no jω-axis eigenvalues, or equivalently A+B1W∞+B2F∞ is stable
3. Y∞ ≥ 0
4. The Hamiltonian matrix for Equation 18.11,

⎡
⎢⎣
(

A−VxyV−1
yy C2

)T −CT
2 V−1

yy C2+ 1
γ2 CT

1 C1

−Vxx +VxyV−1
yy V T

xy −A+VxyV−1
yy C2

⎤
⎥⎦

has no jω-axis eigenvalues, or equivalently A+ L∞C2+ 1
γ2 Y∞CT

1 C1 is stable

5. ρ(Y∞X∞) < γ2, where ρ(·)=maxi |λi(·)| is the spectral radius

The (sub)optimal central H∞ controller which minimizes ‖Tzw‖∞ to within the desired tolerance is K∞
with γ equal to the smallest value of γ > 0 that satisfies conditions 1 to 5.

Unlike the H2 controller, the H∞ controller presented here is not truly optimal. Since there is no
closed-form, state-space solution to the problem of minimizing the infinity norm of a multiple-input,
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multiple-output (MIMO) transfer function matrix Tzw(s), the connections between the mini-max opti-
mization problem

inf
u

sup
w

∫ ∞

0

[
zT (t)z(t)− γ2wT (t)w(t)

]
dt (18.12)

and H∞ optimization are used to arrive at the constructive approach for synthesizing suboptimal
H∞ controllers given in Theorem 18.2. In fact, satisfying the conditions 1 to 5 of Theorem 18.2 is
analogous to finding a saddle point of the optimization problem (Equation 18.12), and the search for
γmin is analogous to finding the global minimum over all the possible saddle points. As such, any value
of γ > γmin will also satisfy conditions 1 to 5 of Theorem 18.2, and thus produce a stabilizing controller.
Such controllers are neither H2 nor H∞ optimal. Since in the limit as γ→∞ the equations from The-
orem 18.2 reduce to the equations for the H2 optimal controller, controllers with values of γ between
γmin and infinity provide a trade off between H∞ and H2 performance. Along these lines, it is also worth
noting that there is a rich theory for mixed H2 /H∞ controllers that minimize the H2 norm of Tzw(s)
subject to additional H∞ constraints. See [9–11] for details.

The value of w(t) that maximizes the cost in Equation 18.12 is known as the worst case disturbance,
as it seeks to maximize the detrimental effect the disturbances have on the system. In this regard,
H∞ controllers provide optimal disturbance rejection to worst case disturbance, whereas the H2

controllers provide optimal disturbance rejection to stochastic disturbances.
Both H2 and H∞ controllers are observer-based compensators [2], which can be seen from their block

diagrams, shown in Figures 18.4 and 18.5. The regulator gains F2 and F∞ arise from synthesizing the
full-state feedback controller, which minimizes the appropriate size of zT (t)z(t) constrained by the system
dynamics Equation 18.2. Then the control law is formed by applying these regulator gains to an estimate
of the states x(t). The states, x(t), are estimated using the noisy measurements of y(t) from Equation 18.4,
and L2 and Z∞L∞ are the corresponding filter gains of the estimators.

In particular, F2 is the full-state feedback LQR gain that minimizes the quadratic cost

JLQ = E

{
lim
τ→∞

1

τ

∫ τ

0

[
zT (t)z(t)

]
dt

}

constrained by the dynamics of Equation 18.2, and L2 is the Kalman filter gain from estimating the states
x based on the measurements y(t). Under the assumption that z(t) is an ergodic process∗

JLQ = lim
τ→∞

1

τ

∫ τ

0
zT (t)z(t)dt = E

[
zT (t)z(t)

]
= ‖Tzw‖2

2 (18.13)

and this is exactly why H2 synthesis is nothing more than LQG control.

x2y –
+

+ +

+
+ u

+
x2

B2

F2L2

C2

D22

∫

A

FIGURE 18.4 Block diagram of K2 from Equation 18.9. Note, the Kalman Filter estimate of the states x(t) from
Equation 18.2, x̂2(t), are the states of K2.

∗ Assuming z(t) is ergodic implies that its mean can be computed from the time average of a measurement of z(t) as
t →∞ [4].
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x∞y –
+

+ +

+
+

+

u
+

+
+

+

w

x∞

B2

B1

W∞

L∞D21

F∞Z∞L∞

C2

D22

∫

A

FIGURE 18.5 Block diagram of K∞ from Equation 18.9. Note, the H∞ optimal estimate of the states x(t) from
Equation 18.2, x̂∞(t), are the states of K∞, and ŵ(t) is an estimate of the worst case disturbance.

