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Abstract—This paper considers a notion of QSR dissipativity
for discrete-time switched systems that uses multiple supply
rates. The focus on switched systems is motivated by cyber
physical systems (CPS) where physical dynamics interact with
discrete-event or logical dynamics. The notion of QSR dissipa-
tivity used in this paper is based on previous work on QSR
dissipativity for non-switched systems and decomposable dissi-
pativity for switched systems. The notion of QSR dissipativity
is well established for non-switched systems and generalizes
many system results including both the passivity theorem and
the small gain theorem. In decomposable dissipativity, separate
supply rates are developed for each subsystem depending on
whether it is currently active or inactive. This paper presents
this definition of QSR dissipativity for switched systems and
then uses it to prove stability for single systems and intercon-
nected systems. Beyond stability, the dissipative property for
interconnected systems is shown. This allows for large scale
systems to be studied using successive dissipative assessments.
When considering passive systems, these results are studied in
more detail.

I. INTRODUCTION

Cyber-physical systems (CPS) arise from the tight inter-
connection between physical and cyber processes. Physical
processes include naturally occurring systems as well as
man-made systems that follow physical laws. These are
modeled using differential or difference equations with a
strong dependence on time. The cyber processes evolve
based on the occurrence of events, both physically and
in software, and often have little or no dependence on
time. These include computational systems, communication
systems, or any discrete-state based system. The combination
of these different components results in system models that
are hybrid. In CPS, these more complex models are used
because performance standards are high so that the system
can’t be adequately modeled using only a continuous model
or a discrete-event model.

An important class of hybrid systems is switched systems.
These systems are modeled as a finite set of dynamics
with a rule that determines switching between them. Each
set of dynamics is modeled as a single subsystem of the
switched system. In this paper, we consider subsystems
that are nonlinear and time-invariant. We also assume the
switching rule is not specified. In this case, the switching
is allowed to be arbitrary. Although results that assume
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arbitrary switching have the most restrictive stability con-
ditions, this assumption allows for stability that is robust to
variations in switching. This is an important consideration
when systems are interconnected; while the switching signal
may be fixed when a system operates in isolation, switching
is often unknown when systems are interconnected. For more
on switched systems, refer to the following surveys and the
references therein [1], [2], [3].

Another facet of CPS is that these systems are often
complex systems that are made up of several interacting
heterogeneous components. Traditional approaches for an-
alyzing large scale systems have focused on energy [4].
While the main approach for stability of a single system
has been Lyapunov theory, the approaches for large scale
system have been passivity and dissipativity theory [5], [6].
These system properties are useful in guaranteeing stability
results for single as well interconnected systems. While
stability of the feedback interconnection of two passive
systems is guaranteed, stability for dissipative systems is
more challenging. This is both because the energy supply
rate is typically different for different systems and because
the two supply rates have to be complementary to maintain
stability. When considering a quadratic supply rate, as in
QSR-dissipativity, a general test may be applied to determine
whether a feedback interconnection is stable [7], [8]. This
result is a generalization of both the passivity theorem and
the small gain theorem and may be applied to a large class
of interconnections including interconnections that don’t fit
those other frameworks such as unstable systems.

Much of the research in dissipativity has focused on
continuous time systems. In this paper we chose to focus
instead on the discrete time case. This choice highlights the
application of this theory to CPS which include discrete-
time systems. These dynamics arise in cyber processes, in
discrete-time communication between components of a sys-
tem, and in sampling physical processes to interact with com-
putational systems. Dissipativity theory has been considered
in continuous time switched systems [9], [10], [11], [12], [13]
and discrete time switched systems [14], [15]. A few of these
works have considered a notion of decomposable dissipativ-
ity that breaks the energy supply rate for each subsystem into
an active rate and an inactive rate. However, none of these
papers have considered the QSR dissipativity framework.
As a result, the stability problem for dissipative switched
systems in feedback has been largely unexplored. There are
some exceptions in continuous-time when using the special
case of passivity [9] and the special case of conic systems

Jaehyun
ACC '12



2

[13]. By using the QSR decomposable dissipativity approach,
we present stability results for the feedback interconnection
of two dissipative switched systems.

