
 

1 
 

 

 

Decentralized Model-Based Event-Triggered Control of 
Networked Systems 

 
 

 

 

Technical Report of the ISIS Group 

at the University of Notre Dame 

ISIS-2012-002 

February, 2012 
 

 

 

Eloy Garcia and Panos J. Antsaklis 

Department of Electrical Engineering 

University of Notre Dame 

Notre Dame, IN 46556 

Email: {egarcia7, antsaklis.1}@nd.edu 
 

 

 

 

 

 

 

 

 

Interdisciplinary Studies in Intelligent Systems-Technical Report 



 

2 
 

 

Decentralized Model-Based Event-Triggered Control of 
Networked Systems 

 
 

Eloy Garcia and Panos J. Antsaklis, Fellow, IEEE 
 

 
Abstract 

This paper presents a model-based event-triggered (MB-ET) control 
framework for stabilization of networked systems. The controller and the events 
are designed in a decentralized manner, based only on local information. The 
knowledge of a priori model of the interconnected subsystems or agents is used at 
every controller node to generate estimates of the state of distant subsystems in 
order to reduce the frequency at which measurements need to be broadcasted. 
This framework allows for considerable reduction of bandwidth since every 
agent broadcasts its local information to other agents only when it is necessary, 
based on the difference between real and estimated variables. The use of models 
of the systems in the controller nodes not only generalizes the Zero-Order-Hold 
(ZOH) implementation in traditional event-triggered control schemes but it also 
provides stability thresholds that are robust to model uncertainties.  

 
 

I. INTRODUCTION 

n  recent years there has been a strong interest in the analysis, development, and 

controller synthesis for networks of interconnected systems. The importance and 

challenges of networks comprised from several to many subsystems or agents was 

recognized early by the research community [1]. Examples of such systems can be 

found in a wide variety of applications such as: power networks, multi-agent robotic 

systems and coordination of autonomous vehicles, large chemical processes comprised 

of several subsystems interacting one with each other, and also in areas that consider 

economic and/or social systems. In addition, the availability of cheap, fast, embedded 

sensor and controller subsystems that are capable to communicate via a shared digital 

network allow for the different subsystems to share their local information with other 

(possibly the rest of) subsystems so it can be used to achieve a common objective in a 

more efficient way [2]. However, digital communication networks have limited 

bandwidth and not all agents can communicate at a given time instant. It becomes 
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necessary to be able to schedule the broadcast of information by the different nodes in 

such a way that bandwidth constraints are not violated. 

Previous research in Networked Control Systems (NCS) has addressed the problem of 

minimum bit rate stabilization [3], [4] using periodic communication. Important 

extensions have considered the stochastic properties of some networks to include 

unknown but bounded time-varying sampling intervals [5] or purposely giving random 

access to several nodes as long as access to the network is obtained before a Maximum 

Allowable Transfer Time (MATI) [6]. Many authors have demonstrated that important 

reduction of bandwidth utilization without significant loss of performance can be 

achieved using one of the following approaches: Model-Based Networked Control 

Systems (MB-NCS) and event-triggered control. The MB-NCS approach that was 

introduced by Montestruque and Antsaklis [7], [8] has been extended to consider 

networks of coupled systems [9] using periodic communication. Event-triggered control 

has been used for stabilization of dynamical systems while reducing the number of 

measurements that the sensor needs to send to the controller. The events that are 

designed based on state errors have been used extensively [10]-[13]. The same approach 

has been extended to consider networked interconnected systems [14]-[17]. A common 

characteristic in the previous work on event-triggered control is the use of a Zero-

Order-Hold (ZOH) model in the controller node and the assumption that the model 

being used are the same as the plants they represent, i.e. no model uncertainties are 

considered. 

In [18] we proposed a combined model-based event-triggered (MB-ET) control 

framework that considered model uncertainties and events based on state errors. The 

work in [19] presents a similar idea but model uncertainties are not considered, instead, 

disturbance rejection is the focus assuming the model matches the system parameters. 

