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Abstract— This paper considers the problem of risk-sensitive
stochastic control under a Markov modulated Denial-of-Service
(DoS) attack strategy in which the attacker, using a hidden
Markov process model, stochastically jams the control packets
in the system. For a discrete-time partially observed stochastic
system with an exponential running cost, we provide a solution
in terms of the finite-dimensional dynamics of the system
through a chain of measure transformation technique which
surprisingly satisfies a separation principle, i.e., the recursive
optimal control policy together with a suitably defined informa-
tion state constitutes an equivalent fully observable stochastic
control problem. Moreover, on the transformed measure space,
the solution to the optimal control problem appears as if it
depends on the average path of the DoS attacks in the system.

I. INTRODUCTION

Recently, increasing effort has been placed in addressing
the problem of risk and vulnerability assessment to malicious
attacks against critical infrastructure such as power grids and
industrial control systems (e.g., see references [1]-[4]). The
issue of security in such critical sectors has now become as
important as technical design. As these critical infrastructures
become more interconnected and complex, solutions that
ensure security against malicious cyber attacks will gain even
more importance. A systematic study of design approaches
that provide provable security against malicious attacks is
a core area of research. In particular, since such cyber-
physical systems will couple control of critical infrastructure
with communication networks, there is a need to study the
impact of cyber attacks in control systems. Accordingly,
there have appeared many recent works that consider security
requirements, attacks and vulnerabilities in control systems,
wireless sensor networks and IT infrastructures (e.g., see
references [5]-[11]).

By modeling the attacker as inducing network disruptions
at every time step according to a Bernoulli process, Amin et
al. [5] considered the LQG control problem and Befekadu
et al. [12] considered the risk-sensitive control problem. In
this work, we extend the attacker model from a memoryless
Bernoulli process to one that follows a hidden Markov model
and derive an optimal risk-sensitive control policy under this
class of attack strategy. Our choice of a risk-sensitive cost
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function is motivated by its use in robust control and dynamic
games, where this criterion has proven an effective tool in
mapping a priori knowledge of the system parameters to the
cost functional [13]-[18]. We would also like to mention
that the problem of optimal control when control packets are
being erased has been studied in networked control systems
literature (e.g., see references [19]-[25]).

Our main technical tool is a chain of probability measure
transformations that allow us to consider the optimal con-
trol design problem merely on the average path followed
by the attacker. Initially, we introduce a new equivalent
probability measure that characterizes the nature of DoS
attack sequences relative to all existing random variables
(i.e., relative to the original probability space on which all
random variables were originally defined). In this equivalent
probability measure space, the DoS attack sequences show
independent character over their observed values. Once this
is accomplished, we introduce another probability measure
transformation that characterizes separately the plant state
and observation variables of the partially observed stochastic
system. Specifically, the latter measure transformation is de-
rived in such a way as to make the plant state and observation
sequences independent while the other variables remained
unaffected under it. Finally, we combine these measure
transformations to obtain a system characterization in which
the DoS attack sequences are independent over their observed
values; while the plant observation sequences are mutually
independent to the other measure variables in the system.
This further allows us to define an equivalent information
state (and the corresponding adjoint measure process) for the
partially observed stochastic system [16], [26], [27]. We can
then prove a separation principle that separates the optimal
control problem from the estimation problem via this newly
defined information state, i.e., the recursive optimal control
policy together with the newly defined information state
constitute an equivalent fully observable stochastic control
problem. It may be noted that such a separation principle
is not a priori obvious given the risk-sensitive cost function
and the hidden Markov model based attacker model.

This paper is organized as follows. In Section II, we
introduce some preliminary concepts and formulate the risk-
sensitive control problem under a Markov modulated DoS
attack model. Section III presents the main result. Solution
for the optimal control problem is formally stated and the
associated recursive solution for the optimal cost value is
derived. Finally, Section IV provides concluding remarks.



