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Output Feedback Model-Based Control of Uncertain Discrete-Time
Systems with Network Induced Delays.
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Abstract—A new architecture for model-based control of
unstable and uncertain systems with network induced delays,
and for set-point tracking over networks, is presented in this
paper. This setup provides better performance than similar
approaches in terms of steady-state tracking error and
reduction of network traffic by transmitting measurement
updates only when necessary. The results in this paper also
extend previous work using the Model-Based Networked
Control Systems (MB-NCS) approach to consider the output
feedback case and to consider models and uncertain systems
which do not necessarily have the same dimension; that is, both
the parameters and the order of the system are unknown. The
Model-Based Event-Triggered (MB-ET) framework presented
in this paper is used for stabilization and tracking of piece-wise
constant signals and it is extended in two directions; first, to
consider a more general two channel networked system and
second, to address the reference input tracking problem in the
presence of network induced delays.

I. INTRODUCTION

IN Networked Control Systems (NCS) the system to be
controlled and the different components such as actuators,
controllers, and sensors are spatially distributed and
communication between these components is achieved
through the use of a digital communication network [1].
NCS offer many advantages such as cost efficiency and
improved functionality [2]-[3], but new problems arise by
using this control implementation compared to the classical
wired control systems.

One of the main problems in NCS which is studied in this
paper is the design of control schemes considering lack of
feedback measurements for possibly long intervals of time.
Model uncertainties are important to be considered under
this situation. One of the properties of a classical closed loop
system with continuous feedback is that the appropriate
design of closed loop controllers reduces sensitivity to
model uncertainties. Naturally, this property is lost as
feedback measurements are no longer received at the
controller node. An important framework that considers
model uncertainties and that is able to reduce sampling rate
is called Model-Based Networked Control Systems (MB-
NCS) [4]-[6]. Results obtained in relation to MB-NCS deal
primarily with stability issues in different cases such as
continuous-time and discrete-time plants with periodic
update intervals [5] and with random update intervals [6].
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Similar model-based approaches have been considered by
different authors, but many of them assume that the model
and system parameters are exactly the same [7]-[9]. Since
the absence of feedback measurements produces large errors
between the model and the real system response, even small
uncertainties may result in undesirable system behavior if
they are not considered in the controller design stage.

Previous work in MB-NCS assumes that the model is of
the same dimension as the real plant [4]-[6], [10]-[11]. The
new MB-NCS architecture described in the present paper not
only generalizes to the case of output feedback but it also
considers different types of uncertainties that result in the
real system being of different dimension than the available
model. The work in this paper focuses on Single-Input
Single-Output (SISO) systems using output feedback and
dynamic controllers. The objective is to minimize network
communication and the steady-state plant tracking error for
step reference inputs. In addition, we extend these results to
consider the case of uncertain systems affected by network
induced delays. It is also shown that this approach can be
used for stabilization of systems that transmit feedback
measurements over uncertain additive Gaussian channels,
where the unknown parameters that characterize the channel
are treated as the uncertainties in the control system.

The problem of reference input tracking in NCS has been
considered by different authors. Gao and Chen [12]
proposed a new model based on the original plant and the
model reference system. This new model considers a Zero-
Order-Hold (ZOH) in the actuator node and it follows a
sampled-data approach at the updating instants of the ZOH.
Although parameter uncertainties are considered in the
controller design step, the nominal model is not used
between updates to estimate the state of the plant; reduction
of transmission rate is not an objective in that work.
Goodwin et al. [13] presented different NCS architectures
and compared their properties for typical problems such as
disturbance rejection and input tracking. One of these
architectures considers models of both the plant and the
network channel. The objective in [13] is to model the whole
NCS at the controller node and generate a nominal output of
the system that is compared to the real output and feed the
controller using the resulting error. It is shown that under
certain conditions this architecture outperforms common
ones that do not use a model of the system in the control
loop. In contrast to the results presented in the present paper,
one significant drawback of the approach in [13] is that it is
restricted to stable plants. Other approaches to this problem
can be found in [14]-[16].
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The paper is organized as follows: section II describes the
model-based architecture. Conditions for stability and for
bounded steady-state tracking error are presented in Section
III. Section IV extends the results for a more general
networked architecture. Network delays are considered in
Section V. Illustrative examples are offered in section VI
and section VII summarizes the results of the paper.

