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I. Introduction

Given a plant y = Pu and a stabilizing controller
u = Cy, Ccan be realized as an observer-based con
troller. Understanding the exact relation between sta
bilizing output feedback and state feedback-observer
control structures is important as it enhances our
understanding of the relationships between design
methods which directly produce C and state-space meth-
ods which typically design observer-based controllers;
further-more, powerful design methods such as LQG/LTR
are based on such knowledge.

The fact that stabilizing output feedback can be
generated by observer-based control has, of course,
been known and can be easily seen by simple block
manipulation. The class of all stabilizing € can actu-
ally be generated using full order-full state observers
with static state feedback augmented by, a design
parameter, Q[3]. Here, the starting poiat is C, and
the class of all observer-based realizations of C is
characterized., The realizations are based on conven-
tional full or reduced order observers of appropriate
linear functions of the state of the plant, instead of
on full order-full state observers augmented by Q.

To formally study the observer-based realizations
of C, the concept of block realizations of C is intro-
duced. It is a generalization of the conventional
realizations using internal descriptions, ian the sease
that the elementary building blocks are allowed to be
more complicated systems than single gains and integra-
tors. Equivalence and minimality of block realizations
are defined and an algorithm to generate minimal
observer~-based realizations of C is presented. The
order of such minimal realizations is equal to the
order of C; that is, full order-full state observer
based controllers of order n can only be minimal real-
izations of order n stabilizing controllers C,

Proper, stable factorizations of transfer matrices
are used and the results presented are based on [1],
Internal descriptions of C and its realizations are
derived and used to prove the results

II. Preliminaries
Let P(s) be the proper transfer matrix of a

linear, time-invariant multivariable system, Write

y=Pu , P=nNDl (1)
where (N,D) ¢ M(S8), that is, matrices with elements in
S, the set of all proper and stable rational functions;
y and u are the output and input vectors respectively.
Let (N,D) be right coprime (rc) in S; that is, there
exists (X,Y) & M(S) such that the Diophantine equation
(or Bezout identity)

XD + YN =1 (2

is satisfied. Note that D~! is also proper, that is, D
is biproper. Consider the output controller
u=-Cy ; C=x"ly (3

where C proper, (X,Y) € M(S) and fc. It is known that
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it internally stabilizes the plant y = Pu iff XD + YN =
U where U,U”1 & M(8). Pre or post mltiplying by U™l
leads to (2) where X, Y or N,D have been relabeled. It
can be easily shown that the solutions (X,Y) of the
Diophantine which generate stabilizing proper control-
lers C via (3) are those for which X is biproper. If P
is strictly proper, all solutions have X biproper; if,
however, P is not strictly proper, care should be exer-
cised when solving the Diophantine to ensure that X
will be biproper

IIL. Qutput and Observer-based Controllers

To establish their relation, Theorem 3 of [1] is
used:
e (X,Y) & M(S) are solutions of (2) iff [I~LX, -LY] is
an observer of the linear functional of the state Fz.

The matrices F,L define a state feedback (sf) control
law u = Fz + Lr applied to the controllable and
detectable realization Djz = u, y = N1z of P. They are
determined from P = ND™1{l] via:

1 = 1 D L 4)
N N N

D D

a rc polynowial factorizationm; Dp:=Dj) - F and L:=2im D.
Sr®

The solutions of the Diophantine (2) (with X
biproper) generate all proper stabilizing controllers C
via (3). 1In view now of [1,Th.3] above, it is rather
straightforward to prove the following main theorem:

Suppose a rc factorization (1) is given; using (4)
derive a realization Djz = u, y = Nyz and a sf pair
(F,L).
Theorem All stabilizing proper output controllers u =
=Cy, €= R;"1R; can be realized by observer based
controllers C,

u

u = C, 5

y
where R}, Rp & M(S), R} biproper and C, is an
observer of the linear functional of the state Fz.
Proof Let C, be an observer of Fz. 1Ia view of
[1,Th.3], R|D+RoN=L, that is, C = Rj™}Rj is a
stabilizing coantroller., Let now C = 51-152 be a
stabilizing controller. Then RjD+RyN=U from which
RiD+RyN=L if [Ry,Rp): = LU"L[R],Ry]; in view of
{1,Th.3] C, is an observer of Fz. QED.
A precise definition of (block) realizations of C is
now given.

CO = [T - Ry, = Rz] (5)

IV. Block Realizations of u = -Cy.
Consider systems S; i=l,...,k completely de-
scribed by their transfer matrices Cj Interconnect
C; (in parallel, tandem, feedback configurations) so
that the overall transfer matrix (from y to u) is -C
(system well posed). Call such configuration of Cj a
block realization of the controller C.
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A conventional state-space realization of u = -Cy has
as its elementary blocks constant gains and inte-
grators. Here we also alliow larger blocks Cj to be the
elementary blecks of the realization., Clearly, a
trivial block realization of C is u = —Cy, that is
itself. Other block realizations are: (i) Any state-
space realization of u = =Cy; (ii) the observer based
coatroller (5); (iii) b = -Rgy, u = Ry~ lb.

The internal descriptions (state-space or differ—
ential operator description) of a block realization of
C are determined as follows: A conventional minimal
internal description for each Cj is determined; the
interconnections are then used to determine the overall
internal description between u and y. An internal
description of a block realization of C has minimal
order iff it is controllable from input y and observ-
able from output u. Such block realizations will be
called minimal block realizations. Two block realiza-
tions will be called equivalent if their internal
descriptions of the controller fromy to u are equiva-
lent in the conventional sense. It follows that any
block realization of C is equivalent to the realization
u = —Cy iff it is a minimal block realization.