Here, we extend the approach that we presented in [18] to consider multiple 

interconnected subsystems. Similar work was presented in [20]-[21] where the same 

framework is used but the design of events is quite different from the ones derived in 

the present paper. Our approach offers a considerable reduction of network 

communication compared to [20]-[21] especially when the number of agents grows. We 

achieve this reduction by only broadcasting an agent’s state to update distant nodes 
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instead of making an agent request updates and therefore making all other agents to 

send information, all at the same time as it is shown in [20]-[21]. Moreover, in those 

papers the design of the control law is not practical and sufficiently robust, and may 

lead to undesirable behavior. Although the controller uses feedback from the model 

states, the controller parameters are found using the real system parameters which are 

unknown. In this paper we consider a robust by construction controller, by designing 

the controller parameters based on the model (available information) and analyzing the 

worst case behavior in the presence of uncertainties. 

The paper is organized as follows: in section II we formulate the problem and provide 

more details of our decentralized MB-ET approach. Section III provides a solution in 

which every node is able to trigger a message broadcasting based on local 

measurements but the stability conditions are based on the dynamics of the overall 

system-model. In section IV we present a fully decentralized solution in which the 

controller and the event thresholds are designed based only on local models and 

uncertainty bounds. Illustrative examples are presented in section V and conclusions are 

offered in section VI.  

II. PROBLEM DESCRIPTION 

The MB-NCS configuration [7]-[8] makes use of an explicit model of the plant which 

is added to the controller node to compute the control input based on the state of the 

model rather than on the plant state. The plant and model can be described respectively 

by: 

x Ax Bu= +                                                           (1) 

  ˆ ˆˆ ˆx Ax Bu= +                                                           (2) 

where ˆ, nx x ∈ , ˆu Kx= , and the matrices ˆ ˆ,A B  represent the available model of the 

system matrices A,B. The plant may be unstable i.e. not all eigenvalues of A need to 

have negative real parts. Here, we extend a similar approach that we presented in [18] in 

order to consider multiple interconnected subsystems as shown in Fig. 1 where the 

measurements can be transmitted over a network and the dark lines represent the 

physical interconnections or coupling of the subsystems. In the present paper we 

address the problem of robust stabilization of networks of coupled unstable and 
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uncertain systems by also considering a significant reduction of network 

communication among subsystems. In addition we use an event-triggered strategy in 

order to determine the time instants at which each subsystem needs to send its state 

measurement to the other agents in the network. We use the estimate of the state given 

by the model of the plant to compare it with the actual state, and then the sensor 

transmits the state of the plant if the error is above some predefined tolerance.  

The MB-ET framework allows a system to work in open-loop mode for extended 

periods of time by computing the control input based on the state estimate provided by 

the local model and updating the model only when it is necessary according to the local 

state error. By increasing the update interval (reducing communication rate) we release 

the network for other uses. In case we have several control systems implemented over 

the network, by reducing network traffic, we are also reducing the size of time delays 

and reducing the probability of packets being lost. In addition, the conditions to select a 

stabilizing threshold are given in terms of the nominal model parameters and bounds on 

the model uncertainties, assuming the dimension of the system is known. In this paper 

we consider a network of N interconnected agents or subsystems. Each subsystem can 

be described by a state-space representation as follows:  

 

 
Fig. 1. Model-based network interconnected systems. 

1,

N

i i i i i ij j
j j i

x A x B u A x
= ≠

= + + ∑                                             (3) 

for each Ni ∈ , N denotes the set {1,2,... }N  of N integers where ni
ix ∈  represents the 

state of the i-th subsystem, mi
iu ∈  represents the local input for subsystem i. 



 

6 
 

 

, ,ni ni ni nj ni mi
i ij iA A B× × ×∈ ∈ ∈    represent respectively the state, coupling, and input 

matrices for the i-th subsystem. 

In this framework each Local Control Unit (LCU) contains copies of the models of all 

subsystems including the model corresponding to its own local dynamics in order to 

generate estimates of the states of all subsystems in the network. The results in this 

paper can be easily applied to the case in which the dynamics of a given subsystem are 

affected only by a small neighborhood of subsystems. In this case each LCU does not 

need to implement models of all subsystems. Each LCU only needs to implement 

models (and receive updates from the corresponding systems) that are needed to 

estimate the variables that affect its own dynamics. Similarly, agent i needs to send 

updates only to the agents that need to implement a model of agent i.  