Analogously, F∞ is the full-state feedback H∞ control gain that results from optimizing the mini-max
cost of Equation 18.12, and W∞ is the full-state feedback gain that produces the worst case distur-
bance which maximizes the cost of Equation 18.12∗. Unlike the Kalman filter in the H2 controller, the
H∞ optimal estimator must estimate the states of P in the presence of the worst case disturbance which
is evident from the block diagram of K∞ shown in Figure 18.5 [12]. This is why the filter gain of the
H∞ optimal estimator, Z∞L∞, is coupled to the regulator portion of the problem through X∞ from
Equation 18.10.

Since the H2 controller is an LQG controller, the closed-loop poles of Tzw(s) separate into the closed-
loop poles of the regulator, eig(A−B2F2), and estimator, eig(A− L2C2). A consequence of this separation
property is that the H2 Riccati equations (Equations 18.7 and 18.8) can be solved directly without iteration.
Since the worst case disturbance must be taken into consideration when synthesizing the H∞ optimal
estimator, the regulator and estimator problems in the H∞ synthesis are coupled. Thus, the H∞ controller
does not have a separation structure that is analogous to that of the H2 controller. In addition, the
H∞ Riccati equations (Equations 18.10 and 18.11) are further coupled through the γ parameter, and we
must iterate over the value of γ to find solutions of the H∞ Riccati equations that satisfy conditions 1 to
5 of Theorem 18.2.

Note that in the literature the following set of additional, simplifying assumptions on the values of
the elements of P are often made to arrive at less complicated sets of equations for the optimal H∞ and
H2 controllers [6,13,14].

Additional Assumptions on P

1. D22 = 0 (No control feed-through term)

2. CT
1 D12 = 0 (No cross penalty on control and state)

3. B1DT
21 = 0 (Uncorrelated process and sensor noise)

4. DT
12D12 = I (Unity penalty on every control)

5. DT
21D21 = I (Unit intensity sensor noise on every measurement)

∗ See the section on H∞ Full State Feedback in Chapter 17 for details.
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Further Reading

Contributions to the development of the Lyapunov design methodology for systems with no uncertainties
include [1,9,10,13,18]. A good introduction to Lyapunov redesign can be found [12]. Corless [3] has
recently surveyed various methods for the design of robust controllers for nonlinear systems using
quadratic Lyapunov functions. Details of the recursive design presented in Section 49.4 can be found in [6,
14,16]. The state-space techniques discussed in this chapter can be combined with nonlinear input/output
techniques to obtain more advanced designs (see Chapter 44). Finally, when the uncertain nonlinearities
are given by constant parameters multiplying known nonlinearities, adaptive control techniques apply
(see Chapter 53).
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Detailed discussions of bifurcation and chaos are available in many excellent books (e.g., [6,10,11,18,19,
28,30,32,34,35,43,46,48]). These books also discuss a variety of interesting applications. Many examples of
bifurcations in mechanical systems are given in [52]. There are also several journals devoted to bifurcations
and chaos. Of particular relevance to engineers are Nonlinear Dynamics, the International Journal of
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The book [45] discusses feedforward control in the context of “trimming” an aircraft using its nonlinear
equations of motion and the available controls. Bifurcation and chaos in flight dynamics are discussed
in [8]. Lucid explanations on specific uses of washout filters in aircraft control systems are given in [15, pp.
474–475], [7, pp. 144–146], [39, pp. 946–948 and pp. 1087–1095], and [45, pp. 243–246 and p. 276]. The
book [31] discussed applications of nonlinear dynamics in biology and population dynamics.
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Computational issues related to bifurcation analysis are addressed in [43]. Classification of bifurcations
as safe or dangerous is discussed in [32,43,48,49].

The edited book [14] contains interesting articles on research needs in applications of bifurcations and
chaos.

The article [3] contains a large number of references on bifurcation control, related work on stabiliza-
tion, and applications of these techniques. The review papers [9,44] address control of chaos methods.
In particular, [44] includes a discussion of use of sensitive dependence on initial conditions to direct tra-
jectories to targets. The book [35] includes articles on control of chaos, detection of chaos in time series,
chaotic data analysis, and potential applications of chaos in communication systems. The book [32] also
contains discussions of control of bifurcations and chaos, and of analysis of chaotic data.
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