II. MODEL-BASED NETWORKED ARCHITECTURE

MB-NCS were introduced in [4]; this configuration makes
use of an explicit model of the plant (or system) which is
added to the actuator/controller node to compute the control
input based on the state of the model rather than on the plant
state. The state of the model is updated when the controller
receives the measured state of the plant. Fig. 1 shows the
interconnection of several NCSs. The labeled small blocks
correspond to each system’s actuator and sensor nodes. We
assume that the systems are decoupled, i.e. the dynamics of
each system in Fig. 1 depend only on its own state. Without
loss of generality we will focus on a particular system/model
pair along with the corresponding actuator and sensor nodes.

s I gl= g

‘ NETWORK ‘

&

Fig. 1. Representation of NCSs.
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In contrast to previous work in MB-NCS, we do not
assume that the entire state vector is available but only an
output of the system. In order to obtain a better tracking
performance and to avoid implementation of state observers
using uncertain parameters we use a transfer function
representation for the model and the system. We consider
discrete-time systems which are modeled by:

_Y(2) b +bz" +bz" . 4b, 2 +b,

~ _n n—1 n=2 :
U(z) z'+az" +a,z"" +..+a, z+a,

7(z) )
We consider strictly proper systems, i.e. n>m. The model
(1) may be unstable i.e. not all poles of the transfer function

T (z) have magnitude less than one. Typically, the model

will represent the unstable dynamics of the real system. We
consider uncertain systems that can be represented using
stable and proper multiplicative or additive uncertainties:

T(2)=T(2)-AT, (2), T()=T()+AT,(2). (2)
Let T (z) represent in general either a multiplicative or an

additive uncertainty. As a result, the model and the plant are,
in general, of different order. If a state-space representation
is to be used we will find that the model and plant state
vectors have different dimensions and this type of
uncertainty has not been considered yet in the MB-NCS
setup. In order to deal with this dimensionality problem we
implement the discrete-time model as a simple difference

equation. The system output measurements are used directly
to update the current and past output variables of the model
without need of implementing a state observer.

In order to find the time instants that the sensor needs to
send a measurement to the controller node we implement an
event-triggered strategy. In event-triggered control [17]-[18]
the sensor measures the state at every sampling time, it
computes the state error and, based on the norm of this error,
a decision is made whether the measurement needs to be
sent to update the model. In the Model-Based Event-
Triggered (MB-ET) framework the state error is defined as
the difference between the current state and the state of the
model [18]. Here, we use a similar definition for the error
but in this case we are only able to measure the output of the
system. The output error in this case is given by:

e(k) = y(k)— y(k) 3)
where y(k) is the output of the system and p(k) is the output

of the model. Node architectures for the set-point tracking
model-based problem are shown in Fig. 2 and Fig. 3.
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Fig. 2. Model-Based set-point tracking networked system:
Actuator/controller node.

Fig. 2 represents the actuator/controller node and it
contains the model 7(z), the controller C(z), which is

designed based on the available model, and the set-point
detector. The function of the set-point detector is to
determine the time instants at which the reference input,
which is only available at the controller node, changes its
set-point value in order to transmit this information to the
sensor node. Fig. 3 represents the sensor node. The sensor
needs to compute the output error (3), and compare its
absolute value to a fixed threshold. When the error is greater
than the threshold an event is triggered and the current and
n-1 past measurements of the plant are sent to the controller
node. In order to calculate the output error the sensor needs
the current value of the model output p(k) in addition to the

plant output measurements. The exact copy of the output of
the model can be easily obtained without sending frequent
information as follows: copies of the model and controller
are implemented in the sensor and at the time instants when
the reference input changes values the controller node only
needs to transmit the new set-point value. When a reference
input value is received at the sensor node it is held until a
new value arrives.
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Fig. 3. Model-Based set-point tracking networked system: Sensor node.

The overall approach can be used for tracking of different
types of reference input signals but it will be necessary to
obtain an accurate estimation of the external input in the
sensor node or to increase the communication rate from the
controller to the sensor which is undesirable in networked
implementations since other systems and applications need
to communicate information. For this reason we restrict this
framework to track piecewise constant signals which is
general enough for many applications [22]-[23].