 The model of each subsystem is represented by: 

1,

ˆ ˆˆˆ ˆ ˆ ˆ
N

i i i i i ij j
j j i

x A x B u A x
= ≠

= + + ∑                                               (4) 

where ˆ ni
ix ∈  represents the state of the i-th model, ˆ mi

iu ∈  represents the local input 

for model i. The matrices ˆ ˆ ˆ, ,ni ni ni nj ni mi
i ij iA A B× × ×∈ ∈ ∈    represent the nominal 

parameters of the dynamics of the i-th subsystem. Note that the subsystems could have 

different dynamics and different dimensions, the dimensions mi and ni could be all 

different in general. Note also that each LCUi has access to its local state ix  at all times 

which is used to compute the local subsystem control input: 

1,

ˆ
N

i i i ij j
j j i

u K x K x
= ≠

= + ∑                                                     (5) 

and the local model-state error which is defined as: 

ˆi i ie x x= −                                                            (6) 

where andi ijK K  are the stabilizing control gains to be designed.  

By measuring its local error, each LCUi is able to decide the appropriate times at 

which it should broadcast the current measured state ix  to all other units so all LCU’s 

can update the state of their local models ˆix  corresponding to ix . At the same time the 

LCU that broadcasted its state needs to update its own local model corresponding to ix , 
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and the error ie  is set to zero. We assume that the communication delay is negligible 

and the initial conditions of the plant are nonzero but finite.  

This strategy represents a considerable saving on bandwidth compared to similar 

work in [20]-[21]; there the same problem is considered but the proposed solution 

requires the opposite updating strategy as the one we present in this paper; all agents 

need to communicate or send their information to agent i when the error ie  grows large, 

that is, agent i needs to send a request for updates to all other agents, then all agents 

need to respond and send their current measurements to agent i all of them at the same 

time instant, which may produce packet collisions and loss of information. In addition, 

since the update request is based on the local error ie , we could be requesting all other 

agents to send their information to agent i when it is not necessary, i.e. their local errors 

are small and the growth of ie  may be due to large local parameter uncertainty or due to 

only one or very few errors from other agents.   

The strategy proposed here avoids the unnecessary increase in communication by 

simply making agent i to broadcast its state according to its local error. If all agents 

including agent i have the same estimate ˆix  of ix  then when the error ie  is large by an 

appropriate measure we know it is necessary for all agents to receive the real state and 

update the state of the model ˆix . Note that when the LCUs update the state of the model 

corresponding to ix  then the error ie   is set to zero and therefore it is less than the 

positive threshold that is used to determine the update instants. 

Using this framework we can see from (5) that the input iu  for the agent i is not an 

appropriate input for the corresponding model. The input for the local subsystem is a 

function of the real state which is not always available to the other agents. In order to 

make sure that every agent in the network computes the same estimate of the states of 

all agents we need to use the same parameters for the model equations (4) and we also 

need to implement control inputs for the models that can be executed at every LCU. We 

define the model inputs 

1,

ˆ ˆ ˆ .
N

i i i ij j
j j i

u K x K x
= ≠

= + ∑                                                   (7) 

These control inputs are applied to all models in all LCUs whereas (5) is applied to 

each local subsystem. It is clear now that although LCUi computes an estimate ˆix  of ix , 
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this estimated state is not used to control subsystem i since we have the real state 

available. At LCUi we use ˆix  as input for the models ensuring that the same model 

equations with the same model control inputs are implemented at all LCUs. 

III. CENTRALIZED STABILIZING MODEL-BASED EVENT-TRIGGERED CONTROLLER 

The first approach to compute the stabilizing controllers and thresholds is presented in 

this section and it is based on the dynamics of the overall system and model. The time 

instants at which each agent needs to send its information to the network can be 

computed locally by each LCU. 

Let us introduce the augmented vectors: 

2

2

2

[ ]
ˆ ˆ ˆ ˆ[ ]

[ ] .

