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Abstract— Most of the work on event-triggered control in
the literature is based on static state-feedback controllers. In
this paper, a dynamic output feedback based event-triggered
control scheme is introduced for stabilization of Input Feed-
forward Output Feedback Passive (IF-OFP) networked control
systems(NCSs), which is a more general case compared with
the passive and the OFP systems investigated in our previous
work [20]. The triggering condition is derived based on the
passivity theorem which allows us to characterize a large class
of output feedback stabilizing controllers. We show that under
the triggering condition derived in this paper, the control system
is finite-gain L2 stable in the presence of bounded external
disturbances. We provide some analysis on the inter-event time
which reveals the difficulties of obtaining a common lower
bound on the inter-event time when the full-state information
of the plant is not used. Some challenges of applying event-
triggered control to real time NCSs are also discussed.

I. INTRODUCTION

The majority of feedback control laws nowadays are

implemented on digital platforms since microprocessors offer

many advantages of running real-time operating systems.

In such an implementation, the control task consists of

sampling the outputs of the plant, computing and imple-

menting new control signals. Traditionally, the control task

is executed periodically, since this allows the closed-loop

system to be analyzed and the controller to be designed

using the well-developed theory on sampled-data systems.

However, the control strategy obtained based on this ap-

proach is conservative in the sense that resource usage(i.e.,

sampling rate, CPU time) is more frequent than necessary

since stability is guaranteed under sufficiently fast periodic

execution of the control action. To overcome this draw-

back of periodic paradigm, several researchers suggested

the idea of event-triggered control. Although in the liter-

ature, the terminology refers to the triggering mechanism

as event-based-sampling[12], to event-driven sampling[13],

Lebesgue sampling[5], deadband control[14], level-crossing

sampling[15], state-triggered sampling[6] and self-triggered

sampling[9] with slightly different meanings, in all cases, the

control signals are kept constant until violation of a condition

on certain signals of the plant triggers re-computation of the

control signals. The possibility of reducing the number of re-

computations, and thus of transmissions, while guaranteeing

desired level of performance makes event-triggered control

very appealing in networked control systems(NCSs).

Most of the results on event-triggered control are obtained

under the assumption that the feedback control law provides
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input-to-state stability(ISS) in the sense of [16] with respect

to the measurement errors, see [6]-[10]. The ISS framework

provides insight into the triggering condition by exploring

the relation between stabilization and the current full-state

information. However, in many control applications, the full

state information is not available, so it is important to study

stability and performance of event-triggered control systems

with output feedback based control strategies.

In our previous work[20], a static output feedback based

event-triggered control scheme is introduced for stabilization

of passive and output feedback passive(OFP) NCSs. The

triggering condition is derived based on the output feedback

passivity indices of the plant. Since in many control applica-

tions, dynamic controllers are preferred to static controllers

due to the considerations of performance, fault tolerance,

robustness, etc, it is important to our previous results to more

general systems with dynamic output feedback controllers.

In this paper, we propose an event-triggered control scheme

for Input Feed-forward Output Feedback Passive(IF-OFP)

systems, which is a more general framework compared with

our previous results. The triggering condition is derived

based on passivity theorems (see for example the textbooks

[2], [17] and [3]), which allow us to find a large class of

output feedback stabilizing controllers(static or dynamic).

We show that with the triggering condition derived in this

paper, the control system is finite-gain L2 stable in the

presence of bounded external disturbances. We also provide

some analysis on the inter-event time which reveals the

difficulties of obtaining a common lower bound on the inter-

event time when we cannot use the full-state information for

feedback control action. Some challenges of applying output

feedback based event-triggered control to real time NCSs are

discussed. Another related work can be found in [18].

The rest of this paper is organized as follows: we introduce

some background on passive and dissipative systems in

section II; the problem is stated in section III; our main

results are provided in section IV; concluding remarks are

made in section V.

II. BACKGROUND MATERIAL

Consider the following dynamic system, which could be

linear or nonlinear:

Hp :

{
ẋp = fp(xp, up)

yp = hp(xp, up)
(1)

where xp ∈ Xp ⊂ R
n, up ∈ Up ⊂ R

m and yp ∈ Yp ⊂ R
m

are the state, input and output variables, respectively, and Xp,

Up and Yp are the state, input and output spaces, respectively.
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The representation φp(t, t0, xp0, up) is used to denote the

state at time t reached from the initial state xp0 at time t0.