II. PROBLEM FORMULATION

A. Process Model and Cost Function

Consider a probability space (Ω,F , P ) equipped with a
complete filtration {Fk}, k ∈ N and all random variables
are initially defined on this reference probability space. Con-
sider the following discrete-time partially observed stochastic
system

xk+1 = Axk + χ(Zk+1)Buk + νk+1

yk+1 = Cxk + wk+1, k = 0, 1, . . . , T − 1 (1)

where xk ∈ Rn is the state of the system, uk ∈ Rm is the
control input, yk ∈ Rp is the observation output, χ(Zk) ∈
{0, 1} is the DoS attack sequence that disrupts the control
packets from reaching the actuator while Zk is related to the
internal state of the attacker which is discussed in Section II-
B below. We assume the process noise νk and measurement
noise wk are mutually independent with normal densities
ϕ ∼ N (0,Σ) and φ ∼ N (0,Γ), respectively; and the
covariance matrices Σ and Γ are assumed to be positive
definite. Denial of service is a popular attack model for
cyber-physical systems (see references [5], [6], [28]). Other
attack models such as integrity (or deception) type attacks
or direct physical attacks can also be considered.

Let Yk denote the complete filtration generated by
{y1, y2, . . . , yk}. We further assume that the anticipated DoS
attack sequences follow a Markov process dynamics and are
independent to the other random variables in the system.
Moreover, the admissible controls u = {u0, u1, . . . , uT−1}
are Rm - valued sequences and considered to be adapted
process (or non-anticipating process that depends on the
output sequences and DoS attack path). The set of all
admissible control sequences on the interval k, k + 1, . . . , l
is denoted by Uk,l. We consider an exponential running cost
with quadratic function for the risk-sensitive control problem

J(u) = (1/θ)E
[
exp

{
(θ/2)

{ T−1∑
k=0

(x′kMxk

+ χ(Zk+1)u′kNuk) + x′TMTxT

}}]
(2)

where θ > 0 is the risk-sensitive parameter, u ∈ U0,T is
the admissible control sequences; while E

[
.
]

denotes the
expectation with respect to the reference probability measure
P .

B. Markov Modulated DoS Attack Model

Consider a process {Yk}k∈N which is an Rd - valued
Markov process with dynamics

Yk = Fk(Yk−1) +Wk (3)

where Y0 is assumed to have known initial distribution,
{Fk(.)}k∈N is a bounded Rd - valued measurable function
and {Wk}k∈N is a sequence of Rd - valued independent
random variables with density function {ψk(.)}k∈N .

Let {Zk}k∈N be a two-dimensional stochastic process
with finite state-space. Without loss of generality, we take

the state-space to be the set of a standard basis in R2,
i.e., S = {e1, e2}, where the vector ei has one in the
i-th position and zero elsewhere for i = 1, 2. Moreover,
define the complete filtration F0 = σ{Z0, Y0, Y1} and Fk =
σ{Zl, Yl+1, l ≤ k, k ≥ 1}. We assume that the process Z is
a conditional Markov chain, i.e.,

P
[
Zk = ej

∣∣ Fk−1 ] = P
[
Zk = ej

∣∣ Zk−1, Yk ]
= aj(Zk−1, Yk)

=

2∑
i=1

aji(Yk)〈Zk−1, ej〉 (4)

where 〈., .〉 is the inner product and A(y) =
[
aji(y)

]
is a

2×2 matrix function defined on Rd such that for all y ∈ Rd
the following conditions are satisfied

0 < aji < 1
2∑
i=1

aji(y) = 1, i, j = 1, 2 (5)

From equations (3), (4) and (5), we note that the process
{Zk}k∈N has the following representation

Zk = Fk(Yk)Zk−1 + Vk (6)

where the process {Vk}k∈N is an Fk - martingale increment,
i.e., E[Vk|Fk−1] = 0.

Define a discrete-time counting process Nr
k that counts

the number of times the process Z has been in state r up to
time k

Nr
k =

k∑
l=1

〈Zl, er〉 =

k∑
l=1

ar(Zl−1, Yl) +Mr
k (7)

where the {Mr
k} is an Fk - martingale increment.