T T T T
1 n

T T T T
1 n

T T T T
1 n

x x x x
x x x x
e e e e

=

=

=







                                                 (8) 

The dynamics of the overall system and model can be represented by: 

x Ax Bu= +                                                          (9) 

ˆ ˆˆ ˆ ˆ.x Ax Bu= +

                                                      (10) 

Notice that contrary to (1)-(2) the model control input is not the same as the real 

system control input. The form of the matrices ,n n n mA B× ×∈ ∈  , where 
1

N

i
n ni

=

= ∑  and 

1

N

i
m mi

=

= ∑ , are as follows: 

1

1

1 12 1n

2 2 2n

n n2 n

A A A
A A A

A

A A A

 
 
 =
 
 
 





  



                                          

(11)

 

0 0
0 0

0 0

1

2

n

B
B

B

B

 
 
 =
 
 
 



  



 

and similarly for Â  and ˆ.B  We describe the dynamics of the overall system in the next 

proposition.  
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Proposition 1. Assume ˆ ˆ( , )A B  is stabilizable. The dynamics of the overall system can 

be represented by: 

 ( ) offx A BK x BK e= + +                                             (12) 

where off diagK K K= − . ( )diag iK diag K=  is a matrix containing the controller gains iK  as 

main diagonal sub matrices. The controller K is a stabilizing controller for the overall 

model dynamics, i.e. ˆ ˆA BK+  is Hurwitz. 

 Proof. We rewrite (9) in the next form 

ˆ( ( ) )diag diagx Ax Bu Ax B K x K K x= + = + + −  

where u is the augmented vector containing each agent local subsystem control inputs 

2[ ] .T T T T
1 nu u u u=                                                (13) 

From (8) we have that ˆe x x= −  and we can write 

( ) ( )diag offx Ax BK x e BK e A BK x BK e= + + − = + + ■ 

In order to asymptotically stabilize the states of all agents from their finite initial 

conditions we implement a similar strategy as in [18]. The main idea is to reduce the 

threshold value as we approach the equilibrium point of the system. This can be 

achieved by comparing the norm of the error to a function of the norm of the state. 

Previous work on event-triggered control dealt with systems controlled by static gains 

that generate piecewise constant inputs due to the fact that the update is held constant in 

the controller. The main difference in this section is that we use Model-Based 

controllers i.e. models of the subsystems and static gains; the models provide estimates 

of the states between updates and the model/gain controllers provide an input for the 

plant that does not remain constant between measurement updates. The norm used in 

the next results is the Euclidean norm.  

Consider again the plant and model described by (9) and (10) and by using the control 

input ˆdiag offu K x K x= +  we obtain expression (12) for the plant with K rendering ˆ ˆA BK+

Hurwitz, i.e. the model is globally asymptotically stable. Then we can always find a P 

which is symmetric positive definite and is the solution of the closed loop model 

Lyapunov function: 

ˆ ˆˆ ˆ( ) ( )TA BK P P A BK Q+ + + = −                                     (14) 

where Q is a symmetric positive definite matrix.  
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Let us first analyze the case when B̂ B=  for simplicity, and define the uncertainty

ˆA A A= − . Also assume that the next bound on the uncertainty TA P PA q+ ≤ ∆ <   

holds where ( )q Qσ= , the smallest singular value of Q in the Lyapunov equation (14) 

and ∆ is a bound on the norm of the uncertainty. This bound can be seen as a measure of 

how close A and Â  should be.  

The next theorem provides conditions on the error and its threshold value so the 

networked system is asymptotic stable. The error threshold is defined as a function of 

the norm of the state and ∆. Additionally, the error events can be computed locally, that 

is, once the thresholds have been designed, each agent can decide when to broadcast its 

current measurement to the rest of the agents based only on the measurements of its 

own state and its own error.  

Theorem 2. System (9) with ˆdiag offu K x K x= +  and feedback based on error events 

generated when the relation: 

 i ie xα>                                                         (15) 

is first satisfied, is globally asymptotically stable, where ( ) /q bα σ= − ∆ , ˆ2 offb PBK=  

and 0 1σ< < .  

Proof. In order to prove this theorem we will set a bound on the derivative of 
TV x Px=  along the trajectories of the system (12) which is equal to (9) when the input 

ˆdiag offu K x K x= +  has already been substituted and expressed in terms of the state error, 

then we can easily show that this bound can be appropriately tuned by the choice of the 

threshold on the error.   