Definition 1(Supply Rate)[1]: The supply rate ωp(t) =
ωp(up(t), yp(t)) is a real valued function defined on Up×Yp,

such that for any up(t) ∈ Up and xp0 ∈ Xp and yp(t) =
hp(φp(t, t0, xp0, up), up), ωp(t) satisfies

∫ t1

t0

|ωp(τ)|dτ < ∞. (2)

Definition 2(Dissipative System)[1]: System Hp with

supply rate ωp(t) is said to be dissipative if there exists

a nonnegative real function Vp(x) : Xp → R
+, called the

storage function, such that, for all t1 ≥ t0 ≥ 0, xp0 ∈ Xp

and up ∈ Up,

Vp(xp1) − Vp(xp0) ≤

∫ t1

t0

ωp(τ)dτ, (3)

where xp1 = φp(t1, t0, xp0, up) and R
+ is a set of nonneg-

ative real numbers.

Definition 3(Passive System)[1]: System Hp is said to be

passive if there exists a storage function Vp(xp) such that

Vp(xp1) − V (xp0) ≤

∫ t1

t0

uT
p (τ)yp(τ)dτ, (4)

if Vp(xp) is C1, then we have

V̇p(xp) ≤ uT
p (t)yp(t), ∀t ≥ 0. (5)

One can see that passive system is a special class of

dissipative system with supply rate ωp(t) = uT
p (t)yp(t).

Definition 4(IF-OFP systems)[2]: System Hp is said to be

Input Feed-forward Output Feedback Passive(IF-OFP) if

it is dissipative with respect to the supply rate

ωp(up, yp) = uT
p yp − ρpy

T
p yp − νpu

T
p up, ∀t ≥ 0, (6)

for some ρp, νp ∈ R.

For the rest of this paper, we will denote an IF-OFP system

with m inputs and m outputs by IF-OFP(ν, ρ)m and we

will call (ν, ρ) passivity indices of the system. Note that in

general, an IF-OFP system may not be passive unless both

indices ν and ρ are nonnegative.

Fig. 1: Feedback Interconnection of Two IF-OFP Systems

Theorem 1 (Passivity Theorem)[17]: Consider the feedback

interconnection as shown in Fig.1, and suppose each feed-

back component is with proper input and output dimensions

and satisfies the inequality

V̇i ≤ uT
i yi − ρiy

T
i yi − νiu

T
i ui, for i = 1, 2, (7)

for some storage function Vi(xi). Then, the closed-loop map

from ω = [ωT
1 , ωT

2 ]T to y = [yT
1 , yT

2 ]T is finite gain L2 stable

if

0 < ρ1 + ν2 < ∞, 0 < ρ2 + ν1 < ∞. (8)

III. PROBLEM STATEMENT

We consider the control system given in (1). We assume

Hp is IF-OFP(νp, ρp)
m with storage function Vp. Based on

Theorem 1, we know that if we design an IF-OFP(νc, ρc)
m

controller with storage function Vc such that 0 < ρc + νp <

∞, 0 < ρp + νc < ∞, then the closed-loop system is finite

gain L2 stable.

Fig. 2: Event-Triggered Control

In real time, the implementation of the feedback control

law is typically done by sampling the plant output yp(t)
at time instants t0, t1, . . . , computing the control action

yc(t) and updating the input to the plant at time instants

t0 + ∆0, t1 + ∆1, . . . , where ∆k ≥ 0, for k = 0, 1, 2, . . .

represents the network induced delay from the sampler to the

network controller(here, we assume the delay from the con-

troller to the actuator is negligible). This means a sequence

of measurements yp(tk)s corresponds to a sequence of con-

troller’s input updates uc(tk+∆k)s. In event-triggered NCSs,

an event-detector (an embedded hardware in the sampler) is

used to monitor the output of the plant with sufficiently fast

sampling rate, an updated output measurement is sent to the

network controller only when the size of the output novelty

error ẽp(t) = yp(t) − yp(tk) (for t ∈ [tk, tk+1)) exceeds a

certain threshold(triggering condition), where yp(tk) denotes

the last transmitted output information of the plant. See the

event-triggered networked control scheme as shown in Fig.

2, where ω1(t) and ω2(t) denote the external disturbances at

the plant’s side and at the controller’s side respectively.

