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Model-Based Control of Continuous-Time and Discrete-Time
Systems with Large Network Induced Delays.
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Abstract—Stabilization of continuous and discrete-time
systems in the presence of network induced delays and model
uncertainties is studied in this paper using the Model-Based
Networked Control Systems (MB-NCS) framework. The use of
a nominal model of the system to generate an estimate of the
real state between measurement update intervals allows for
significant reduction of traffic in the network. The work in this
paper extends previous results in MB-NCS that dealt with
continuous-time systems and small delays. In the current paper
we are able to obtain necessary and sufficient conditions for
stability for the case of large delays, that is, when the network
delays are larger than the update intervals. Additionally,
similar conditions are derived for discrete-time systems and for
small and large delays.

I. INTRODUCTION

N Networked Control Systems (NCS) a digital

communication network is used to transfer information

among the components of a control system. NCS can also
improve efficiency, flexibility, and reliability of the network
interconnected system reducing reconfiguration and
maintenance costs [1]. In contrast, the protocols used to
establish an ordered communication between nodes in the
network introduce time delays and loss of information.
Network induced delays represent an important problem in
the design and analysis of NCS since traditional control
techniques may be sensitive to the large delays that are
present in networked applications. Time delays due to
network interconnections can occur for different reasons
such as: pre- and post-processing times, which are the times
that are needed to measure, encode, and decode data; waiting
time, which is the elapsed time from when a packet of
information is ready to be transmitted until the network
allows its transmission; and transmission time, which is the
time needed for the data to be transmitted from their source
node to their destination node [2]-[3]. Time delays in control
systems are not only due to network interconnections but
they arise naturally in different areas; see [4] for details and
control techniques.

There exist different approaches that consider the
presence of network induced delays [5]-[10]. For instance,
the work in [5] presents a configuration that stabilizes a NCS
with large constant delays using passivity and the scattering
transformation. The works in [6] and [7] derive general
models of NCSs that consider time-varying sampling
intervals and delays.

Both authors are with the Department of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
egarcia7@nd.edu). The support of the National Science Foundation under
Grant No. CNS-1035655 is gratefully acknowledged.

The authors of the previous papers do not consider model
uncertainties. In contrast, we are able to provide robustness
to parameter uncertainties in the presence of delays by
following the Model-Based Networked Control Systems
MB-NCS framework. Network induced delays and model
uncertainties are also considered in [11]. In this work the
total delay is restricted to be less than the sampling period. A
Zero-Order-Hold (ZOH) controller is used which typically
results in small sampling periods.

In the present paper we use the nominal model of the
system to estimate the current plant state based on the
delayed measurements. The control input is now a function
of the model state which, depending on the model
uncertainties, can provide better system performance and
allow for longer sampling intervals than using the delayed
state directly to compute the control input. The Smith
Predictor has been commonly used for prediction of the
current output of a system when only delayed measurements
are available [12]. In this case it is necessary for the
predictor to know the exact parameters of the system and to
receive continuous measurements in order to obtain accurate
estimates of the current system output. In the present paper
we relax those constraints by using a nominal, inexact model
of the system and using non-continuous measurements.

The paper is organized as follows: section II provides
brief background on the MB-NCS framework. Section III
presents stability conditions for discrete-time systems and
for the small delay case. Section IV presents our main
results, necessary and sufficient conditions for stability for
the large delay case for both continuous-time and discrete-
time systems. An illustrative example is offered in section V
and section VI summarizes the results of this paper.

II. BACKGROUND ON MB-NCS

MB-NCS were introduced in [13]; this configuration
makes use of an explicit model of the plant which is added
to the actuator/controller node to compute the control input
based on the state of the model rather than on the plant state.
The state of the model is updated when the controller
receives the measured state of the plant that is sent from the
sensor node every /& time units. Fig. 1 shows the
interconnection of several NCSs. The labeled small blocks
correspond to each system’s actuator and sensor nodes. The
actuator/controller node in MB-NCS with delays can be
represented as in Fig. 2. We assume that the systems are
decoupled, i.e. the dynamics of each system in Fig. 1 depend
only on its own state. Without loss of generality we will
focus on a particular system/model pair. The dynamics of
the plant and the model can be described respectively by:


Jaehyun
MED '12


System 1 System 2

Fig. 1. Networked Control Systems.
X=Ax+ Bu )]
%= A%+ Bu 2)
where x,%e€R”, u=Kx, and the matrices 4, B represent
the available model of the system matrices 4, B.