In the following, we assume that the Markov signal
{Yk}k∈N is not directly observed, but through another Rd -
valued random process {QNr

k
}k∈N such that

P
[
QNr

k
∈ dq, Zk = er

∣∣ Fk−1 ]
= ar(Zk−1, Yk)λrk(Yk, q)dq (8)

where λrk(Yk, .) is a probability density function defined on
Rd for every q ∈ Rd.

Thus, we can associate another random variable using the
following representation

mr
k(dq) = 〈Zk, er〉IQ(QNr

k
∈ dq)

= ar(Zk−1, Yk)λrk(Yk, q)dq + Urk (9)

where {Urk} is an Fk - martingale increment and IQ(.) stands
for an indicator function.

Therefore, the complete filtration generated by this obser-
vation process is given by

Mk = σ
{
mr
l (E), l ≤ k, r = 1, 2 and E ∈ B(Rd)

}
(10)

where E is a Borel set of B(Rd).
Let us associate the evolution of the random process

{Zk}k∈N to another {χ(Zk)}k∈N process, where each



χ(Zk) is binary random variable (i.e., χ(Zk) ∈ {0, 1}
with χ(Z0) = 0). We can achieve this via a sequence
of bijective/one-to-one mapping functions (e.g., χ(Zk) =
[0, 1]Zk as a bijective mapping). Note that the distribution
for this process depends on the state of the hidden Markov
process, namely, the probability of its success changes with
respect to the Markov process. We specifically exploit this
property for our DoS attack model realization. Although,
{χ(Zk)}k∈N is a sequence of identically distributed binary
random variables, they are not necessarily ordinary Bernoulli
processes since they are not independent in the original prob-
ability measure space. Moreover, the discrete-time counting
process, which is given by (7), records a particular event
that has been followed and its measured-information equally
serve for this process. Therefore, equations (9) and (10)
provide effectively the observation model for our modulated
Markov random sequences.

C. Problem Statement

The problem considered in this paper is stated as follows.
Find an optimal control policy for the finite-horizon risk-

sensitive control problem under a Markov modulated DoS
attack model, i.e.,

F0 = inf
u∈U0,T−1

J(u)

= inf
u∈U0,T−1

(1/θ)E
[
exp

{
(θ/2)

{ T−1∑
k=0

(x′kMxk

+ χ(Zk+1)u′kNuk) + x′TMTxT

}}]
(11)

Here we consider the DoS attack sequences as a Markov
modulated packet drops due to network jams induced by the
attacker at each time k with success probability χ(Zk). In
general, this attack model AM(χ(Zk)) will have the following
attack path

AM(χ(Zk)) =
{
χ(Z0), χ(Z1), . . . , χ(ZT )

}
(12)

We remark that the exponential running cost function
weighted by a risk-sensitive parameter θ highlights designers
belief about system uncertainty back to the scale of cost
functional. For a risk-neutral criterion, when θ is sufficiently
close to zero, the risk-sensitive control problem reduces to
an LQG control problem.

III. MAIN RESULTS

In this section, we explicitly use the measure transforma-
tion technique to derive the optimal control policy for the
risk-sensitive control problem under a Markov modulated
DoS attack model. The key idea is to introduce measure
transformation technique under which the observation and
state variables become mutually independent along the an-
ticipated DoS attack sequences or path in the system. This
allows us to obtain recursive formulas for the equivalent
information state and associated adjoint process based on
the observation history, the current control input and the
anticipated DoS attack path or sequences. Using this fact, we

further derive an implicit formula for optimal control policy
(i.e., separated policy which essentially combines estimation
and control as a single problem) via dynamic programming.