We summarize the problems we try to solve in this paper

as follows. If the plant is IF-OFP(νp, ρp)
m, what should be

the output feedback stabilizing controller and the triggering

condition? Is the passivity condition shown in Theorem 1

still sufficient to guarantee L2 stability of the control system?

What is the interaction between the triggering condition, the

achievable L2 gain and the characterization of the output

feedback stabilizing controllers? Moreover, what is the inter-

event time implicitly determined by the triggering condition?

IV. MAIN RESULTS

In this section, we will assume that the network induced

delay from the sampler to the controller is negligible. The

200



delay problem will be addressed in our companion paper

[21], where network induced delays with bounded “jitters”

from the sampler to the controller and from the controller to

the actuator are considered.

Theorem 2. Consider the control system as shown in Fig.2,

where the plant is IF-OFP(νp, ρp)
m with a C1 storage func-

tion Vp, the controller is IF-OFP(νc, ρc)
m with a C1 storage

function Vc, and 0 < νc + ρp < ∞ , 0 < νp + ρc < ∞.

Assume that the network induced delay ∆k ≡ 0, ∀k. If

the event time tk is explicitly determined by the following

triggering condition

‖ẽp(t)‖2 =
δ

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
−
|νc|

ζ

]
‖yp(t)‖2, ∀t ≥ 0,

(9)

where ζ =
[ 1

4α(νp + ρc)
+ |νc| − νc

] 1
2

, (10)

with δ ∈ (0, 1] and 0 < α, β < 1, then the control system

is finite gain L2 stable from ω(t) = [ωT
1 (t), ωT

2 (t)]T to

y(t) = [yT
p (t), yT

c (t)]T .

Proof: Since the plant is IF-OFP(νp, ρp)
m and the

controller is IF-OFP(νc, ρc)
m, we have

V̇p(t) ≤ uT
p (t)yp(t) − νpu

T
p (t)up(t) − ρpy

T
p (t)yp(t),

V̇c(t) ≤ uT
c (t)yc(t) − νcu

T
c (t)uc(t) − ρcy

T
c (t)yc(t).

(11)

Consider a storage function for the system given by V =
Vc + Vp, then for t ∈ [tk, tk+1), we have

V̇ ≤
[
ω1(t) − yc(t)

]T
yp(t) − ρpy

T
p (t)yp(t)

− νp

[
ω1(t) − yc(t)

]T [
ω1(t) − yc(t)

]

+
[
ω2(t) + yp(tk)

]T
yc(t) − ρcy

T
c (t)yc(t)

− νc

[
ω2(t) + yp(tk)

]T
[ω2(t) + yp(tk)]

= ωT
1 (t)yp(t) − νpω

T
1 (t)ω1(t) + 2νpω

T
1 (t)yc(t)

+ ωT
2 (t)yc(t) − νcω

T
2 (t)ω2(t) − 2νcω

T
2 (t)

[
yp(t) − ẽp(t)

]

− yT
c (t)yp(t) − (νp + ρc)y

T
c (t)yc(t) − ρpy

T
p (t)yp(t)

+ [yp(t) − ẽp(t)]
T yc(t) − νcy

T
p (tk)yp(tk).

(12)

Since 2νcω
T
2 (t)ẽp(t) ≤ |νc|ω

T
2 (t)ω2(t) + |νc|ẽ

T
p (t)ẽp(t) and

yT
p (tk)yp(tk) = yT

p (t)yp(t) + ẽT
p (t)ẽp(t) − 2ẽT

p (t)yp(t), let

A =

[
1 2νp

−2νc 1

]
, B =

[
νp 0
0 νc − |νc|

]
, (13)

we can get

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − (νp + ρc)y
T
c (t)yc(t)

− ẽT
p (t)yc(t) + |νc|ẽ

T
p (t)ẽp(t) − ρpy

T
p (t)yp(t)

− νcy
T
p (t)yp(t) + 2νcẽ

T
p (t)yp(t) − νcẽ

T
p (t)ẽp(t),

(14)

if we choose 0 < α, β < 1 and let

C =

[
(1 − β)(ρp + νc) 0

0 (1 − α)(νp + ρc)

]
, (15)

then we can further get

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t)

−
∥∥
√

α(νp + ρc)yc(t) +
1

2
√

α(νp + ρc)
ẽp(t)

∥∥2

2

− β(ρp + νc)‖yp(t)‖
2
2 + 2νcẽ

T
p (t)yp(t)

+

(
1

4α(νp + ρc)
+ |νc| − νc

)
‖ẽp(t)‖

2
2,

(16)

thus

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t)

+

(
1

4α(νp + ρc)
+ |νc| − νc

)
‖ẽp(t)‖

2
2

− β(ρp + νc)‖yp(t)‖
2
2 + 2νcẽ

T
p (t)yp(t).

