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Abstract— In this paper, we consider the problem of robust
state-feedback stabilization for multi-channel systems from a
game-theoretic framework. In such a framework, we char-
acterize the feedback Nash equilibria via a set of stabilizing
state-feedback solutions corresponding to a family of perturbed
multi-channel systems with dissipativity properties. Specifically,
we show that the existence of a weak-optimal solution to
a set of constrained dissipativity problems is a sufficient
condition for the existence of a feedback Nash equilibrium,
whereas the set of robust stabilizing state-feedback solutions is
completely described in terms of a set of extended linear matrix
inequalities.

I. INTRODUCTION

In this paper, we consider a multi-channel system governed
by several players (or decision makers) where the stability of
the overall closed-loop system is a common objective while
each player aims to maximize different types of objective
functions. In such a scenario, Nash strategy offers a suitable
framework to study an inherent robustness or non-fragile
property of the strategies under a family of information struc-
tures, since no player can improve his payoff by deviating
unilaterally from the Nash strategy once the equilibrium is
attained (e.g., see references [1]-[5]).

In the past, several theoretical results have been established
to characterize control related problems in the context of
Nash equilibria via a game theoretic interpretation [5]–[9].
For example, the existence of open-loop Nash strategies for
linear-quadratic games over a finite time-horizon, assuming
that all strategies lie in compact subsets of an admissible
strategy space, has been addressed in [10], [11] and [1]; the
existence of Nash Strategies for linear-quadratic differential
games over an infinite-horizon has been studied in detail in
[7], [8], [5] and [12]. We also note that some of these works
have discussed the uniqueness of the optimal strategies for
linear-quadratic games with structured uncertainties, where
the bound for the objective function is based on the existence
of a set of solutions for appropriately parameterized Riccati
equations. Moreover, in the area of multiobjective H2/H∞
control theory, the concept of differential games has been
applied by interpreting uncertainty (or neglected dynamics)
as a fictitious player while the model of the system is
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supposed to be well known; where the fictitious player is
usually introduced in the criteria through a weighting matrix
(e.g., see references [13]-[16]).

On the other hand, the use of different simplified models
of the same system has been employed for capturing certain
information structures, models or objective functions that
individual players may hold about the overall system. Thus,
the resulting problem can be best described by nonzero-sum
differential games where the individual players are allowed
to minimize different types of objective functions (e.g., see
references [17]-[19]). An extensive survey on the area of
noncooperative dynamic games is provided in the book by
Başar and Olsder [5].

Our main focus in this paper is to take this line of
approach, where individual players have different objective
functions that are associated with certain information struc-
tures, i.e., the dissipativity property of the multi-channel
system, where the optimality concept is that of Nash equi-
librium. We characterize the feedback Nash equilibria via
a set of stabilizing state-feedback solutions corresponding
to a family of perturbed multi-channel systems with dis-
sipativity properties (see [20], [21] and references therein
for a review of systems with dissipative properties). We
specifically consider two fundamental problems: (i) Firstly,
we isolate a condition guaranteeing that the control/strategy
space is sufficiently decentralized to make the game-theoretic
interpretation sensible, and (ii) Secondly, we provide a suf-
ficient condition for the existence of robust feedback Nash
equilibrium, where the individual players have different ob-
jective functions that are associated with certain information
structures, i.e., the dissipativity inequalities, of the system.
Moreover, we show that the existence of a weak-optimal
solution to a set of constrained dissipativity problems is a
sufficient condition for the existence of a feedback Nash
equilibrium.

The rest of the paper is organized as follows. In Section II,
we present a stability condition for a multi-channel system in
terms of a set of extended linear matrix inequalities (LMIs),
with a certain dissipativity property being used to extend
the stability condition when there is a model perturbation in
the system. Section III presents the main results, where we
provide a sufficient condition for the existence of a feedback
Nash equilibrium via a weak-optimal solution correspond-
ing to a set of constrained dissipativity problems. Finally,
Section IV provides some concluding remarks.