The remainder of this paper is organized as follows.
Section 2 covers the switched system model and discusses
related notation that will be used throughout this paper.
Section 3 briefly reviews QSR dissipativity for non-switched
systems before moving on to present a notion of QSR dis-
sipativity for switched systems using multiple supply rates.
The stability of a single switched system is shown at this
point. Stability of interconnections of dissipative switched
systems is shown in Section 4. Additionally, the dissipative
rate of a feedback interconnection is shown. The special case
of passivity for switched systems is considered in detail in
Section 5. This case is important both because passive sys-
tems are prevalent in application and because passive systems
form stable feedback loops without additional conditions.
A definition of passivity for switched systems is given that
implies stability and is preserved in feedback and in parallel.
Finally, concluding remarks are given in Section 6.

II. SWITCHED SYSTEM MODEL

A nonlinear switched system consists of a finite set of
subsystems with nonlinear dynamics. We consider discrete-
time systems with time index t ∈ Z. At any point in time,
a single subsystem is active and the dynamics are nonlinear
and time-invariant according to the model

x(t+ 1) = fi(x(t), u(t))
y(t) = hi(x(t), u(t))

(1)

where i ∈ {1, 2, ...,M} for M subsystems. The signals are
all functions of the discrete-time t and are vectors, x(t) ∈
Rn, u(t) ∈ Rm , and y(t) ∈ Rp.

The time-varying nature of these systems comes from the
switching behavior. The switching signal σ(t) is a function
that maps the current time to the index of the active sub-
system, σ : Z+ → {1, ...,M}. This function is piecewise
constant and only changes at switching instants. The model
with the switching signal is given by

x(t+ 1) = fσ(t)(x(t), u(t))
y(t) = hσ(t)(x(t), u(t)).

(2)

The switching instants can be listed in order t1, t2, etc.
Alternatively, the notation tik will be used to denote the kth

time that subsystem i becomes active. For example, the first
subsystem (i = 1) becomes active for the first time (k = 1)
at time t0 (t0 = t11 ). The second subsystem i = 2 becomes
active at time t1 (t1 = t21 ) and so forth. By using these two
notations in conjunction, we can list completely the times
that a system becomes active as well as the times it becomes
inactive. Subsystem i becomes active the kth time at time tik
and then inactive at time t(ik+1). That subsystem becomes
active again at time ti(k+1)

. When dealing with discrete-time
switched systems, a system can only switch a finite number
of times on any finite time interval, thus Zeno phenomena is
not an issue. When considering the switching behavior of a

system from initial time t0 to an arbitrary time T , we denote
the number of times the system switches as K. When needed,
we will also denote the number of times each subsystem i
switches on that same time interval as Ki.

We define an indicator set to signify regions where a
particular subsystem is active. Consider subsystem i that is
active from ti1 to t(i1+1), ti2 to t(i2+1), etc. We define a set
of times Ii to indicate those time intervals where subsystem
i is active,

Ii =
Ki
⋃

k=1

{tik , ..., t(ik+1)}. (3)

This notation will be used to draw a distinction between the
active and inactive time intervals of a system.

III. QSR DISSIPATIVITY

A. Dissipativity for Non-Switched Systems

Let a nonlinear non-switched discrete-time system be
described by

x(t+ 1) = f(x(t), u(t))
y(t) = h(x(t), u(t)).

(4)

Since the dynamics are unchanging, the conditions of dissi-
pativity involve a single energy storage function and single
energy supply rate. The energy storage function V (x) rep-
resents a generalized notion of energy. Since it is a notion
of energy, it must be non-negative for all x, (V (x) ≥ 0).
The energy supplied to the system is captured by an energy
supply rate ω(u, y). The supply rate is allowed to be general
as long as it is finite for all finite u and y. A system is
dissipative [5] if it satisfies the following inequality for all
times t ≥ t0

V (x(t+ 1)) ≤ V (x(t)) + ω(u, y). (5)

In QSR dissipativity [7], the supply rate has a quadratic form,

ω(u, y) =

[

y
u

]T [

Qi Si

ST
i Ri

] [

y
u

]

. (6)

More on dissipativity for discrete-time systems including
stability results can be found in [16], [17].

Important special cases of QSR dissipativity are found in
passivity and finite-gain L2 stability. A passive system is
dissipative with supply rate given by Q = 0, R = 0, and
S = 1

2I . An L2 stable system is dissipative with supply rate
S = 0, Q = − 1

γ
I , and R = γI where γ is the L2 gain of

the system.