(17)

We can obtain

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t)

+

(
1

4α(νp + ρc)
+ |νc| − νc

)
‖ẽp(t)‖

2
2

+ 2νcẽ
T
p (t)yp(t) +

ν2
c

1

4α

(
νp+ρc

) + |νc| − νc

‖yp(t)‖
2
2

−

[
β(ρp + νc) +

ν2
c

1
4α(νp+ρc)

+ |νc| − νc

]
‖yp(t)‖

2
2,

(18)

and one can verify that if

‖ẽp(t)‖2 ≤
1

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
−
|νc|

ζ

]
‖yp(t)‖2, ∀t ≥ 0,

(19)

we have

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t), ∀t ≥ 0.

(20)

Let c = min{(1−α)(νp +ρc), (1−β)(ρp +νc)}, a = ‖A‖2,

and b = ‖B‖2, we can get

V̇ ≤ −c‖y(t)‖2
2 + a‖ω(t)‖2‖y(t)‖2 + b‖ω(t)‖2

2

= −
1

2c

(
a‖ω(t)‖2 − c‖y(t)‖2

)2

+
a2

2c
‖ω(t)‖2

2

−
c

2
‖y(t)‖2

2 + b‖ω(t)‖2
2 ≤

k2

2c
‖ω(t)‖2

2 −
c

2
‖y(t)‖2

2,

(21)

where k2 = a2 + 2bc. Integrating (21) over [0, τ ] and using

V (x) ≥ 0, then taking the square root, we arrive at

‖yτ‖L2
≤

k

c
‖ωτ‖L2

+

√
2V (0)

c
, (22)

where yτ and ωτ denote the truncated signals of y(t) and

ω(t). Note that the triggering condition (9) ensures that (19)

is satisfied, which completes the proof.

Remark 1. Since ‖ẽp(t)‖2 = ‖yp(t) − yp(tk)‖2, we

have ‖ẽp(t)‖2 ≥ ‖yp(tk)‖2 − ‖yp(t)‖2, thus ‖yp(t)‖2 ≥
‖yp(tk)‖2 − ‖ẽp(t)‖2, for t ∈ [tk, tk+1). Based on this, if

we define

σo =
1

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
−

|νc|

ζ

]
,
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then one can verify that a sufficient condition for (19) to be

satisfied is given by

‖ẽp(t)‖2 ≤
σo

1 + σo

‖yp(tk)‖2, for t ∈ [tk, tk+1), ∀k. (23)

So an alternative triggering condition to (9) is given by

‖ẽp(t)‖2 =
δσo

1 + σo

‖yp(tk)‖2, for t ∈ [tk, tk+1), ∀k, (24)

with δ ∈ (0, 1]. This is a tighter triggering condition which

will be used later for the analysis of the inter-event time.

Remark 2. If the output y(t) is a class-K function of the

whole state x(t) = [xT
p (t), xT

c (t)]T (i.e., y(t) = α(x(t)),
where α(·) ∈ class-K), in view of (21), one can further get

the input-to-state stability (ISS) results (where the input is

the external disturbance ω(t)) if the storage function V (x)
is positive definite.

Remark 3. In view of (9) and (22), one can see that both the

triggering condition and the achievable L2 gain are related

to the passivity indices of the plant and the controller. In

general, for larger values of νc + ρp and νp + ρc, we can

obtain a larger triggering threshold σo and a smaller L2 gain

of the system, which implies a better performance of the

control system.

The triggering condition (9) in Theorem 2 explicitly

determines when an updated output information of the plant

should be sent to the controller for control action update

to ensure the L2 stability of the system in the absence

of network induced delays. Another problem that needs

to be addressed is how often the data transmission occurs

based on the triggering condition? This problem is not easy

in general, especially when the dynamics of the plant are

highly nonlinear and only output information can be used

to generate the control actions. Moreover, in the presence

of external disturbances, the “zeno” inter-event time maybe

unavoidable. The following proposition provides a way to

estimate the lower bound of the inter-event time when we

restrict the output of the plant to be a memoryless function

belonging to a bounded sector of the state. One should be

aware that while our analysis is similar to [6], there are

other ways in the literature to estimate the inter-event time

based on different assumptions, see [8], [9], [10]. Thus, it

is possible to derive a less conservative result by taking

different approaches and different assumptions. Based on the

assumptions shown in the following proposition, the impact

of the disturbances on the inter-event time can be shown

explicitly.