Notation. For a matrix A ∈ Rn×n, He (A) denotes a her-
mitian matrix defined by He (A) � (A+AT

), where AT is
the transpose of A. For a matrix B ∈ Rn×p with r = rankB,
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B⊥ ∈ R(n−r)×n denotes an orthogonal complement of B,
which is a matrix that satisfies B⊥B = 0 and B⊥B⊥T � 0.
Sn+ denotes the set of strictly positive definite n × n real
matrices and C− denotes the set of complex numbers with
negative real parts, that is C− � {s ∈ C |Re{s} < 0}.
Sp(A) denotes the spectrum of a matrix A ∈ Rn×n, i.e.,
Sp(A) � {λ ∈ C | rank(A − λ I) < n} and GLn(R)
denotes the general linear group consisting of all n× n real
nonsingular matrices.

II. PRELIMINARIES

Consider a continuous-time N -channel system

ẋ(t) = Ax(t) +
N�

j=1

Bjuj(t), x(0) = x0, (1)

where A ∈ Rn×n, Bj ∈ Rn×rj , x(t) ∈ Rn is the state of the
system, and uj(t) ∈ Rrj is a control input to the jth-channel
of the system.

For this system, consider the set of all stabilizing state-
feedback gains

KN ⊆

��
K1,K2, . . . ,KN

�
∈

N�

j=1

Kj ⊆

N�

j=1

Rrj×n

��� Sp
�

A+

N�

j=1

BjKj

�
∈ C−

�
, (2)

where Kj ∈ Rrj×n for j = 1, 2, . . . , N .
Let us introduce the following matrices that will be used

in Theorem 1 (and also in the following section).

E =
�
In×n In×n · · · In×n� �� �

(N+1) times

�
,

[A,B]U,�L = [ AU B1L1 B2L2 · · · BNLN� �� �
(N+1) times

],

�U,�W � = block diag{U,W1,W2, . . . ,WN� �� �
(N+1) times

}.

Then, we characterize the set KN in terms of a set of
extended LMIs as follow.

Theorem 1: For any stabilizable pair�
A, [ B1 B2 · · · BN ]

�
, there exist X ∈ Sn

+,
U ∈ GLn(R), Wj ∈ GLn(R), � > 0 and Lj ∈ Rrj×n for
j = 1, 2, . . . , N such that
�

0n×n XE
ETX 0(N+1)n×(N+1)n

�
+He

��
[A,B]U,�L
−�U,�W �

�

×

�
ET �I(N+1)n×(N+1)n

��
≺ 0,

(3)

Moreover, for any N -tuple family ( L1, L2, . . . , LN )

and ( W1, W2, . . . , WN ) as above, and setting

Kj = LjW
−1
j for each j = 1, 2, . . . , N , the matrix�

A+
�N

j=1 BjKj

�
is a Hurwitz matrix.1

Proof: Note that
�

[A,B]U,�L
−�U,�W �

�⊥

=

�
I [A,B]U,�L�U,

�W �−1
�
,

�
E
�I

�⊥
=

�
�I −E

�
.

Then, eliminating �U,�W � from (3) by using these matrices,
we have two inequalities
�
I [A,B]U,�L�U,

�W �−1
� �

0 XE
ETX 0

�

×

�
I

(�U,�W �−1
)
T
[A,B]

T
U,�L

�

= He

�
(A+

N�

i=1

BiKi)X

�
≺ 0, (4)

�
�I −E

� � 0 XE
ETX 0

� �
�I

−ET

�
= −2�(N + 1)X

≺ 0. (5)

Hence, we see that (4) and (5) state exactly the Lyapunov
stability condition with X ∈ Sn

+ and state-feedback gains
Kj = LjW

−1
j for j = 1, 2, . . . , N .

Suppose the system in (1) is stable with state-feedback
gains Kj = LjW

−1
j for Wj ∈ GLn(R), j = 1, 2, . . . , N .