A. Change of Measure for the DoS Attack Model

Suppose the following random variables are given on a
new probability space (Ω,F , P̄ ) under which the random
variable Q is not affected by the random variables Y , Z and
m:

(i). {Zk}k∈N is a sequence of i.i.d. random variable
uniformly distributed on the set S = {e1, e2}, i.e.,

P̄
[
Zk = er

∣∣ Fk−1 ]= 1/2 (13)

(ii). {Qk}k∈N is a sequence of i.i.d. random variable with
probability density function ς(.) on Rd such that

P̄
[
Qk ∈ dq

∣∣ Zk = er,Fk−1
]
= ς(q)dq (14)

(iii). {mr
k}k∈N , r = 1, 2 are random measures on

(Rd,B(Rd)) with P̄ and their representations are

mr
k(dq) = 〈Zk, er〉IQ(QNr

k
∈ dq)

= (1/2)ς(q)dq + Ūrk (15)

To recover the original probability measure P under which
the model is introduced (i.e., all variables defined), consider
the following sequence

γ0 = 1

γk =

2∏
r=1

[
2ar(Zk−1, Yk)λrk(Yk, QNr

k
)

ς(QNr
k
)

]〈Zk,er〉

,

k = 1, 2, . . . T (16)

Using Girsanov’s theorem [26], [29], [30], we can set the
Radon-Nikodym derivative as

dP = Γ0,kdP̄ , k = 0, 1, . . . , T (17)

where Γ0,k =
∏k
l=1 γl, its restriction implicitly known to the

complete filtration that is generated by the processes Y , Z
and Q. This fact is a direct application of Girsanov’s theorem
[30].

B. Change of Measure for the Plant Dynamics Variables

For any admissible control sequences u ∈ U0,k−1, consider
the following random variable

Λu0,0 = 1

Λu1,k =

k∏
l=1

ϕ(xl −Axl−1 − χ(Zl)Bul−1)

ϕ(xl)φ(yl)
φ(yl − Cxl−1),

k = 1, 2, . . . , T (18)

Using this random variable, we can introduce another equiv-
alent measure transformation P̂ as follows

dP̂ = [Λu0,k]−1dP̄ , k = 0, 1, . . . , T (19)

Under this measure transformation P̂ , the state xk and
the observation yk will become normal densities and in-
dependent to each other. Moreover, the restriction of the



Radon-Nikodym derivative implies the measure [Λu0,k]−1 is
a martingale process with respect to the complete filtration
(e.g. see references [26], [29], [30]). Next let us combine the
above change of measures, i.e., equations (17) and (19), as
follows

dP̂ = [Λu0,k]−1dP̄ ,

= [Λu0,k]−1Γ0,kdP, k = 0, 1, . . . , T (20)

Consider the following measure process for any admissible
control u and DoS attack sequences in the system

αuk(x, q)dxdq = Ê
[

Λu0,k[Γu0,k]−1exp(θDu
0,k−1)

× IA(xk ∈ dx)〈Zk, er〉IQ(QNr
k
∈ dq)

∣∣∣∣ Y ∨M ]
,

k = 0, 1, . . . , T (21)

where IA(xk ∈ dx) is the indicator function of the Borel
set A, Du

j,k is the quadratic running function given by
Du
j,k = (1/2)

∑k
l=j (x′lMxl + χ(Zl+1)u′lNul) for 0 ≤ j ≤

k ≤ T − 1. Moreover, the initial boundary condition for
this measure valued process is specified by αu0 (x0, q0) =
ϕ(x0)ς(q0).

Then, we obtain the following theorem.
Theorem 1: The measure valued process αuk(x, q) satis-

fies the following forward recursion

αuk+1(x, q)dxdq =
1

φ(yk+1)

∫
B(Rd)

∫
B(Rn)

exp(θDu
k,k)

×
2∑
r=1

〈Zk+1, er〉ς(q)
2ar(Zk, Yk+1)λrk+1(Yk+1, q)

φ(yk+1 − Cξ)

× ϕ(x−Aξ − χ(Zk+1)Buk)αuk(ξ, τ)dξdτ (22)

where Du
k,k = (1/2)

(
ξ′Mξ + χ(Zk+1)u′kNuk

)
.