III. OUTPUT FEEDBACK MB-ET CONTROL

The output feedback problem in MB-NCS has been
studied mostly through the use of state observers as in [4]-
[5]. The implementation of a state observer, of course, is
obtained using the model parameters. For traditional non-
networked systems, that is when continuous feedback is
available, and in the absence of model uncertainties the
design of observer and controller gains can be done
independently from each other, i.e., the separation principle
holds. However, in most real life problems there exists a
model-plant mismatch and it is not possible to obtain a
perfect estimation of the states of a system using uncertain
parameters; see [19] for further details.

In the present paper the model in both the controller and
the sensor nodes is implemented as a difference equation
which represents the time-domain equivalent of the transfer
function (1). The absolute value of the output error is
compared to fixed positive threshold & When the relation
|e(k)| >a holds then the sensor transmits a measurement

update. At this point, the output error (3) is set to zero, since
the model output is equal to the real output of the system.
Therefore, the output error is bounded by:
le(k)| < o 4)

When the sensor transmits an update according to the
current output error, then it sends the current and n-1 past
output measurements which are used to update the model in
the controller. At the same time the sensor uses exactly the
same measurements to update its own copy of the model.

Next, we provide conditions under which we are able to
stabilize uncertain unstable systems with limited feedback.
Furthermore, by using the internal model principle [20], [21]
we are also able to bound the steady-state plant output
tracking error defined by:

E (2) = R(2)=Y(2) )

Theorem 1. The plant output tracking error corresponding
to the networked system (2) with model (1) is bounded for
any bounded reference step input if

a) The term 1+7(z)C(z) has all its zeros inside the unit
circle.

b) The poles of T, (z) have magnitude less than one.

c) The poles of the controller C(z) contain the factor (z-1).
Proof. Define model output tracking error.

E(2)=R(z)-Y(2). (6)
The output of the plant is given by:
Y(2) = T(2)C(2)E, (2) = T(2)C(2)[R(z) - Y (2)]
and using (3) we obtain the following:

Y(2)=T,(2)R(z)-T,(2)E(z) @)
where T,(z) = _TECE) .
1+T(z)C(2)
The output tracking error is given by:
1
E,(Z)—MR(ZHTAZ)E(Z) (®)

The reference input term in (8) is asymptotically stable for
constant reference inputs (k) since the zeros of 1+7(z)C(z)
are inside the unit circle and the poles of the controller
contain the factor (z-1). The second term in (8) contains the
stable (according to conditions a) and b)) closed loop
transfer function 7),(z) but the output error E(z) is not

constant. However, the output error is bounded by updating
the model (and resetting the output error) every time the
error’s absolute value is greater than some positive threshold
a m

Stability of the networked system can be obtained from
Theorem 1.

Corollary 2. The networked system (2) with model (1) is
bounded-input bounded-output stable with respect to the
error (3) if

a) The term 1+7(z)C(z) has all its zeros inside the unit
circle.

b) The poles of T, (z) have magnitude less than one. m

Remark 1. The selection of the constant threshold « is
made considering the following tradeoff: A small threshold
results in a smaller bound on the steady state tracking error
but, in general, it increases communication rate by sending
measurement updates more frequently. A reduction on
network usage can be achieved by increasing the threshold at
the cost of a larger steady-state-tracking error.

Remark 2. The controller C(z) is designed in such a way
that the closed loop model is stable and with desired
properties by selection of desired closed loop poles in
addition to providing zero steady-state tracking error in the
absence of model uncertainties.

IV. TWO-CHANNEL NETWORKED SYSTEM

Fig. 4 shows a more general NCS architecture in which
the communication network is used to connect the sensor
node to the controller node and the controller node to the



actuator node. Both actuator and sensor node functions are
simplified and most of the computations are performed in
the controller node. This architecture does not restrict the
controller to be implemented or attached to the actuator
node. It also provides the option to use a controller node as a
controller for more than one subsystem, which is useful in
many applications.

The controller node contains the model 7 (z) and the

controller C(z). The controller has access to the reference
input signal as well. When the controller node receives a
measurement update from the sensor it predicts the sequence
of inputs u(k) and the corresponding sequence of model
outputs p(k) for k=t,..t, +N, where ¢, is the latest

update instant. This input and output prediction is made
assuming that the reference signal remains constant during
the prediction horizon N. The input sequence is sent to the
actuator node in a single and larger packet. The actuator
synchronizes the sequence by applying each input value at
the corresponding time instant. Similarly, the model output
sequence is sent to the sensor node in order to obtain the
output error and apply the event policy.