The plant may be unstable i.e. not all eigenvalues of A
have negative real parts. In [15] the authors provided
necessary and sufficient conditions for stability of
continuous-time systems when the updates from the system
are periodic (every 4 time units) for the case when the delays
are negligible and also when there exist small constant
delays 7<h. See sections III and IV for further details about
delays, update intervals, and their relationship for the small
and large delay cases. Other results based on the MB-NCS
framework that consider network induced delays can be
found in [16]-[17], but they consider only the small delay
case as well. In this paper we extend this framework in order
to consider discrete time systems and, more importantly, to
consider large delays, 7>#, for both continuous and discrete
time systems.
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III. DISCRETE-TIME SYSTEMS WITH SMALL DELAYS

In this section we consider multi-input, multi-output linear
time-invariant discrete-time systems and models. In this case
the updates will occur at some of the discrete time instants
indexed by » that correspond to the operation and sampling
of the plant. This implies that the update interval /# will be an
integer number, representing the number of plant discrete
instants between two consecutive measurements that the
sensor broadcasts. Let n; represent the update instants, then
h=n,, —n,.

We call a ‘MB-NCS with small delays’ the case when the
update network interval 4 is greater than the network
induced delays. Note that the delay can be greater than the
sampling time of the system indexed by » as shown in Fig.
3. Therefore, in our approach, a small delay is greater than
the sampling time of the plant but smaller than the update
interval 4 at which the sensor decides to send information to
update the model. For discrete-time systems we assume that
the update time / is constant and an integer number. We also
assume the delay 7 is constant and an integer number; it
represents the number of system sampling instants that the
information is delayed. We will present here the case of full
state feedback systems. For this case we have that at times
n, —7 the sensor transmits the state data to the controller/

actuator. This data will arrive 7 plant samplings later. So, at
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Fig. 2. Model-Based Networked Control System actuator/controller node
with propagation unit.
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Fig. 3. Representation of the small delay case and the involved parameters
for discrete-time systems. In this example #=4 and =3<Ah.

times kh, k=1,2,... the controller/actuator receives the state
vector value x(n, —7). The main idea is to use the model in

the controller to estimate the present value of the real state
and use this estimated state to update the controller’s model.

The Propagation Unit uses the plant model and the past
values of the control input u(n) to calculate an estimate
X(n,) of the current state x(n,) from the received data

x(n, —7). This estimate is then used to update the model

that with the controller will generate the control signal for
the plant. Fig. 2 represents the configuration of the
components in the actuator node.

The components of the control system are described by
the following equations:

Plant: x(n+1)= Ax(n)+ Bu(n)

Model:  &(n+1)= A%(n)+ Bu(n), n€[n,,n,.,)

Controller: u(n) = Kx(n) 3)
Propagation

Unit: X(n+1)= /Abvc(n) + E’u(n), neln,—t,n,,, —7)

The following update law is used in order to find the
admissible delays and update intervals:
{x—)f, n=n, —z’}
Update law: . . 4
XX, n=n,

In order to analyze the stability properties of system (3)
using update law (4), we initialize the propagation unit at
time 7 -7 with the state vector that the sensor obtains. The
model and propagation unit operate together until 7. At this
time, the model is updated with the propagation unit state
vector, as described in (4). This is equivalent to having the
propagation unit receive the state vector x(ny -7) at n; and to
instantaneously compute an estimate x(n,) of the current

state x(n,). Note that the plant represents a physical system



to be controlled and its state cannot be updated externally.
The measured plant states are used to update the propagation
unit. Both, model and propagation unit are implemented as
computing algorithms in the controller node and their states
can be accessed and updated at any time as necessary.
We  define the errors é(n)=x(n)—x(n) and
e(n) = x(n)—x(n) . It can be shown that the dynamics of the
state and the errors can be represented by:
x(n+1)=(A4+ BK)x(n)— BKe(n)— BKé(n)
e(n+1)=(A+ BK)x(n)+(A— BK)é(n)— BKé(n) (5)
&(n+1) = Aé(n)

where A=A-A, B=B-B. Define the augmented state

vector z=[x" &’ é']". Then the augmented system can be
represented in compact form as:

z(n+1) = Az(n), (6)
[A+BK -BK -BK
where A=|A+BK A-BK -BK|. According to the
0 0 A
update laws (4) we have the augmented state reset equations:
(i -1)) x(n,)
z(n, —7) = 0 , zn)=lemn)| (1
Le((n, =) )+e((n, —7)) 0

wheren,,, —n, =h, 0<7r<h
The dynamics of the overall system for ne[n,,n,,,) can

be described as shown next.
Proposition 1. The system with dynamics described by
(3)-(4) with initial conditions z(n,) =[x, ¢, &1 =z,,

n, =0, has the following response:

z(n)=A""%*z, forneln,,n,,, —7) 8)
I 00
z(n)=A"""10 0 0|A" %'z, forneln,, —,n,,).
071
I 0 0 1 0 0
where =10 7 0[A"|0 0 0|A"™
0 0 0 0 71 1

Proof. Assume, without loss of generality, that the system
starts at time n,=0 with initial conditions z(n,)=
[x, & &1 =z,. On the interval ne[0,n,—7), the system
response is:

x(n)
z(n)=| e(n)|=A"z,. ©)
e(n)
At n=(n, —7) the state of the system is given by:
2((n,—7) )= A"z, = A"z, (10)
At time n =(n, —7) we update according to (4), x > X,

é(n,—r)=0and é(n, —7)=e(n, —7) +é(n, —7) , we have:

I 0 0
z(n,—7)={0 0 0|A"7z,. (1)
07 I
Continuing with the interval ne€[n —7,n), we have at
n=n, :
1 00
z(n )=A"|0 0 0[A" 7z, (12)
0 1 I

Similarly, at time n =n, we use the update law (4), that

means é(n;) =0 and the state is given by:

1 0 0] [1 00
2(n)=[0 I O[|A"|0 0 0|A" "z, =3z. (13)
000 017 1

Following the same analysis at every cycle ne[n,,n, ]

we obtain the response of the system given by (8). m
Theorem 2. The networked system described by (3)-(4)

with constant updates / and constant delays </ is globally

exponentially stable around the solution z, =0 if and only if

the eigenvalues of

1 00] [71 00
2={0 I 0|A7[0 0 O[A“™ (14)
000 |07 1

are inside the unit circle. m

Remark 1. The analysis presented above for discrete-time
systems offers an important advantage compared to its
continuous-time counterpart [15]. To compute propagated
states based on delayed measurements we need to store the
previous values of the control input that were used over the
interval [n, —7,n,). For discrete-time systems the control

input history over [n, —7,n,) can be represented by a finite

number of values but for continuous-time systems it is not
possible to store in digital memory an infinite number of
values that characterize the input u(?). In this case we need to
sample sufficiently fast in order to obtain a good
approximation of the continuous control input u(?).

IV. MB-NCS WITH LARGE DELAYS
A. Continuous-time systems with large delays.

In this section we extend the approach discussed in the
previous section to consider the case when 7>#, for both
continuous and discrete-time systems. The aim is to obtain
conditions for stability in the presence of delays that are
larger than the periodic update intervals. The solution to this
problem is obtained by considering an increased number of
propagation state variables which, in turn, requires the state
vector z to be augmented to include additional error
variables. For continuous time systems /% and 7 can be real
numbers, they are not restricted to be integers. We consider
first for simplicity the case when A<7<2h, the general case
ah<t<(a+1)h for any positive integer a can be solved using
the same approach but adding more error variables.
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Fig 4. Representation of update intervals in the presence of delays
h<7<2h for continuous-time systems.

We consider two propagation state variables X, and X, .
We update the state X, at time ¢, —7 using the real state
x(t, —7) . At time ¢, we perform two updates in sequential
manner. First, we update the state of the model x(z,) using
the value X,(#,) and then we update X, (¢z,) using the value
X,(¢,) . The overall setup for continuous-time systems can
be represented in compact form as follows:

Plant: X(t) = Ax(1) + Bu(r)

Model:  x(t) = AX(1) + Bu(r), telt,t.,)
Controller: u(r) = KxA(t) X

Propagatioq % (1) = Ax, () + Bu(1), t €[1,,1,,.,)
Units: X, ()= Ax,(t)+ Bu(t), t €[t, — 1,1, —T)

(15)

XX, t=t -7
. (16)
X, > X, thenX, > %, t=¢t
Using this representation we ensure that the model of the
system that generates the state X(¢) is updated at time ¢,

Update law: {

with the propagated variable that is computed based on the
measurement that was sent by the sensor at time ¢, —7 , see
Fig. 4. In this figure we can see that at time #, the model in
the controller is updated with information generated at time
t, —7 . Even though a new measurement has been sent by
the senor node at time ¢,,, — 7 , this new information has not

arrived yet to the controller node due to large delay z.