[( ) ( )]
ˆ ˆˆ ˆ ˆ[( ) ( )] 2

ˆ( ) 2 .

off off

off

off

T T T T T T

T T T

T T T T

V x A BK P P A BK x e K B Px x PBK e

x A A BK P P A A BK x x PBK e

x Qx x A P PA x x PBK e

= + + + + +

= + + + + + +

= − + + +



 

   

We have just expressed V in terms of the model parameters and the uncertainty of the 

state matrix A. We now proceed to evaluate the contributions of each, the model, the 

uncertainty, and the error. 
2 2

2

ˆ2

( ) .

off
TV q x A P PA x PBK e x

q x b e x

≤ − + + +

≤ − + ∆ +

  

                          (16) 
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Now, by sending updates according to (15), which sets the error equal to zero at every 

update time, we can see first that  
2 22

i ie xα≤  

and  

2 2 2 22 2

1 1
.

N N

i i
i i

e e x xα α
= =

= ≤ =∑ ∑  

Since 0α >  and the norms are always nonnegative then we have that  

.e xα≤
                                                      

(17) 

We can use (17) in (16) to obtain  
2( 1)( ) .V q xσ≤ − − ∆                                           (18) 

Then V is guaranteed to decrease for any σ such 0 1σ< <  and updating the elements 

of the state of the models in all LCUs according to the events in (15). ■ 

The extension to consider the case of Â A≠ and B̂ B≠  is straightforward by 

assuming that the next bounds on the uncertainty matrices hold: 

( ) ( )TA BK P P A BK q+ + + ≤ ∆ <                                    (19) 

B β≤                                                      (20)
   

 

where ˆB B B= − . In order to obtain (18) the local errors are set to satisfy (triggering an 

update otherwise): 

         ( )
i i

qe x
b

σ − ∆
≤                                               (21) 

where 2b b K Pβ= + . 

By following the approach described above each LCU is capable of determining the 

time instants at which it should send its current measurement to the network. An 

important disadvantage in Theorem 2 is that the controller is designed based on the 

model dynamics of the overall system and the threshold is calculated as a function of 

the bounds on the uncertainty of the augmented system as well. In the next section we 

offer a complete decentralized solution, that is, not only the LCUs update their state 

based on local information but the local controllers and the local thresholds, which are 
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not necessarily the same for every agent as in Theorem 2, can also be designed based on 

local model dynamics and uncertainty bounds.  

IV. DECENTRALIZED STABILIZING MODEL-BASED EVENT-TRIGGERED CONTROLLER 

The decentralized method described in this section extends the results provided by 

[22]. In [22] only a ZOH model is used, that is, the control input for each agent remains 

constant between updates. With respect to previous work in event-triggered control, the 

implementation of this strategy using MB-NCS accounts for the unavoidable existence 

of model uncertainties in the stability analysis.  

Consider the network of coupled subsystems represented by (3) with models (4). We 

assume that every pair ˆ ˆ( , )i iA B  is stabilizable. We design controllers iK  that render the 

matrices ˆ ˆi i iA B K+  Hurwitz. Then for every agent i, Ni ∈ , there exists a symmetric and 

positive definite iP  which is the solution of the closed loop local decoupled model 

ˆ ˆˆ ˆ( ) ( )T
i i i i i i i i iA B K P P A B K Q+ + + = −                                   (22) 

where iQ  is a symmetric and positive definite matrix. 

Theorem 3. Let (5) be the control input for each agent in the networked system (3). 

Assume that the following bounds are satisfied: ( ) ( )T
i i i i i i i i i iA B K P P A B K q+ + + ≤ ∆ <  

 

and 
2

1,

N

j ji
j j i

P A
= ≠

≤∑ 

2

8( 1)
ifWi

N
≤

−
, where ( )i iq Qσ= , i i if q= − ∆  and ji ji j jiA A B K= − . 

Then the networked system (3) is globally asymptotically stable when the local events 

are triggered by 

2 2i
i i

i
e xχ

β
>

                                                      
(23) 

where 2( 1) i
i i i

i

Wf Nχ δ
δ

= − − − ,  
2

1,

N j j ji
i

ij j i

P B K
β

δ= ≠

= ∑   ,  and iδ  is such that 

0
0 0

i1 i i2 i1

i i2 i1

if
if

δ δ δ δ
δ δ δ
< < >

 < < ≤
                                         (24) 

 with  
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2

1 1 ( 1)
1 4 16 2

i i
i1

i

f N W
N f

δ
 −

= − −  −  
                                    (25)  

  2 2

1 1 ( 1) .
1 4 16 2

i i
i

i

f N W
N f

δ
 −

= + −  −  
                                   (26) 

Proof. We consider the candidate Lyapunov function  

1
( ) ( )

N

i i
i

V x V x
=

= ∑                                                      (27) 

and use the next proposition (see appendix for proof). 