We assume that the plant is IF-OFP(νp, ρp)
m with dynam-

ics given by

Hp :

{
ẋp = fp(xp, up)

yp = hp(xp)
, (25)

and the controller is IF-OFP(νc, ρc)
m with dynamics given

by

Hc :

{
ẋc = fc(xc, uc)

yc = hc(xc, uc)
. (26)

Note that we assume that there is no feed-through at the

output of the plant. This usually corresponds to the case

when the relative degree of the plant is greater than zero and

νp ≤ 0, see [2].

Proposition 1. Consider the networked control system shown

in Fig.2, where the plant is IF-OFP(νp, ρp)
m with a C1 stor-

age function Vp(xp) and the controller is IF-OFP(νc, ρc)
m

with a C1 storage function Vc(xc). Assume that the network

induced delay from the sampler to the controller ∆k ≡ 0,

∀k. Let the following assumptions be satisfied:

1) fp(xp, up) : R
np × R

np → R
np is locally Lipschitz

continuous in xp on a compact set Sx ⊂ R
np with

Lipschitz constant Lx;

2) ‖fp(xp, up)− fp(xp, 0)‖2 ≤ Lu‖up‖2 for all xp ∈ Sx

with some nonnegative constant Lu;

3) hp(xp) : R
np → R

np belongs to a sector (K1, K2),
with K1x

T
p xp ≤ xT

p hp(xp) ≤ K2x
T
p xp, where K1 ∈

R, K2 ∈ R and 0 < K1K2 < ∞;

4)
∥∥∂hp

∂xp

∥∥
2
≤ γp, where 0 < γp < ∞;

5) νp + ρc > 0, ρp + νc > 0, ρc > 0, xc(t0) = 0;

6) supt≥0 ‖ω1(t)‖2 ≤ d1 and supt≥0 ‖ω2(t)‖2 ≤ d2,

where 0 < d1, d2 < ∞.

Then for any initial condition xp(0) in a compact set S0 ⊂
Sx, the inter-event time {tk+1 − tk} implicitly determined

by the triggering condition (24) is lower bounded by τk =
1

C2
ln

(
1 + C3

C1

)
≥ 0, where

C1 =
(Lxζp + LuΓc)‖yp(tk)‖2 + Lu(d1 + Γcd2)

Lxζp

,

C2 = γpLxζp and C3 =
δσo

1 + σo

‖yp(tk)‖2,

ζp = max{ 1
|K1|

, 1
|K2|

}, Γc =
√

1+2ρc|νc|
ρ2

c
.

Proof: Since ẽp(t) = yp(t) − yp(tk) for t ∈ [tk, tk+1),
we can get for t ∈ [tk, tk+1)

d

dt
‖ẽp(t)‖2 ≤ ‖ ˙̃ep(t)‖2 = ‖ẏp(t)‖2 = ‖ḣp(xp)‖2

=
∥∥∥

∂hp

∂xp

fp(xp, 0) +
∂hp

∂xp

[
fp(xp, up) − fp(xp, 0)

]∥∥∥
2

≤ γpLx‖xp‖2 + γpLu‖up‖2

= γpLx‖xp‖2 + γpLu‖ω1 − yc‖2

≤ γpLx‖xp‖2 + γpLud1 + γpLu‖yc‖2.

(27)

Since xc(t0) = 0, with ρc > 0, one can prove that

‖ycτ‖L2
≤

√
1 + 2ρc|νc|

ρ2
c

‖ucτ‖L2
, ∀τ ≥ t0. (28)