Then, there exists a sufficiently small � > 0 that satisfies

He
�
(A+

N�

j=1

BjKj)X
�
+
1

2
�
�
A,B

�
X,�L

×�X, �X�
�
A,B

�T
X,�L≺ 0, (6)

where
�X, �X� = block diag

�
X,X, . . . ,X� �� �
(N+1) times

�
and [A,B]X,�L =

[ AX B1L1 B2L2 · · · BNLN� �� �
(N+1) times

].

Note that �X, �X� � 0 and �X, �X�ET
= ETX , employing

the Schur complement for (6), then we have
�

He
�
(A+

�N
j=1 BjKj)X

�
� [A,B]X,�L �X, �X�

��X, �X�([A,B]X,�L)
T −2��X, �X�

�

=

�
0 XE

ETX 0

�

+He

��
[A,B]X,�L �U,�W �−1

−I

�
�X, �X�

�
ET �I

�
�

≺ 0.

1Recently, a similar LMIs condition has been investigated by Fujisaki
and Befekadu [23] in the context of reliable decentralized stabilization for
multi-channel systems.



This means that (3) holds with �U,�W � = �X, �X� for U ∈

GLn(R).
Consider next a multi-channel system with a perturbation
term, i.e.,

ẋ(t) =
�
A+ uρA

δ
�
x(t) +

N�

j=1

Bjuj(t), (7)

where uρ ∈ [−ρ, ρ], ρ ∈ R+ is the uncertainty level and
Aδ ∈ Rn×n is a fixed perturbation term in the system. Here
we assume that the perturbed matrix (A + uρAδ

) lies in a
compact uncertainty set Uρ.2

In what follows, we assume there exits a set of stabilizing
state-feedback gains KN that maintains the stability of the
system in (1) and this set is completely characterized via
a solution of (3). Then, we will estimate an upper bound
ρ̂ ∈ R+ on the uncertainty level for which the state-feedback
gains preserve robust stability property of the perturbed
multi-channel system.

Lemma 1: Let X ∈ Sn
+, U ∈ GLn(R), Wi ∈ GLn(R),

Lj ∈ Rrj×n, j = 1, 2, . . . , N and � > 0 satisfy Theorem 1.
Suppose α > 0, β ≥ 1 and Z ∈ Sn

+, then there exist an
upper bound ρ̂ ∈ R+ and Y ∈ Sn

+ such that

β−1Z � Y � Z, (8)
�

I

�U,�W �−1ET

�T �
uρ̂ He((Aδ

)
TY ) Y [A,B]U,�L

([A,B]U,�L)
TY 0

�

×

�
I

�U,�W �−1ET

�
� −αZ. (9)

Moreover, the perturbed multi-channel system in (7) is stable
for all instances of perturbation uρ̂ ∈ [−ρ̂, ρ̂] in the system.

Proof: To prove the above theorem, we require the
following system

ẋ(t) =



A+ uρA
δ
+

N�

j=1

BjKj



x(t) + 0n×1ũ(t),

ỹ(t) = x(t) + 0n×1ũ(t), (10)

to satisfy certain dissipativity property for all instances of
perturbation in the system.

Define the following supply rate

w(α,Z)(ỹ(t), ũ(t)) =

�
ỹ(t)
ũ(t)

�T �
−αZ 0

0 I

� �
ỹ(t)
ũ(t)

�
,

(11)

with Z ∈ Sn
+ and α > 0. We clearly see that if the system

in (10) is stable for all instances of perturbation. Then, the
following dissipation inequality will hold

V (x(0)) +

� t

0
w(α,Z)(ỹ(t), ũ(t))dt ≥ V (x(t)), (12)

for all t ≥ 0 with non-negative quadratic storage function
V (x(t)) = x(t)TY x(t), Y ∈ Sn

+ that satisfies V (0) = 0.

2Note that the existence of a solution for state trajectories is well-defined
and it is always upper semicontinuous in x0 (e.g., see reference [22]).