Proposition 4. The derivative of T
i i i iV x P x=  along the trajectories of subsystem i in 

(3) with control input (5) satisfies the next inequality. 
2

2 2
2 2

1, 1,

( 2( 1) )

.

i i i i

N Ni ij i i ij
j j

i ij j i j j i

V f N x

P A P B K
x e

δ

δ δ= ≠ = ≠

≤ − − −

+ + •∑ ∑





                       (28) 

Now, taking the derivative of the Lyapunov function V along the trajectories of the 

state 2[ ]T T T T
1 nx x x x=   results in the next expression  

1

2

1
2 2

2 2

1 1, 1 1,

( ) ( )

( 2( 1) )

.

N

i i
i
N

i i i
i

N N N Ni ij i i ij
j j

i ii j j i i j j i

V x V x

f N x

P A P B K
x e

δ

δ δ

=

=

= = ≠ = = ≠

=

≤ − − −

+ +

∑

∑

∑ ∑ ∑ ∑

 



 

We consider the case where all subsystems can receive measurement updates from the 

rest of the agents in the network, although this is not a necessary condition for the 

validity of the results in this theorem. It suffices for each agent i, Ni ∈  to establish a 

bidirectional communication to those agents for which exchange of information is 

needed, that is, those agents that need to estimate the state ix  in any of their models and 

the agents for which agent i needs to estimate their state to use in any of their models. 

Then we can use the symmetry property of this type of interconnection to obtain 
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2

1
2 2

2 2

1 1, 1 1,

2 2

1 1

( ) ( 2( 1) )

.

N

i i i
i

N N N Nj ji j j ji
i i

i ii j j i i j j i

N N

i i i i
i i

V x f N x

P A P B K
x e

x e

δ

δ δ

χ β

=

= = ≠ = = ≠

= =

≤ − − −

+ +

 ≤ − − 
 

∑

∑ ∑ ∑ ∑

∑ ∑





                    (29) 

It is clear that coefficients iβ  are positive and, in order for condition (23) to be a valid 

threshold we need the iχ  coefficients to be positive as well, which requires to solve the 

following inequalities for the real parameter iδ   

2( 1) 0i
i i i

i

Wf Nχ δ
δ

= − − − >                                          
(30)

 

0iδ >  

It can be verified that the solution for the above inequalities is given by (24) with 

i1, i2δ  as in (25)-(26), moreover the solution is a real number by the assumption on the 

bounds iW . Since we showed that , 0i iχ β >  then the Lyapunov function is guaranteed 

to decrease by updating the models in all LCUs corresponding to the state ix  according 

to the threshold (23). ■ 

The parameters i∆  represent given bounds on the norm of the uncertainty for every 

agent and they can be seen as a measure of how close the model and system dynamics 

are. The bound iW  represents a measure of how close we are able to cancel the effects 

of other subsystems on system i using the control gains that are designed based on the 

nominal models. 

V. EXAMPLES 

Example 1. We consider a network of N=10 unstable subsystems represented as in 

equation (3) all with different dynamics. The dimensions of the systems vary from 1 to 

3 as well. The models for all different parameters represent an uncertainty as follows: 

12% alteration in the iA  matrices, 10% in ijA , and 6% in iB .  

The unknown dynamics of the subsystems are given by: 
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1 1

2 2

3 3

4 4

0.4, 1
0.5, 1
0.2, 1
1, 1

A B
A B
A B
A B

= =
= =
= =
= =

 

5 5

6 6

7 7

0.21 0.4 1 0
,

0.3 0.7 0 1

0.3 2 1 0
,

0.6 1.8 0 1

0.05 0.003 1 0
,

0.0023 0.7 0 1

A B

A B

A B

−   
= =   −   

   
= =   −   

   
= =   −   

 