Proof: For any Borel test functions f(x) and g(x),
consider the following∫
B(Rd)

∫
B(Rn)

f(ρ)g(τ)αuk+1(ρ, τ)dρdτ

= Ê
[
f(xk+1)g(QNr

k+1
)Λu0,k+1[Γu0,k+1]−1exp(θDu

0,k)∣∣∣∣ Y ∨M ]
= Ê

[ ∫
B(Rd)

∫
B(Rn)

f(Axk + χ(Zk+1)Buk + ν)

2∑
r=1

{
〈Zk+1, er〉

2λrk+1(Yk+1, QNr
k+1

)

ς(QNr
k+1

)

ar(Zk+1, Yk+1)

}
Λu0,k

× [Γu0,k]−1exp(θDu
0,k−1)ϕ(ν)dνς(λ)dλφ(yk+1 − Cxk)

× g(QNr
k+1

)exp(θDu
k,k)

∣∣∣∣ Y ∨M ]

=

∫
B(Rd)

∫
B(Rn)

∫
B(Rd)

∫
B(Rn)

φ(yk+1 − Cξ)
φ(yk+1)

exp(θDu
k,k)

×
2∑
r=1

〈Zk+1, er〉
2ar(Zk+1, Yk+1)

ς(τ)

λrk+1(Yk+1, τ)
g(τ)ϕ(ν)ς(λ)

× f(Aξ + χ(Zk+1)Buk + ν)αuk(ξ, τ)dνdλdξdτ
(23)

With change of variable ρ = Aξ + χ(Zk+1)Buk + ν, we
have∫
B(Rd)

∫
B(Rn)

f(ρ)g(τ)αuk+1(ρ, τ)dρdτ

=

∫
B(Rd)

∫
B(Rn)

∫
B(Rd)

∫
B(Rd)

1

φ(yk+1)

∑2
r〈Zk+1, er〉

2ar(Zk+1, Yk+1)

× ς(τ)

λrk+1(Yk+1, τ)
f(ρ)g(τ)ϕ(ρ−Aξ − χ(Zk+1)Buk)

× exp(θDu
k,k)ς(λ)φ(yk+1 − Cξ)αuk(ξ, τ)dνdλdξdτ (24)

The above holds for all Borel test functions, thus we have
equation (22).

For a finite-state Markov chain model of (3), the measure
valued process αuk(x, q) (i.e., the information state for this
partially observed stochastic system) is determined by the
following parameters Zk(u,QNr

k
), R−1k (u) and µk(u) that

involve coupled forward recursive relations [12]. With mi-
nor abuse of notation, we consider these parameters as an
information state for the system

ζuk (u, q) =
(
Zk(u,QNr

k
), R−1k (u), µk(u)

)
(25)

Furthermore, we can rewrite the measured process αuk(x, q)
as follows

αuk(x, q) = αuk
(
ζuk (u, q), x

)
= Zk(u,QNr

k
)exp{−1

2
(x− µk(u))′R−1k (u)(x− µk(u))}

(26)

C. Solution to Risk-Sensitive Control Problem under a
Markov Modulated DoS Attack Model

In the following, we provide an exact solution for the op-
timal control policy in terms of finite-dimensional dynamics,
i.e., separated policy in terms of the equivalent information
state, using dynamic programming technique.