B. QSR Dissipativity for Switched Systems

The notion of decomposable dissipativity for switched
systems has been studied in continuous-time [10], [12] and
in discrete-time [15]. The concept of decomposable dissipa-
tivity is based on the fact that systems typically store energy
differently when they are active or inactive. The solution is
to decompose the supply rate into an active portion and an
inactive portion. When a subsystem is inactive, it may have
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a different supply rate depending on which other subsystem
is active. The definition presented here is a special case of
[15]. While that work presented a very general definition,
the authors didn’t consider the problem of stability for
interconnected systems. Traditionally, stability of feedback
interconnections is one of the main benefits of dissipativity.
In this paper, we present a definition of QSR dissipativity
that is used to prove stability of feedback interconnections
as well as dissipativity properties of those connections.

The notion of dissipativity presented in this paper is
modeled after the traditional notion of QSR dissipativity
for non-switched systems. In the simplest case, consider
applying the traditional notion of QSR dissipativity to a
switched system with a fixed supply rate. If there exists a
common energy storage function for all subsystems of the
switched system for that supply rate, then the system can
be considered QSR dissipative. At this point, the traditional
results related to stability and stability of interconnections
can be used directly.

However, this notion is somewhat restrictive. For one, it
is rare for a common storage function to exist for a set
of dynamics that may vary significantly. Additionally, when
each subsystem is inactive it may store energy differently
depending on which other subsystem is currently active.
This happens because the storage function is determined
by the dynamics of the active subsystem while energy
supplied when inactive is based on the dynamics of the active
subsystem which may be quite different. This discrepancy
may result in large jumps in the energy storage function at
each switch even if the size of the state changes little or not
at all.

To relax these restrictions for switched systems, the multi-
ple storage function approach is taken. The energy stored in
a system may be different for each subsystem i by defining
different functions Vi(x). Additionally, the notion of supplied
energy may be different for each subsystem, captured by a
different ωi. When each subsystem is active (i.e. t ∈ Ii) the
following inequality holds (∀i)

Vi(x(t+ 1)) ≤ Vi(x(t)) + ωi(u, y). (7)

For the notion of QSR dissipativity used in this paper, the
supply rate will take the following form,

ωi(u, y) =

[

y
u

]T [

Qi Si

ST
i Ri

] [

y
u

]

. (8)

The notion of supplied energy for a subsystem i while
it is inactive may be unique for each active subsystem j.
This results in several inactive energy supply rates for each
i and j, ωj

i (u, y, x, t). When each subsystem is inactive, the
following inequality holds for each active subsystem j at an
appropriate time t ∈ Ij (∀i)

Vi(x(t+ 1)) ≤ Vi(x(t)) + ωj
i (u, y, x, t). (9)

When we combine these two conditions, we have the
following definition. Recall that a function α : R → R is

class K∞ if α(0) = 0, α is non-decreasing, and α is radially
unbounded.

Definition 1. Consider a discrete-time switched system (2).

This system is QSR dissipative if there exists a positive stor-

age function Vi(x), for each subsystem i, with the property

that for some K∞ functions αi and αi ,

αi(||x||) ≤ Vi(x) ≤ αi(||x||), (10)

such that the following two conditions hold.

1) During the active time period t ∈ Ii of each subsystem

i, the system is dissipative with respect to a QSR-supply

rate (7-8).

2) When each subsystem i is inactive, it is dissipative

with respect to a supply rate ωj
i (u, y, x, t) that may

be specific to each active subsystem j (9).

This definition is a natural extension of the QSR dissi-
pativity notion for non-switched systems. Consider a case
when Q = Qi, S = Si, and R = Ri for all i. If there exists
a common storage function for the switched system such that
equation (7) holds, the system is QSR dissipative.

Many of the functions of interest (V , ωi, ω
j
i , etc.) are

functions of signals that are time dependent. In the remainder
of the paper, these will be denoted simply as functions of
time, i.e. V (t), ωi(t), ω

j
i (t), etc.

The following stability theorem concerns stability of a
single dissipative switched system. It is based on traditional
dissipativity results with a consideration for how the switch-
ing signal effects stability.