Condition (12) with (11) further implies the following

He
�
(A+ uρA

δ
+

N�

j=1

BjKj)
TY

�
� −αZ. (13)

Therefore, there exists an upper bound ρ̂ ∈ R+ for which the
dissipativity condition in (13) will hold true for all instances
of perturbation in the system.

Then, we have the following result

He

��
[A,B]U,�L�U,

�W �
−1ET

+ uρ̂A
δ
�T

Y

�
=

�
I

�U,�W �−1ET

�T



uρ̂ He

�
(Aδ

)
TY

�
Y [A,B]U,�L�

[A,B]U,�L

�T
Y 0





×

�
I

�U,�W �−1ET

�
� −αZ, (14)

with uρ̂ ∈ [−ρ̂, ρ̂].3
On the other hand, let us define the following matrix

interval

I(β,Z) =

�
Y

��� β−1Z � Y � Z

�
, (15)

where Z ∈ Sn
+ and β ≥ 1 are assumed to be known a priori.

Suppose that Y satisfies the conditions in (8) and (9), then
the trajectories of the perturbed closed-loop system

ẋ(t) =



A+ uρδA+

N�

j=1

BjKj



x(t),

satisfy
d

dt
(xT

(t)Y x(t))

= xT
(t)He



�
A+ uρδA+

N�

j=1

BjKj

�T
Y



x(t),

≤ −αxT
(t)Zx(t),

≤ −αxT
(t)Y x(t). (16)

Hence, condition (16) stating, equivalently, that Y ∈ I(β,Z)

is a dissipativity certificate with supply rate (11) for all
instances of perturbation in (10) (e.g., see references [24]
and [25]).

Remark 1: We remark that if there exists a solution set X
for Lemma 1 that gives a minimum distance between X and
the set I(β,Z), i.e., �(X,Y ) � infY ∈I(β,Z)

�X − Y �, then
we essentially have a weak-optimal solution. This solution
is unique since I(β,Z) is a convex and compact set [26].
Moreover, finding an upper bound ρ̂ ∈ R+ and Y from a
closed and convex set I(β,Z) is equivalent to solving the
verification problem, i.e., the constrained dissipativity control
problem (e.g., see reference [27]).

In the next section, we will see that such additional
information structure, i.e., the dissipativity property, about
the system is indeed useful in the context of game-theoretic
framework.

3Note that the upper bound ρ̂ continuously depends (in the weak sense)
on x0 and Kj , j = 1, 2, . . . , N .



III. MAIN RESULTS

In this section, we establish an equivalence result between
the set of robust state-feedback gains corresponding to con-
strained dissipativity problem and the feedback Nash equilib-
ria. Specifically, we consider two fundamental problems in
this framework: (i) we first isolate a condition guaranteeing
that the control/strategy space is sufficiently decentralized to
make the game-theoretic scenario/interpretation meaningful,
and (ii) then we provide a sufficient condition for the
existence of robust feedback Nash equilibrium, where the
individual players have different objective functions that
are associated with certain information structures, i.e., the
dissipativity inequalities, of the following system.

ẋ(t) =

�
A+ uρjA

δ
j +

N�

i=1

BiKi

�
x(t) + 0n×1ũ(t),

ỹ(t) = x(t) + 0n×1ũ(t), (17)

where uρj ∈ [−ρj , ρj ], ρj ∈ R+ and Aδ
j ∈ Rn×n are

the uncertainty levels and the perturbation terms associ-
ated with the jth-player, respectively. We further assume
that each perturbed system matrix (A + uρjA

δ
j) lies in

a compact uncertainty set Uρj for j = 1, 2, . . . , N and
(K1,K2, . . . , KN ) ∈ KN .