Thus, we can further obtain

d

dt
‖ẽp(t)‖2 ≤ γpLx‖xp(t)‖2 + γpLud1 + γpLuΓc‖uc(t)‖2

= γpLx‖xp(t)‖2 + γpLud1 + γpLuΓc‖yp(tk) + ω2(t)‖2.
(29)
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Since hp(xp) belongs to the sector (K1, K2), one can verify

that ‖xp(t)‖2 ≤ ζp‖yp(t)‖2, and we have

d

dt
‖ẽp(t)‖2 ≤ γpLxζp‖yp(t)‖2 + γpLud1

+ γpLuΓc‖yp(tk)‖2 + γpLuΓc‖ω2(t)‖2

= γpLxζp‖ẽp(t) + yp(tk)‖2 + γpLud1

+ γpLuΓc‖yp(tk)‖2 + γpLuΓc‖ω2(t)‖2

≤ γpLxζp‖ẽp‖2 + γp(Lxζp + LuΓc)‖yp(tk)‖2

+ γpLu(d1 + Γcd2),

(30)

so the evolution of ‖ẽp(t)‖2 during the time interval

[tk, tk+1) is bounded by the solution to

d

dt
φ(t) = γpLxζpφ(t) + γp(Lxζp + LuΓc)‖yp(tk)‖2

+ γpLu(d1 + Γcd2),
(31)

with initial condition φ(tk) = 0. Thus the time for ‖ẽp(t)‖2

to evolve from 0 to δσo

1+σo
‖yp(tk)‖2 is lower bounded by the

solution to φ(tk + τk) = δσo

1+σo
‖yp(tk)‖2. Let

C1 =
(Lxζp + LuΓc)‖yp(tk)‖2 + Lu(d1 + Γcd2)

Lxζp

,

C2 = γpLxζp and C3 = δσo

1+σo
‖yp(tk)‖2, we can get

τk =
1

C2
ln

(
1 +

C3

C1

)
≥ 0, (32)

and the proof is complete.

Remark 4. One can see that when d1 = d2 = 0 (no external

disturbance inputs), then we have

τk =
1

γpLxζp

ln
(
1 +

δσo

1+σo
Lxζp

Lxζp + LuΓc

)
> 0, (33)

and in this case we can get a common lower bound of the

inter-event time. Moreover, with a larger triggering threshold

σo, we can get a larger τk. Since σo is related to the passivity

indices of the plant and the controller, the interactions

between the triggering condition, the passivity indices and

the inter-event time are implicitly revealed here. However,

when the external disturbances ω1, ω2 cannot be neglected,

τk could be extremely small when yp(t) approaches the

origin, and we may get “zeno” inter-event time.

For a linear time-invariant (LTI) IF-OFP plant Hp, by

assuming that Hp is detectable, we derive another analysis

of the inter-event time (Hc could be linear or nonlinear with

the same input and output dimension as Hp). In this case, we

do not need to assume that yp belongs to a bounded sector

of xp. Consider a LTI system given by:

Hp :

{
ẋp = Apxp + Bpup

yp = Cpxp,
(34)

where Ap ∈ R
np×np , B ∈ R

np×mp , and C ∈ R
mp×np .

Recall that Hp is detectable if with zero input, Cpxp = 0
implies xp → 0. Note that if Hp is detectable, then there

always exits a matrix L ∈ R
np×mp such that Ap + LpCp

is Hurwitz. Moreover, we have the following proposition for

detectable LTI systems.

Proposition 2 [19]. For a detectable LTI system Hp, there

exists some constant K > 0 such that the following bound

on the norm of the state xp holds:

‖xp‖2 ≤ Ke−λ̂t‖xp(0)‖2 +
K‖Bp‖2

λ̂
‖up|[0,t]‖

+
K‖L‖2

λ̂
‖yp|[0,t]‖,

(35)

where L is the matrix such that Ap + LCp is Hurwitz, and

−λ̂ > Reλ for every eigenvalue λ of Ap + LCp. ‖(·)|[0,t]‖
denotes the essential supremum norm of (·) on the time

interval [0, t].
Proposition 3. Consider the networked control system shown

in Fig.2, where the plant Hp as given in (34) is detectable and

IF-OFP(νp, ρp)
m with storage function Vp(xp), the controller

is IF-OFP(νc, ρc)
m with storage function Vc(xc). Assume

that the network induced delay from the sampler to the

controller ∆k ≡ 0, ∀k. Let assumption 5)-6) in Proposition 1

be satisfied. Then for any initial condition xp(0) in a compact

set S0 ⊂ Sx, the inter-event time {tk+1 − tk} explicitly

determined by the triggering condition (24) is lower bounded

by

τk =
δσo

1+σo
‖yp(tk)‖2

Ĉ1‖xp(tk)‖2 + Ĉ2‖yp(tk)‖2 + Ĉ3d1 + Ĉ4d2

where Ĉ1 = γpLxK , Ĉ2 = γpLx

[
KLuΓc

λ̂
+ K‖L‖2

λ̂

(
1 +

δσo

1+σo

)]
+ γpLuΓc, Ĉ3 =

γpLxKLu

λ̂
+ γpLu, Ĉ4 =

γpLxKLuΓc

λ̂
+ γpLuΓc, γp = ‖Cp‖2, Lx = ‖Ap‖2 and

Lu = ‖Bp‖2, Γc is the same as defined in Proposition 1,

K , λ̂ and L are the same as defined in Proposition 2.