Theorem 1. Consider an unforced (u(t) = 0) QSR dissi-

pative switched system with storage functions Vi(x). This

system is stable if Qi ≤ 0 for all i and the cross supply

rates are absolutely summable for all switching sequences

∀i and ∀j '= i,
∞
∑

t=t0

|ωj
i (t)| < L. (11)

Proof. We prove stability by showing that ||x(t)|| < ε,∀t
when ||x(t0)|| < δ. Recall the functions αi such that αi(x) ≤
Vi(x), ∀x. Define a function ρ such that

ρ(c) = min
i=1,...,M

{αi(c)}.

By the assumption that the energy added over the infinite
time horizon is bounded, there exists a time T such that,
∀t ≥ T and ∀i,

Vi(t)− Vi(T ) ≤
1

2M
ρ(ε).

On the interval [t0, T ], the system switches K times where
K ≤ T − t0. Using the definition of dissipativity, we can
bound the value of Vi(T ) by the following expression

Vi(T ) ≤ Vi(tK) +
T−1
∑

t=tK

ωi(t).
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Since all Qi are negative semi-definite, Vi(T ) ≤ Vi(tK).
At the switching instant tK , the system switches from an
arbitrary subsystem j to the system of interest i with some
amount of added energy that is bounded. Define a δK−1 > 0
such that Vj(tK−1) ≤ r(δK−1) → Vi(tK) ≤ 1

2ρ(ε). This im-
plies that, when ||x(tK−1)|| < δK−1, then Vi(tK) ≤ 1

2ρ(ε)
. This process can be iterated backwards from switching
instant tK back to t1 with 1

2ε > δK−1 > ... > δ1. The final
step is defining δ0 > 0 such that when ||x(t0)|| ≤ δ0 = δ
then Vi(t0) ≤ δ. With δi defined this way, the bound
Vi(tK) ≤ 1

2ρ(ε) holds. Overall, the bound on ||x(t0)||
implies the following inequality,

Vi(T ) ≤ Vi(t0) +
1

2M
ρ(ε).

Now we sum over all systems and define V (x) =
M
∑

i=1
Vi(x) to arrive at the following

M
∑

i=1

Vi(T ) ≤
M
∑

i=1

Vi(t0) +
M
∑

i=1

1

2M
ρ(ε)

V (T ) ≤ V (t0) +
1

2
ρ(ε).

This expression with the previous bound on Vi(t) for t > T
implies that V (t) ≤ ε, ∀t. This in turn implies that that, for
all ε > 0, there exists a δ such that ||x(t)|| ≤ ε, ∀t whenever
||x(t0)|| ≤ δ. Since this proof is valid for arbitrary ε, the
system is stable.

This extension of QSR dissipativity for switched systems
allows for stability to be shown for systems with different
energy storage functions and several energy supply rates. The
energy is even allowed to increase at switching instants as
long as the increase is bounded on the infinite time horizon.
This extension allows for dissipativity theory to apply to
switched systems with a range of dynamics.

IV. STABILITY OF SYSTEMS IN FEEDBACK

Dissipativity theory can be used to show stability of
systems in feedback. Consider the feedback interconnection
of two switched systems G1 and G2 (Fig. 1). This intercon-
nection forms a new switched system G which is a mapping
from r → y where

r(t) =

[

r1(t)
r2(t)

]

and y(t) =

[

y1(t)
y2(t)

]

.

Fig. 1. The negative feedback interconnection of two systems.

The subsystems of the new system depend on the sub-
systems of both G1 and G2. This causes the number of
subsystems of the combined system to grow to as many
as M = M1M2 where G1 and G2 have M1 and M2

subsystems, respectively. Whenever either system G1 or G2

switches, the overall system G switches. This means that the
set of switching instants of the new system G is the union of
the sets of switching instants of the two individual systems.

The following theorem considers stability of the feedback
interconnection of two dissipative switched systems. System

G1 has supply rates ω
(1)
i parametrized by {Qi, Si, Ri} and

G2 has supply rates ω
(2)

î
with {Qî, Sî, Rî}. The result

considers the active supply rates and inactive supply rates to
establish a bound on the storage functions. Finally, a bound
on the system state is inferred from the bound on the storage
functions.

Theorem 2. Consider the feedback interconnection of two

QSR dissipative switched systems G1 and G2. If the supply

rates for the two systems satisfy

Q̂îi =

[

Qi +Rî ST
î
+ Si

Sî + ST
i Qî +Ri

]

≤ 0,

∀i = 1, ...,M1, ∀j = 1, ...,M2,

and the energy accumulated while inactive is bounded for

each subsystem, the unforced (r(t) = 0) feedback intercon-

nection G is stable.