Remark 2. Note that in practice we only need one
propagation unit that receives the delayed measurement and
propagates it instantaneously to time #; using the previous
control input u(f) stored over the interval [z, —7,z,].
Therefore, the implementation is as shown in Fig. 2.

Define the errors é(t) =x(¢t)—x,(t), é(t)=x(¢t)—x(¢)
and e(t) = x,(¢)—x,(¢) . It can be shown that the dynamics

of the state and the errors can be represented by:
x(t) = (A+ BK)x(t)— BKe(t)— BKeé(t) — BKe(t)

&(t) = (A+ BK)x(t) + (A - BK)e(t) - BK&(r) - BKe(t)

(17)
e(t) Ae(t)
e(t) = Ae(t)
Define the augmented state vector z =[x" &’ é" e’ ]  then

the augmented system can be represented in compact form:
(1) = Az(1), (18)

A+BK -BK -BK -BK
A+BK A-BK -BK -BK
where A = R .
0 0 A 0
0 0 0 4
From (16) we obtain the augmented state reset equations:
(Ul (%)
0 e(t,)
2t —1) = . B} ,o2(e)=| P (19)
e((t,—7)) e()
e((t,—7) ) +e(t, —7)") 0

where t,, —t, =h, h<t<2h.

Proposition 3. The system with dynamics described by
(15)-(16) with initial conditions z(z,) =[x, ¢, & & | =z,,
t, =0, has the following response:

2(t) =3z, fortelt,,

lia =7 (20)
I 0 0 0
=ty +7" 0 0 0 0 h—r" f
z(t) = e/\( i1 +7°) 0070 e/\(l )ZkZO fort e [tk+] _r 5tk+1)
071 0 I
I 000 I 000
07 00 10 0 0 0 .
where T = et M) and t'=7-h.
000 [/ 0070
0000 07 01

Proof. Following a similar analysis as in the proof of
Proposition 1 we have that on the interval 7 €[0,# —7") and

for initial time ¢, =0 with initial conditions z(¢))=
[x, & ¢ e ] =z,,the system response is
x(1)
z(t) = Zg; =ez,. 21
e(?)
At t =(t, —7")” the state of the system is given by:
Z2((t, —7") )=z, =Nz (22)

At time ¢ =(t, —r") we update according to (16), x > X,,
which means that e(t, —7")=0 and e(t, -7t =e(t,—7') +

e(t,—7")", then we have:

z(t, —1") = Mz,

(23)

S O~
oS O O

0 7
Continuing with the interval t €[f, —7',¢,),at t =1t

1 0

()= 24

oS O
~ O



Similarly, at time ¢ =¢, we update according to (16), that

means e(¢,)=0 and é(¢,) =e(t, ), then the state is given by:

7000 [Z7 000

070 0] ,.]0000[,,.,
N - =, (25),
W= 00 11 o 0 1 o o @

0 0 00 07 01

By following the same analysis at every cycle we obtain
the response of the system described in (20).m

Theorem 4. The networked system described by (15)-(16)
with constant updates s and constant delays h<7<2his
globally exponentially stable around the solution z, =0 if

and only if the eigenvalues of

1000 [7000
0T 000000y o0
000 77| 00710
0000 |07 071

are inside the unit circle. m

Remark 3. The MB-NCS framework provides a range of
possible values for the update interval % in order to obtain a
stable control system. The work in [15] provided stability
conditions only when 7<A. The most important advantage of
the results presented in this section can be better appreciated
in the next scenario: for a given plant, model, controller, and
network delay there may not be an update interval 4> 7 that
stabilizes the system, but using the results in this section, we
can find some /<7 that results in a stable system.