Next it will be convenient to identify each objective
function Jj : Rn× Uρj×KN → R+ with related function

Rn
×Uρj×KN¬j→R+ : (x0, uρj ,K¬j) �→ Jj(x0, uρj ,K¬j),

(18)

for j = 1, 2, . . . , N .
Then, we can specify a game Γ in in strategic form, i.e.,

the feedback Nash game, by the following data:

Γ

�
N ,KN , (Jj)j∈N ,

�
A+ uρjA

δ
j , [Bj ]j∈N

�
j∈N

�
,

where N � {1, 2, . . . , N} - is the players set.
Therefore, for such a game in strategic form, an N -tuple

(K∗
1 ,K

∗
2 , . . . ,K

∗
N ) ∈ KN , ( i.e., K∗ � (K∗

1 ,K
∗
2 , . . . ,K

∗
N ))

is called a feedback Nash equilibrium if for all j ∈ N ,
Kj ∈ Rrj×n, all instances of perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ]
and each x0 ∈ Rn

Jj(x0, uρ̂j ,K
∗
¬j) ≤ Jj(x0, uρ̂j ,K

∗
), (19)

where K∗
¬j � (K∗

1 , . . . ,K
∗
j−1,Kj ,K∗

j+1, . . . ,K
∗
N ) ∈ KN .4

In the following, we assume that the strategy space
for each player is restricted to linear time-invariant state-
feedback gains, and the resulting multi-channel closed-loop
system is also assumed to be stable for all (or some) initial
conditions x0 ∈ Rn.

4In this paper, the game is essentially defined in the framework of an in-
complete information, since the jth-player’s objective function involves dif-
ferent uncertainty information, i.e., uρj , about the system. However, we re-
mark that the jth-player decides his own strategy by solving the optimization
problem with the opponents’ strategies (K∗

1 , . . . ,K
∗
j−1,K

∗
j+1, . . . ,K

∗
N )

fixed.

Introduce the following set of supply rate functions

W =

�
w(αj ,Zj)(ỹ(t), ũ(t))

��� w(αj ,Zj)(ỹ(t), ũ(t))

=

�
ỹ(t)
ũ(t)

�T �
−αjZj 0

0 I

� �
ỹ(t)
ũ(t)

� �
, (20)

for j = 1, 2, . . . , N , and a matrix interval set I(βj ,Zj)

I(βj ,Zj) =

�
Yj

��� β−1
j Zj � Yj � Zj

�
, (21)

where αj > 0, βj ≥ 1 and Zj ∈ Sn
+ for j = 1, 2, . . . , N .

In light of Lemma 1 and above discussion, we have the
following theorem which provides a sufficient condition for
the existence of feedback Nash equilibria.

Theorem 2: Let Wj ∈ GLn(R) and �j > 0 for j =

1, 2, . . . , N . Assume that αj > 0, βj ≥ 1 and Zj ∈ Sn
+ for

j = 1, 2, . . . , N . Then, there exit Xj ∈ Sn
+, Uj ∈ GLn(R),

j = 1, 2, . . . , N and an N -tuple ( L∗
1, L∗

2, . . . , L∗
N ) ∈�N

j=1 Rrj×n such that
�

0 XjE
ETXj 0

�

+He

��
[A,B]Uj ,L∗

¬j

−�Uj ,W �

�
�
ET �jI

�
�

≺ 0, (22)

where, for some Lj ∈ Rrj×n,

[A,B]Uj ,L∗
¬j

=[AUj B1L
∗
1 · · · Bj−1L

∗
j−1 BjLj Bj+1L

∗
j+1 · · · BNL∗

N ]

and

�Uj ,W � = block diag{Uj ,W1,W2, . . . ,WN}.

Moreover, there exist Yj ∈ I(βj ,Zj), j = 1, 2, . . . , N that
satisfies the following related mapping

sup

(x0,uρj,Kj)∈Rn×Uρj×Rrj×n

Jj(x0, uρj ,K
∗
¬j) � ρ̂j . (23)

for which the closed-loop system in (17) is robustly stable
for all instances of perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ] with K∗

j ∈

arg supKj∈Rrj×n Jj(x0, uρ̂j ,K
∗
¬j){� ρ̂j(x0, uρ̂j ,K

∗
)} for

all j = 1, 2, . . . , N .5

Proof: Suppose all the perturbed systems in (17) satisfy
the following dissipativity inequalities

Vj(x(0)) +

� t

0
w(αj ,Zj)(ỹ(t), ũ(t))dt ≥ Vj(x(t)), (24)

for all t ≥ 0 with non-negative quadratic storage functions
Vj(x(t)) = x(t)TYjx(t) and Yj ∈ IYj that satisfy Vj(0) = 0

for j = 1, 2, . . . , N .