Proof. Since both systems are QSR dissipative, there exists

V
(1)
i for G1 and V

(2)

î
for G2. The following summed storage

functions can be defined

V (1) =
M1
∑

i=1

V
(1)
i and V (2) =

M2
∑

î=1

V
(1)

î
.

Define V (t) = V (1)(t) + V (2)(t) and ρ(ε) = ρ(1)(ε) +
ρ(2)(ε). By the assumption that energy accumulated while
inactive is bounded for each subsystem, ∀ε there exists a
time T such that, ∀t ≥ T ,

V (t)− V (T ) ≤
1

2
ρ(ε). (12)

Using the dissipative relationships we can find a bound on
V (T ) based on previous switching instants,

V (T ) ≤ V (tK) +
T−1
∑

t=tK

[

ω
(1)
i (t) + ω

(2)

î
(t)

]

+
1

2
(r(ε)).

The next step is to inspect the quantity inside the sum,

ω
(1)
i (t) + ω

(2)
j (t). This term can be written out,

[

y1
u1

]T [

Qi Si

ST
i Ri

] [

y1
u1

]

+

[

y2
u2

]T [

Qî Sî

ST
î

Rî

] [

y2
u2

]

.

At this point, the loop relationships between r, u, and y
can be substituted and the resulting expression simplified to
arrive at

yT Q̂îiy + 2yT Ŝîir + rT R̂îir
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where

Q̂îi =

[

Qi +Rî ST
î
+ Si

Sî + ST
i Qî +Ri

]

,

Ŝîi =

[

Si Rî

−Ri Sî

]

and R̂îi =

[

Ri 0
0 Rî

]

.

By assumption, Q̂îi ≤ 0, ∀i = 1, ...,M1 and ∀j = 1, ...,M2.
This implies that the unforced system (r(t) = 0) satisfies
Vi(T ) ≤ Vi(tK) for each active subsystem i.

As in Theorem 1, a series of δ0, δ1, ... , δK can be defined
to bound the sum of the storage functions at each switch. This
argument can be repeated from the last switch tK to the first
one t1 to show that, for any ε > 0, there exists a δ > 0 such
that when ||x(t0)|| ≤ δ then V (t0) ≤ ρ(δ) and eventually
V (tK) ≤ 1

2ρ(ε). Overall, the bound on ||x(t0)|| implies the
following inequality,

V (T ) ≤
1

2
ρ(ε).

This statement along with (12) confirms that V (t) ≤ ρ(ε), ∀t
which implies that ||x(t)|| ≤ ε, ∀t whenever ||x(t0)|| ≤ δ.
Since this is valid for all ε, the feedback interconnection is
stable.

This result gives stability conditions for the feedback of
two dissipative systems with no input. However, we are
often interested in studying systems that have further systems
interconnected as is the case in the study of large scale
systems. Alternatively, we might simply be interested in the
input-output properties of a single feedback interconnection
of two systems. This sort of analysis can be done if we
consider the dissipative properties of a feedback system. The
following theorem assesses dissipative rate of a feedback
connection based on the dissipative rates of the two systems
in feedback.

Corollary 1. The feedback interconnection of two dissipative

switched systems is dissipative with respect to the supply rate

ωi(t) = yT Q̂îiy + 2yT Ŝîir + rT R̂îir

where

Q̂îi =

[

Qi +Rî ST
î
+ Si

Sî + ST
i Qî +Ri

]

,

Ŝîi =

[

Si Rî

−Ri Sî

]

and R̂îi =

[

Ri 0
0 Rî

]

.

This result was derived as part of the proof of the previous
theorem so it will not be derived again. Beyond simply
assessing stability, this result allows us to assess the level of
dissipativity of the interconnection. This assessment can be
used as additional systems are added in feedback. As long as
the dissipative rate of each loop is considered, stability of the
overall interconnection can be given if the final connection
satisfies the conditions of Theorem 2.