We can extend the previous results in order to establish
necessary and sufficient conditions for stability for the
general case when ah<7<(a+1)h by adding a additional
propagation state variables with respect to the small delay
case described in section III. For instance, in the above
analysis we had that h<7<2h so a=1 and we added one
additional propagation variable with respect to the small
delay case and we had a total of two propagation variables.

Theorem 5. The networked system described by (15)-(16)
with constant updates 4, constant delays ah<7<(a+1)h, and
with augmented state z=[x" &’ &' ¢'...e/]" is globally
exponentially stable around the solution z, =0 if and only if
the eigenvalues of

1000 ..0°0 1000 00
0700 ..0°0 0000 .. 00
0007 ..0°0 0070 .. 00
r=|t ' M0 00 7 0 0 (27)

0000 .70 : . :
0000 .. 071 0000 ..710
0000 ..0°0 0700 . 01

are inside the unit circle, where 7'=7—ah, e(t)=x(t)-
X, e)=x@0)—-x@), e(t)= X, ()—x,(), for i=1,2
...a, and the (a+3)x(a+3) matrix A is given by:

[A+BK -BK -BK -BK —BK |
A+BK A-BK -BK -BK .. -BK
Ao O 0 4 0 0 | m (28
0 0 0 A 0
0 0 0 0 .. 4|

B. Discrete-time systems with large delays.

We follow the same constraint as in section III, that is, /
and 7 can take only integer values, but in contrast to section
IIT we now can consider the case 7>h.

Theorem 6. The networked system described by (3)-(4)
with constant updates /4, constant delays ah<7<(a+1)h, and

with augmented state z=[x" e &’ ¢ ... is globally

~T 1T
2 ]
exponentially stable around the solution z, =0 if and only if

the eigenvalues of

7000 .00 [7000 . 00
0700 .00 [0000. 00
0007 .00 [0070. 00
Tl ‘ SAT0 00 1 . 0 oA (29)

0000 .. 10 .
0000 . 01 0000 ..1710
0000 ..00 [0700 .. 01
are inside the unit circle, where 7'=7—-ah, é(n)=x(n)-
X,.,(n), én)=x(m)-xn), e(n)=x,(n)-xn), for i=1,2

...a, and the (a+3)x(a+3) matrix A is given by (28). m

V. EXAMPLE

Consider the following unstable continuous-time system
implemented as in Fig. 1 and using a model and propagation
unit as represented in Fig. 2:

~0.349  0.65 0] - [-05 17 . [-0.008
A= ,B=| |, 4= ,B=
~0.316 0.787 1 0 06 1
K =[-5.4621 —11.1658].

Suppose that the networked induced delay is constant and
equal to 1.6 seconds. For this system, model, and delay there
is no update interval 4> 7 that provides stability as shown in
the top part of Fig. 5. For #>1.6 seconds the corresponding
matrix X has at least one eigenvalue with magnitude greater
than one. If we decrease the update interval as shown in the
bottom part of Fig. 5, there exist values of & for which the
system is stable. The corresponding matrix X for each plot
can be obtained from (28) using the appropriate number of
propagation variables. An example of a stable response of
the system for =1.6 seconds is shown in Fig. 7.a. using
h=1.2 seconds.

Suppose now that the delay is larger, 7=1.85 seconds. Fig.
6 shows that stabilizing values of /4 exist for the range for
2h<7<3h (c), but not for ~<7<2h (b) or for 7<h (a). The
response of the system for 7=1.85 seconds and using #=0.73
seconds is shown in Fig. 7.b.
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Fig. 7. Response of networked system in example 1. (a) For 7=1.6 seconds
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VI. CONCLUSION

The results in this paper represent an important extension
to the framework of MB-NCS with delays. We analyzed the

case when 7>h and presented necessary and sufficient
conditions for stability that depend on the system and model
dynamics but also on the values of the delay and the update
interval. We can obtain a range of /4 for stability following a
similar approach than in [15] that uses the state of the model
for control and a propagation unit that provides an estimate
of the real state using delayed measurements and previous
input values. The main advantage of the analysis presented
here is that, when a stabilizing 4> 7 does not exist, it is still
possible to obtain update intervals ~<r that stabilize the
system. The results in this paper provide stability results for
MB-NCS with delays and relaxing the constraint that the
delay has to be always less than the update interval.
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