Proof: One can verify that for t ∈ [tk, tk+1), with

Lx = ‖Ap‖2, Lu = ‖Bp‖2, and γp replaced by ‖Cp‖2, we

can still arrive at (29). Then, by applying Proposition 2, we

can further get for t ∈ [tk, tk+1]

‖xp‖2 ≤ Ke−λ̂(t−tk)‖xp(tk)‖2 +
KLu

λ̂
‖up|[tk,tk+1)‖

+
K‖L‖2

λ̂
‖yp|[tk,tk+1)‖,

(36)

one can further obtain

Ke−λ̂(t−tk)‖xp(tk)‖2 ≤ K‖xp(tk)‖2, (37)

KLu

λ̂
‖up|[tk,tk+1)‖ ≤

KLu

λ̂
d1 +

KLuΓc

λ̂
(‖yp(tk)‖2 + d2),

(38)
K‖L‖2

λ̂
‖yp|[tk,tk+1)‖ ≤

K‖L‖2

λ̂

(
1 +

δσo

1 + σo

)
‖yp(tk)‖2

(39)

substitute (36)-(39) into (29), we will get

d

dt
‖ẽp(t)‖2 ≤ Ĉ1‖xp(tk)‖2 + Ĉ2‖yp(tk)‖2 + Ĉ3d1 + Ĉ4d2.

(40)
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So in this case, on can verify that the inter-event time is

lower bounded by

τk =
δσo

1+σo
‖yp(tk)‖2

Ĉ1‖xp(tk)‖2 + Ĉ2‖yp(tk)‖2 + Ĉ3d1 + Ĉ4d2

. (41)

Remark 5. In view of τk in Proposition 3, one can see that

if xp(t) = yp(t)(the full-state is available for measure) or

if yp(t) belongs to a bounded sector of xp(t), then in the

absence of external disturbances ω1 and ω2, we could get

a common lower bound on the inter-event time, which is

strictly positive. However, since we have no information on

‖xp(tk)‖2, it is difficult to get a common lower bound on the

inter-event time. In many cases, common lower bound on the

inter-event time is only a local property of event-triggered

control.

Remark 6. When there is non-trivial network induced delay

from the sampler to the controller (∆k 6= 0), if the delay is

upper bounded by the inter-event time, then stability can still

be assumed. Thus, the admissible network induced delay is

related to the triggering condition: usually, a larger triggering

threshold implies more tolerance to the network induced

delay since the inter-event time may be longer. However,

as indicated in Remark 4, the obtained admissible network

induced delays could be small in the presence of external

disturbances since the inter-event time could be very small

in that case. In real time NCSs, the network induced delay is

usually unknown, it is very likely to have delay larger than

the inter-event time. Thus it is not very practical to schedule

the control tasks at the sampler side based on the knowledge

of the inter-event time. Unfortunately, most existing work on

event-triggered control for NCSs neglect this fact and assume

that network induced delay is smaller than the inter-event

time to ensure the stability of the control system. In [21],

we propose a set-up to deal with arbitrary constant network

induced delays or delays with bounded “jitters” based on the

results shown in the current paper.

V. CONCLUSION

In this paper, a dynamic output feedback based event-

triggered control scheme is introduced for stabilization of

IF-OFP NCSs, which extends our previous work in [20] for

stabilization of more general dissipative NCSs. The trigger-

ing condition is derived based on the passivity theorem which

allows us to characterize a large class of output feedback

stabilizing controllers. We show that with the triggering

condition derived in this paper, the control system is finite-

gain L2 stable in the presence of bounded external distur-

bances. The interactions between the triggering condition,

the achievable L2 gain of the control system and the inter-

event time have been studied in terms of the passivity indices

of the plant and the controller. Analysis of the inter-event

is provided followed by the discussions on challenges of

applying event-triggered output feedback control to NCSs.
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