V. PASSIVE DISCRETE-TIME SWITCHED SYSTEMS

For non-switched systems, an important class of dissipa-
tive systems is passive systems. Passivity is a property that
implies stability and the property is preserved when systems
are combined in feedback. Combining these two results gives
open loop conditions for closed loop stability. Additionally,
large scale systems can be shown to be stable if each
component is passive and the components are sequentially
combined in feedback or in parallel. The concept of passivity
for switched systems has been explored for discrete-time
[14], but the previous work has not considered the feedback
interconnection. To the best of our knowledge, the only paper
that investigated the feedback of passive switched systems
was presented in continuous-time [10]. This section presents
a notion of passivity for switched systems. This will include
results showing that passive switched systems are stable and
that passivity is preserved in feedback and in parallel.

Definition 2. A discrete-time switched system is passive if

it is dissipative with respect to a QSR supply rate where

Qi = 0, Ri = 0, and Si = 1
2I (∀i), and the cross supply

rates are bounded for all switching signals.

It is important to note that Si being a square matrix implies
that the dimension of the input u and output y must be the
same. With this definition, a corollary can be stated. It is a
special case of Theorem 2 so it will not be proven.

Corollary 2. A passive switched system is stable for zero

input (u(t) = 0).

The passivity property can be used when considering inter-
connections of systems. The following result shows stability
of the feedback interconnection of two passive systems.

Theorem 3. The feedback interconnection (Fig. 1) of two

passive switched systems G1 and G2 forms a passive

switched system.

Proof. By each system being passive, there exists V
(1)
i and

V
(2)

î
such that the following inequalities hold, for t ∈ Ii for

G1 and t ∈ Iî for G2

V
(1)
i (t+ 1) ≤ V

(1)
i (t) + uT

1 y1

V
(2)

î
(t+ 1) ≤ V

(2)

î
(t) + uT

2 y2.

Additionally, the following hold ∀i, î when t ∈ Ij for G1

and t ∈ Iĵ for G2

V
(1)
i (t+ 1) ≤ V

(1)
i (t) + φj

i (t)
(1)

V
(2)

î
(t+ 1) ≤ V

(2)

î
(t) + φĵ

î
(t)(2).

Define Vîi(t) = V
(1)
i (t) + V

(2)

î
(t) and φjĵ

îi
(t) = φj

i (t)
(1) +

φĵ

î
(t)(2). Since each of φj

i (t)
(1) and φĵ

î
(t)(2) are absolutely

summable then the sum of the two is absolutely summable.
Note that uT

1 y1 + uT
2 y2 = rT1 y1 + rT2 y2 = rT y. At this

point, these definitions can be used to demonstrate that when
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subsystems i and î are active

Vîi(t+ 1) ≤ Vîi(t) + rT y

and when subsystems j and ĵ are active then ∀i, î

Vîi(t+ 1) ≤ Vîi(t) + φjĵ

îi
(t).

Since the φjĵ

îi
are absolutely summable for all switching

sequences, the feedback interconnection G is a passive
switched system.

As in the non-switched case, these results can be used to
verify closed loop stability by showing that the two systems
in feedback are passive. This result can also be used from a
design perspective. When controlling a passive switched sys-
tem, any passive controller is stabilizing without additional
conditions. This allows for a large class of controllers to be
applied directly including traditional PI controllers.

A similar argument can be used to show that the parallel
interconnection of two passive switched systems is a passive
switched system.

Fig. 2. The parallel interconnection of two systems.

Theorem 4. The parallel interconnection (Fig. 2)of two pas-

sive switched systems G1 and G2 forms a passive switched

system, G.

Proof. The proof is similar to the feedback case with
the main difference being the signal relationships. The new
output y is defined y = y1 + y2. Since both G1 and G2 are
passive then the mapping from u to y (system G) is also
passive.

These connection results can be used to demonstrate
stability for large scale systems. As long as each compo-
nent is a passive (switched or non-switched) system and
each component is sequentially combined in feedback or
parallel, then the resulting large scale system is passive and
stable. These results greatly simplify stability analysis for
large scale systems with switching. Demonstrating stability
without these results is typically an involved process where
any individual subsystem or connection can cause the entire
interconnection to lose stability.

VI. CONCLUSIONS

This paper presented a notion of dissipativity for nonlinear
discrete-time switched systems. This draws upon the well-
established notion of QSR dissipativity for non-switched

systems. The definition is a natural extension as it simplifies
to the traditional notion of QSR dissipativity when applied
to a system without switching dynamics. This paper included
analysis tools for assessing stability and stability of feedback
interconnections. The special case of passive switched sys-
tems was considered. Passivity was shown to imply stability
and the feedback interconnection of two passive systems
remains passive.
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