5In general, simultaneously solving a set of optimization problems, i.e.,
solving (23) together with (22), is not easy since it is a non-convex
optimization problem which involves finding a solution satisfying at the
intersection of a set of constrained quadratic functionals [28] (c.f. Remark 2,
Section II above).



Thus, the trajectories of each perturbed closed-loop system
(i.e., for j = 1, 2, . . . , N )

ẋ(t) =

�
A+ uρjA

δ
j +

N�

i=1

BiK
∗
i

�
x(t),

satisfy

d

dt

�
xT

(t)Yjx(t)
�

= xT
(t)He




�
A+ uρjA

δ
j +

N�

i=1

BiK
∗
i

�T

Yj



x(t),

≤ −αjx
T
(t)Zjx(t),

≤ −αjx
T
(t)Yjx(t). (25)

for all instances of perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ] in the
system.

Then, the rest of the proof follows the same lines as that
of Theorem 1. In fact, replacing the following

[A,B]U,�L → [A,B]Uj ,L∗
¬j

, �U,�W � → �Uj ,�W � and

X → Xj ,

in Theorem 1 immediately gives the condition in (22) of
Theorem 2. Note that K∗

j and Kj are given by

K∗
j = L∗

jW
−1
j and Kj = LjW

−1
j ,

for j = 1, 2, . . . , N .
Moreover, the N -tuple (Y1, Y2, · · · , YN ) ∈

�N
j=1 I(βj ,Zj)

is a collection of dissipativity certificates corresponding to a
set of supply rates (20) for all instances of perturbation in
(17).

We next present a more realistic game-theoretic inter-
pretation in terms of the upper uncertainty bounds ρ̂j ∈

R+ for all j ∈ N that describe the N -tuple uncertainty
set (uρ̂1 , uρ̂2 , · · · , uρ̂N ) ∈

�N
j=1[−ρ̂j , ρ̂j ] together with the

existence of stabilizing state-feedback gains that provide a
sufficient condition for obtaining a set of feedback Nash
equilibria.

Hence, we have the following equivalent statements:
(i). ∃K∗ ∈ KN , ∀x0, ∀uρ̂j ∈ [−ρ̂j , ρ̂j ], ∀K∗

¬j ∈

KN , ∀j ∈ {1, 2, . . . , N} such that

Jj(x0, uρ̂j ,K
∗
¬j) ≤ Jj(x0, uρ̂j ,K

∗
). (26)

(ii). The extended LMIs condition in (22) and the dis-
sipativity inequalities of (24) with a set of supply
rates W in (20) completely describes the set of robust
stabilizing state-feedback gains.

The equivalence between (i) and (ii) leads to characteriza-
tion of feedback Nash equilibria over an infinite-time horizon
in terms of stabilizing solutions of a set of extended LMIs.

Furthermore, the exact characterization of the feedback
Nash equilibria is given by the following two theorems.

Theorem 3: Let Wj ∈ GLn(R) and �j > 0 for j =

1, 2, . . . , N . Suppose Xj ∈ Sn
+, Uj ∈ GLn(R), L∗

j ∈

Rrj×n and �j > 0 for j = 1, 2, . . . , N satisfy the ex-
tended LMIs condition in (22). Then, there exists an N -
tuple (K∗

1 ,K
∗
2 , . . . ,K

∗
N ) ∈ KN feedback Nash equilibrium

with respect to the upper uncertainty bounds ρ̂j ∈ R+ for
j = 1, 2 . . . , N of (23).