For any admissible control and anticipated DoS attack
sequences, the expected total cost of (2) with respect to
the equivalent probability measure transformation is given
as follows

J(u) = (1/θ)E
[
exp

{
(θ/2)

{ T−1∑
k=0

(x′kMxk

+ χ(Zk+1)u′kNuk) + x′TMTxT

}}]
= (1/θ) Ê

[
Ê
[

Λu0,T [Γu0,T ]−1exp(θDu
0,T−1)

× exp{(θ/2)x′TMTxT }
∣∣∣∣ YT ∨MT

]]



= (1/θ) Ê

[∫
B(Rd)

∫
B(Rn)

exp{(θ/2)x′Mx}αT (x, q)dxdq

]
(27)

For any k, 0 < k < T the expected total cost can be
expressed equivalently in terms of this information state as

J(u) = (1/θ) Ê
[

Λu0,T [Γu0,T ]−1exp(θDu
0,T−1)exp{(θ/2)

× x′TMTxT }
]

= (1/θ) Ê
[

Λu0,k[Γu0,k]−1[Λuk+1,T [Γuk+1,T ]−1exp(θDu
0,k−1)

× exp(θDu
k,T−1)exp{(θ/2)x′TMTxT }

]
= (1/θ) Ê

[
Λu0,k[Γu0,k]−1exp(θDu

0,k−1) Ê
[

Λuk+1,T

× [Γuk+1,T ]−1exp(θDu
k,T−1)exp{(θ/2)x′TMTxT }∣∣∣∣ σ{xk} ∨ σ{mr

k} ∨ YT ∨MT

]]
(28)

where the inner expectation involves only conditioning on
σ{xk} ∨ σ{mr

k} due to the Markov property of xk and mr
k.

Define a new adjoint process

ηuk (xk, q) = Ê
[

Λuk+1,T [Γuk+1,T ]−1exp(θDu
k,T−1)

× exp{(θ/2)x′TMTxT }
∣∣∣∣ σ{xk} ∨ σ{mr

k} ∨ YT ∨MT

]
(29)

With this, the expected total cost can be further rewritten as

J(u) = (1/θ) Ê
[

Λu0,k[Γu0,k]−1exp(θDu
0,k−1)ηuk (xk, q)

]
= (1/θ) Ê

[
Ê
[

Λu0,k[Γu0,k]−1exp(θDu
0,k−1)

× ηuk (xk, q)

∣∣∣∣ YT ∨MT

]]
= (1/θ) Ê

[∫
B(Rd)

∫
B(Rn)

αuk(x, q)ηuk (x, q)dxdq

]

= (1/θ) Ê
[
〈αuk(x, q)ηuk (x, q)〉

]
(30)

which is independent of k.
Theorem 2: The adjoint process ηuk (x, q) satisfies the

following backward recursion

ηuk (xk, q) =

∫
B(Rd)

∫
B(Rn)

ϕ(x−Axk − χ(Zk+1)Buk)

×
2∑
r=1

〈Zk+1, er〉ς(q)φ(yk+1 − Cxk)

2ar(Zk+1, Yk+1)λrk+1(Yk+1, q)φ(yk+1)

× exp(θDu
k,k)ηuk+1(x, τ)dxdτ (31)

Proof: From (29), ηuk (x, q) is given by

ηuk (xk, q) = Ê
[

Λuk+1,T [Γuk+1,T ]−1exp(θDu
k,T−1)

× exp{(θ/2)x′TMTxT }
∣∣∣∣ σ{xk} ∨ σ{mr

k} ∨ YT ∨MT

]
= Ê

[ 2∑
r=1

〈Zk+1, er〉ς(QNr
k+1

)

2ar(Zk+1, Yk+1)λrk+1(Yk+1, QNr
k+1

)
exp(θDu

k,k)

× ϕ(xk+1 −Axk − χ(Zk+1)Buk)

ϕ(xk+1)

φ(yk+1 − Cxk)

φ(yk+1)

× ηuk+1(xk+1, QNr
k+1

)

∣∣∣∣ σ{xk} ∨ σ{mr
k} ∨ YT ∨MT

]
(32)

Using the independent property under P̂ , performing the
inner expectation in the above equation gives equation (31).
The boundary condition for the adjoint process is given by

ηuT (xT , QNT
)=ΛuT,T [ΓuT,T ]−1exp{(θ/2)x′TMTxT }ς(QNT

)
(33)

Moreover, the adjoint process ηuk is given by the following
equivalent relation (c.f. equations (25) and (26))