8 8

9 9

10 10

0.11 0.41 0 1 0 0
0 0.3 0.7 , 0 1 0
0 0.3 0.5 0 0 1

0.3 2 0.07 1 0 0
0 0.09 1 , 0 1 0

0.1 0 0.2 0 0 1

0.05 0.003 0.5 1 0 0
0 0.0023 0.7 , 0 1 0
0.3 0 0.5 0 0 1

A B

A B

A B

−   
   = − =   
   − −   

−   
   = − =   
      
   
   = − =   
   − −   

 

 

The nominal model parameters are given by: 

1 1

2 2

3 3

4 4

ˆ ˆ0.352, 0.95
ˆ ˆ0.44, 0.95
ˆ ˆ0.176, 0.95
ˆ ˆ0.88, 0.95

A B

A B

A B

A B

= =

= =

= =

= =

 

5 5

6 6

7 7

0.1848 0.352 0.95 0ˆ ˆ,
0.264 0.616 0 0.95

0.264 1.76 0.95 0ˆ ˆ,
0.528 1.584 0 0.95

0.044 0.0026 0.95 0ˆ ˆ,
0.002 0.616 0 0.95

A B

A B

A B

−   
= =   −   

   
= =   −   

   
= =   −   
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8 8

9 9

10

0.0968 0.3608 0 0.95 0 0
ˆ ˆ0 0.264 0.616 , 0 0.95 0

0 0.264 0.44 0 0 0.95

0.264 1.76 0.0616 0.95 0 0
ˆ ˆ0 0.0792 0.88 , 0 0.95 0

0.88 0 0.176 0 0 0.95

0.044 0.0026 0.44
ˆ 0 0.002 0.6

A B

A B

A

−   
   = − =   
   − −   

−   
   = − =   
      

= − 10

0.95 0 0
ˆ16 , 0 0.95 0

0.264 0 0.44 0 0 0.95
B

   
   =   
   − −   

 

 

Every agent is coupled to all other agents including those with different dimensions 

by corresponding coupling matrices ijA . The unknown coupling matrices are given by: 

1 1, 2,3, 4; 1,2,3,4; .ijA c for i j i j= = = ≠  

[ ]1 1 1, 2,3, 4; 5,6,7.ijA c c for i j= = =  

[ ]2 2 2 1, 2,3, 4; 8,9,10.ijA c c c for i j= = =  

[ ]1 1 5,6,7; 1, 2,3, 4.T
ijA c c for i j= = =  

2

2

0
5,6,7; 5,6,7; .

0ij

c
A for i j i j

c
 

= = = ≠ 
 

 

3 3

3

0
5,6,7; 8,9,10.

0 0ij

c c
A for i j

c
 

= = = 
 

 

[ ]2 2 2 8,9,10; 1,2,3,4.T
ijA c c c for i j= = =  

3 3

3

0
8,9,10; 5,6,7.

0 0

T

ij

c c
A for i j

c
 

= = = 
 

 

3

3

3

0 0
0 0 8,9,10; 8,9,10; .
0 0

ij

c
A c for i j i j

c

 
 = = = ≠ 
  

 

for 1 2 30.5, 0.4, 0.1.c c c= = =  The nominal coupling matrices ˆ
ijA  are of the same form 

but with 1 2 3ˆ ˆ ˆ0.45, 0.36, 0.09.c c c= = =  
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The local controllers and thresholds are designed following the decentralized 

approach in section IV, where only the model parameters and the bounds on the 

uncertainties are used. The results of simulations are shown in Fig. 2 and Fig. 3. In the 

top portion of Fig. 2 it can be seen the norm of the augmented state, that is, the response 

of all states of all subsystems. Fig. 3 and the bottom portion of Fig. 2 show the 

broadcasting periods for every agent in the networked system. Fig. 2 (bottom) represent 

the broad-casting periods for the 4 first order systems, Fig. 3 (top) for the 3 second 

order systems, and Fig. 3 (bottom) for the 3 third order systems.  

  

 

 
Fig. 2. The norm of the state of the overall system is shown in the top. The 

broadcasting period (in seconds) for subsystems 1-4 is shown at the bottom. 
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Fig. 3. Broadcasting period (in seconds) for subsystems 5-7 (top) and 8-10 (bottom). 