Proof: The first part of this theorem is already provided
in Theorem 2, i.e., from the standard argument of the
stabilizability of the pair (A, [ B1 B2 · · · BN ]), we
can always find an N -tuple (K∗

1 ,K
∗
2 , . . . ,K

∗
N ) ∈ KN and

for all Kj = LjW
−1
j ∈ Rrj×n and j ∈ {1, 2 . . . , N} such

that (22) holds. Applying (23) of Theorem 2 together with
the dissipativity certificates Yj ∈ IYj and a set of supply
rates W (20). Then, for a fixed (x0,K∗

) ∈ Rn × KN , we
will obtain an upper bound ρ̂j ∈ R+ for all instances of
perturbation in (17) and so that

Jj(x0, uρ̂j ,K
∗
¬j) ≤ Jj(x0, uρ̂j ,K

∗
),

for all j ∈ {1, 2, . . . , N}.
Hence, we immediately see that the N -tuple

(K∗
1 ,K

∗
2 , . . . ,K

∗
N ) ∈ KN satisfies the feedback Nash

equilibrium.
Remark 2: The class of admissible strategies for all play-

ers are generated through a set of individual objective func-
tions that are induced from dissipativity inequalities of (24)
with a set of supply rates (20).

Theorem 4: Suppose the N -tuple (K∗
1 ,K

∗
2 , . . . ,K

∗
N ) ∈

KN is a feedback Nash equilibrium with respect to the
objective function values of (23). Assume that Wj ∈ GLn(R)
and �j > 0 for j = 1, 2, . . . , N . Then, there exists a
solution set Xj ∈ Sn

+, Uj ∈ GLn(R) and L∗
j ∈ Rrj×n for

j = 1, 2, . . . , N that satisfies the extended LMIs condition
of (22).

Proof: Suppose the N -tuple (K∗
1 ,K

∗
2 , . . . ,K

∗
N ) ∈ KN

is a feedback Nash equilibrium such that

Jj(x0, uρ̂j ,K
∗
¬j) ≤ Jj(x0, uρ̂j ,K

∗
),

where the value for the continuous objective function
Jj : Rn× Uρj×KN → R+ is claimed as

sup

(x0,uρj,Kj)∈Rn×Uρj×Rrj×n

Jj(x0, uρj ,K¬j) �→ ρ̂j ,

with K∗
j ∈ arg sup

Kj∈Rrj×n

Jj(x0, uρ̂j ,K
∗
¬j){�

ρ̂j(x0, uρ̂j ,K
∗
)} for all j ∈ N .

Then, we can always find a solution set that satisfies
the extended LMIs condition in (22) for which the closed-
loop systems in (17) are robustly stable for all instances of
perturbations (uρ̂1 , uρ̂2 , · · · , uρ̂N ) ∈

�N
j=1[−ρ̂j , ρ̂j ].

Remark 3: Note that all closed-loop systems in (17) sat-
isfy the dissipative inequalities of (24) with a set of supply
rates (20) for all j ∈ N and instances of perturbation
uρ̂j ∈ [−ρ̂j , ρ̂j ].

Note that the equivalence between (i) and (ii) (i.e., Theo-
rem 3: (ii) ⇒ (i) and Theorem 4: (i) ⇒ (ii)) leads exactly to
characterization of the feedback Nash equilibrium via a set
of robust stabilizing state-feedback solutions of the extended
LMIs.



IV. CONCLUDING REMARKS

In this paper, we have looked the problem of state-
feedback stabilization for a multi-channel system from a
game-theoretic framework, where the class of admissible
strategies for the players is induced from a solution set of the
objective functionals that are realized through certain dissi-
pativity inequalities. In such a scenario, we characterized the
feedback Nash equilibria via a set of robust stabilizing state-
feedback gains corresponding to constrained dissipativity
problems. Moreover, we showed that the existence of a weak-
optimal solution to the constrained dissipativity problem is
a sufficient condition for the existence of a feedback Nash
equilibrium.
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[15] T. Başar and P. Bernhard, H∞- optimal control and related minimax

design problems, Birkhäuser, Boston, 1995.
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