ηuk (x, q) = Z̃k(u,QNr
k
)

× exp
{
−1

2

(
x− µ̃k(u)

)′
R̃−1k (u)

(
x− µ̃k(u)

)}
(34)

where the finite-dimensional parameters Z̃k(u,QNr
k
),

R̃−1k (u) and µ̃k(u) satisfy coupled backward, recursions.
From equations (22) and (24), the information state αuk(x, q)
is determined by Zk(u,QNr

k
), R−1k (u) and µk(u) that

involve recursions. Thus, based on the current value of ζuk
together with the new observation yk+1, current control
uk and the anticipated attack sequence χ(Zk+1) (or QNr

k

- the number of attack sequences) the next value can be
determined by the following functional relation

ζuk+1 = ζuk+1

(
ζuk , uk, yk+1,m

r
k+1

)
(35)

Suppose at some intermediate time k, 0 < k < T , the
information state ζuk is given by ζ = (Z,R−1, µ), then from
equation (30), the value function for the optimal control
problem satisfies the following

F (ζ, k) = inf
u∈Uk,T−1

Ê
[
〈αuk , ηuk 〉

∣∣∣∣ αk = αk(ζ)

]
(36)

Theorem 3: The value function satisfies the following
recursion with

F (ζ, k) = inf
u∈Uk,k

Ê
[
F
(
ζuk+1(ζ, u, yk+1,m

r
k+1), k + 1

)]
(37)

with F (ζ, T ) = 〈αT (ζ), ηT (ζ)〉.
Proof: Consider equation (36)

F (ζ, k) = inf
u∈Uk,T−1

Ê
[
〈αuk(ζ), ηuk 〉

∣∣∣∣ ζk = ζ

]
Note that the adjoint process ηk is determined from ηk+1 via
the backward recursion of (31), i.e., for the adjoint process,



we can specify a functional recursion equation in the form
of ηk = ηuk (ηuk+1).

Thus, the value function satisfies the following

F (ζ, k)

= inf
u∈Uk,k

inf
υ∈Uk+1,T−1

Ê
[
〈αuk(ζ), ηuk (ηuk+1)〉

∣∣∣∣ ζk = ζ

]
= inf
u∈Uk,k

inf
υ∈Uk+1,T−1

Ê
[
Ê
[
〈αuk+1(ζk+1), ηuk+1〉∣∣∣∣ Yk+1 ∨ σ{mr

k+1}, ζk = ζ

]∣∣∣∣ ζk = ζ

]
= inf
u∈Uk,k

Ê
[

inf
υ∈Uk+1,T−1

Ê
[
〈αuk+1(ζk+1), ηuk+1〉∣∣∣∣ Yk+1 ∨ σ{mr

k+1}, ζk = ζ

]∣∣∣∣ ζk = ζ

]
= inf
u∈Uk,k

Ê
[
F
(
ζuk+1(ζ, u, yk+1,m

r
k+1), k + 1

)]
(38)

Due to the lattice property of the control sequences,
we interchanged the order of conditional expectation and
minimization operations in the last equation of (38). More-
over, the optimal control sequences u∗k(ζk) for each k =
0, 1, . . . , T − 1 of the dynamic programming problem are
indeed the optimal control policies for the original problem
stated in (11), i.e., u∗ ∈ U0,T−1.

IV. CONCLUSION

In this paper we considered a finite-horizon risk-sensitive
control problem under a Markov modulated DoS attack
model when the attacker strategy is to disrupt the network
or jam the control packets from reaching the actuator. Using
a chain of measure transformation techniques and dynamic
programming, we derived a recursive optimal control policy
in terms of the finite-dimensional dynamics of the system
that satisfies a separation principle, i.e., the recursive optimal
control policy together with the newly defined informa-
tion state constitutes an equivalent completely observable
stochastic control problem. Moreover, the solution to the
optimal control problem appeared as if it depends on the
average sequences or path of the DoS attack in the system.
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