 

 

Example 2. Consider a similar set of subsystems as in example 1, with the same 

system and model parameters ˆ ˆ, , , ,i i i iA B A B  but in this case we assume that the dynamics 

of every subsystem is affected by only a subset of the N=10 systems. In particular, each 

system is coupled with systems that have their same dimension by means of 

corresponding matrices ijA  as in example 1 (using the corresponding model ˆ ijA  to 

implement the models) e.g. system 1 is coupled only to systems 2,3, and 4. In addition 

system 4 affects system 5 and system 7 affects system 8. 

In this case each LCU does not need to implement models of all subsystems. Each 

LCU only needs to implement those models that are needed to estimate the variables 

that affect its own dynamics. Results of simulations are shown in Fig. 4 and Fig. 5. In 

general, the subsystems need to broadcast their states less often compared to example 1 

since the systems are coupled with a fewer number of systems and their errors grow 

slower than in the previous example.  
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Fig. 4. The norm of the state of the overall system for example 2 is shown in the top. 

The broadcasting period (in seconds) for subsystems 1-4 is shown at the bottom. 

 

 

 
Fig. 5. Broadcasting period (in seconds) for subsystems 5-7 (top) and 8-10 (bottom) 

in example 2. 
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Example 3. In this example we consider a collection of three coupled carts. The 

physical coupling corresponds to the springs used to connect the carts to each other, and 

assume that at the equilibrium of the system, all springs are not stretched. The dynamics 

of each cart and its corresponding model can be described by (3) and (4), respectively 

with  

0 00 1 0
, , ,

00 1i i ij
iji

A B A
dc k

    
= = =     −     

 

0 00 1 0ˆ ˆˆ, , ,ˆˆ 1 00i i ij
iji

A B A
dc k

    
= = =     −        

 

where 1 3 21, 2c c c= = = , 5k = , 12 32 21 23 1d d d d= = = = , and 13 31 0d d= = . The model 

parameters are ˆ 4.95k = , 13 31
ˆ ˆ 0d d= = , and the remaining ˆ 1.01ijd = . Results of 

simulations of this example are shown in Fig. 6.       

 

 

 

 
Fig. 6. The norm of the state of the overall system in example 3 is shown in the top. 

The broadcasting period (in seconds) for each cart is shown at the bottom. 
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VI. CONCLUSION 

The model-based event-triggered control framework introduced in [18] was extended 

in this paper to deal with networks of coupled subsystems. Our framework is capable of 

significantly reducing network communication by using available models of other 

subsystems at each controller node and by dynamically scheduling measurement 

broadcasting based only on local information. The use of errors in the state in order to 

generate communication events relaxes the requirement for a fixed and, many times, 

conservative schedule of network message broadcasting. Future work will address 

important aspects of network communication such as time delays, data quantization, 

and packet dropouts. 

 

APPENDIX 

Proof of proposition 4. Consider the local Lyapunov function T
i i i iV x P x=  and 

compute its derivative along the trajectories of subsystem i in (3) using the local control 

input (5) to obtain   

1 1

1 1

ˆ ˆˆ ˆ(( ) ( ))
(( ) ( ))

T T
i i i i i i i i i i i

T T
i i i i i i i i i i

N N
T

i i ij j i ij j
j j i j j i

T
N N

ij j i ij j i i
j j i j j i

V x A B K P P A B K x
x A B K P P A B K x

x P A x B K x

A x B K x P x

= ≠ = ≠

= ≠ = ≠

= + + +

+ + + +

 
+ + 

 

 
+ + 

 

∑ ∑

∑ ∑



  





                                 (A.1) 

and consider the next inequality involving the vectors μ , νn m∈ ∈   

2μ ν 0δ − Π ≥                                                     (A.2) 

where n m×Π ∈  and δ is any positive real constant. (A.2) can be expanded to yield 
2 2

T ν μ
μ ν

2 2
δ

δ
Π

Π ≤ +                                                (A.3) 

Applying (A.3) to (A.1) we obtain 



 

22 
 

 

2

2 2 2 2

1,

2
2 2

1,

N i ij
i i i i i j i i

ij j i

N i i ij
j i i

ij j i

P A
V q x x x x

P B K
e x

δ
δ

δ
δ

= ≠

= ≠

 
 ≤ − + ∆ + +
 
 

 
+  + 

 
 

∑

∑





 

Finally, we write the terms involving 2
ix  together and we obtain (28).■ 
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