In this paper, we ars intevested in particular
block realizations, namely observer-based controller
realizations of C and specifically in minimal such
realizations.

In the following, the internal descriptions of C
and its observer— based controller realizations are
stulied, leading to minimal such realizations (Lemma)
and to the Algorithm.

V. Internal Descriptions
Consider (2) and let
D D,
= oo
N N,

[X,¥] = Te{Dg,Ne) 6>

where Dy N, are rc polynomial matrices (P = N.D,~1) and
D¢,Nc are &c polynomial matrices (C = D.7'N.). T and
I, are stable rational matrices. I = G.Dp™ L (4) where
Gy is a greatest crd of N{,D}. M. is found similarly,
below. In view of (6), (2) implies that

DeDy + NoNp = (mI)~1 = Dy N

a polynomial matrix. The cf eigenvalues are the zervos
of IDy| since Dpz = u, y = Nyz and Deze = -Ney, u = z¢
are minimal realizations of P and C respectively and
Dz = 0, y = Nez 1is the cf description of y = Pu, u =
-Cy [2].
An internal description of the observer-based
controller:
u
u = G, 3 Cp =
y
is now determined. Let G, = Do l[Nyg,N20] be a fc poly-
nomial factorization; then [X,Y¥] = (DyL)~1[Dy-Njg,~Nopl
is a fc factorization. If Gy is a greatest cfd of
Dy =N1g,N20 then Mo in (6) is M. = (DgL)~1G,. Note
that Dy is (7) can now be written as Dy = G, 1D DpG, 1.
The following lemma follows:
Lemma: (D, - Niglzp = Nogy, u = z5 is an intermnal
description of the observer-based block realization
of C. The closed loop internal description is

GgDyz = 0, y = Npz.

[1 - LX, -LY] (8)

When C, (8) is used instead of C, the cl eigenvalues
contain, in addition, the zeros of IGli. These are
uncontrollable from y modes in the description of
Co in the lemma. The following result is now clear:

® Cy in (8) is a minimal block realization of u = —Cy
iff Gy is unimodular.

Remark: When it is minimal, the order of Ty is 3C, =
3C. This is the case in the state-syace approach
{1,3) where C = F{sI-(A+HC+BF+HEF) "4, {A,B,C,E} a
minimal realization of P, and G, a full-order full-
state observer {see also the LQG/LTR approach to
design).

V1. Algorithm

Given stabilizing controller C, determine a min-
imal block realization in observer-based controller
foem

Write C = Rl'le a fc proper, stable factorization
such that [R],Rp] = Do'l[gﬁ,ﬁﬁ] a % polynomial
factorization with Do ,N. 4c polynomial matrices,
Then C, = [I-R1,-Rp] is such a realization.

To obtain such [Ry,Rp] (i) use fc_polyn. factoriza-
tion D¢, N. and premultiply by D,™% stable, or (ii)
use a minimal state-space realization of C (Th. 2
in [1]).

To determine Fz, the linear functional estimated by
Cp, find ND™1 = P such that RyD+RoN = I and deter-
mine F,L from D,N; if the ths is U instead of T for
the particular N,D used, use pu~l NU™1 instead.

Exl Let P = (s-1)/(s+1)(s-2) and stabilizing C =
9(s+1)/(s=5). Let Ny = s+l and write Do'l[gc,yp] =
(1/s+1) [s-5,9(s+1)] = [Ry,R7]. A minimal observer-
based block realization of C is C, = [1-Ry,-Ro} =
(1/s+1)[6, -9(s+1)].

To determine Fz which the observer C, estimates, let
P = ND°! where D = (s+1)(s-2)1, N = (s-1)1 with I =
1/(s+1)2; note that R{D+RyN = 1. From 1-1 = Dp =

D] -F = (s+1)2 = (s+1)(s-2) -F, Fz = —(3s+3)z =
(~3,-3)x is the state functional estimated by C,.
Note that the cf eigenvalues ara the zeros of DoDp =
(s+1) (s+1)2 since G, = Gy = 1.

Ex2 Let P = (s+.5)/(s+1)(s-2) and stabilizing C = 5.
Take [R,Rp] = To[Dg, Nl = ((s+1)2/(sZ+4s+.5)) {1é5]
and D = (s+1) (s-2)T, N = (s+.5)1 with 1T = 1/(s+1)%;
notice that RiD+RoN = 1, Since Gy = (s+1)2 is not a
constant, Cy = [1-Rj,-Rp] is not a minimal block
realization.

Take [Ri,Rp] = [1,5] (g = 1) and T = 1/(s2+4s+.5);
then again R1D+RpN = 1. G, = [1-Ry, -Rp] = [0,-5] is a
minimal observer-based block realization of C = 5. To
find Fz, T-! =Dy -F from which Fz = —(5s+2.5)z =
(-2.5,-5)x. In other words, the counstant C = 5 is seen
as an observer of a function of the state of the plant.
This last example illustrates the relation between
constant output feedback and reduced order observers

of a functional of the state. 1In particular, any con-
stant stabilizing C can be seen as an observer of Fz;
Fz is derived from P = ND"! which satisfy D + ON = 1,
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