If no error event update has been generated before or at
time ¢, + N then a time-triggered update takes place and a
new output measurement is sent to the controller to compute
new sequences in order to repeat the cycle again for
k=t ..t.,+N with ¢, =t +N. Note that the control

process can be periodic but not necessarily, since an error
event can occur at time ¢, +M , for M<N, which makes

L, =t +M.

Finally, the controller also contains the set-point detector
and it will send a request for a measurement update to the
sensor node if a change in the set-point value occurs. This
new event will initialize the prediction cycle no matter if
error or time events have not been generated yet. The results
in the previous section can be extended to consider this type
of implementation and by following some mild assumptions.

System 1 H System 2 ~E]-‘ A
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Fig. 4. Representation of two-channel NCSs.
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Theorem 3. Assume that:

- All nodes (actuator, controller, and sensor) for a given
networked system are synchronized.

- There exists a time-triggered sensor event equivalent to
the duration of the input and model output sequences that are
predicted by the controller.

Then the plant output tracking error is bounded for any
bounded reference step input if

a) 1+7(z)C(z) has all its zeros inside the unit circle.

b) The poles of T, (z) have magnitude less than one.

¢) The poles of the controller C(z) contain the factor (z-1).

Proof. The proof is similar to the one for Theorem 1 by
noticing that the additional events trigger a measurement
update which resets the output error in (8). m

V. SINGLE-CHANNEL NETWORKED SYSTEM WITH DELAYS

The results in section III assumed zero delay between the
sensor and the controller nodes. By the nature of the event-
triggered strategies, it may happen that several systems
attempt to access the network at similar times. In this case
only one node can gain access and the rest need to wait until
the network turns into an idle state.

An approach to consider network induced delays within
the MB-NCS framework is to propagate the delayed
measurements received at the controller, i.e. to estimate the
current output of the system based on the delayed
measurements and using the model parameters. In this
section we introduce a different approach for the single
channel networked system that provides better results in
terms of system performance and reduced network
communication.

Assume that the measurement updates arrive at the
controller/actuator node d sampling times later, i.e. when a
measurement is received at time ¢, it corresponds to an event
generated at time ¢, —d which contains measurements

w(t, —d)..y(t, —n—d). The advantage of using transfer
function representation in this case is that the network

induced delay can be represented by z . Assuming a
constant delay we are able to jointly model the dynamics of
the system and the delay induced by the network as follows:

T,(z)=T()-z"* ©)

The new controller, represented by C,(z), is designed
based on TZ(Z) , that is, the controller stabilizes f;(z) and
provides zero steady-state model output tracking error. The
model Yz(z) is updated using the delayed measurements

directly.

Theorem 4. The plant output tracking error corresponding
to the networked system (2) with induced delays and with
model (9) is bounded for any bounded reference step input if

a) The term 1+7,(z)C,(z) has all its zeros inside the unit

circle, where T,(z) =7(z)- z.

b) The poles of T (z) have magnitude less than one.

c¢) The poles of C,(z) contain the factor (z-1).

Proof. Let fd(z) represent the output of the model fz,(z)
and Y,(z) the delayed output of the system, i.e. the output
of T,(z). Define the E,(2)=Y,(2)-Y,(2),
E'(z)=R(z)- Y,(2). Tt can be shown that the delayed
output tracking error is given by

Crrors

E'(2)= RE)+TI(E,()  (10)

1+7,(2)C,(2)
which is bounded by updating the model using the real
output of the system, that is, when the controller receives



delayed measurements it updates the model using those
measurements directly, i.e. y,(z,)=y(t, —d)=y,(t,) which

7,(2)C,(2)
1+T,(2)C, (2)

Since E(z) represents the delayed version of E, (z) then
the output tracking error is bounded as well. m

Corollary 5. The networked system (2) with induced
delays and with model (9) is bounded-input bounded-output
stable with respect to the error (3) if

a) 1+7,(z)C,(z) has all its zeros inside the unit circle.

b) The poles of T, (z) have magnitude less than one. m

Remark 3. One important aspect in the implementation of
this approach for the case of network delays is the
computation of e, (k)=J,(k)—y(k—d). This task needs to
be accomplished at every sampling time which requires the
comparison of the outputs of the real system with no delay
(2) and the delayed model (9). One way to compute this
error is to use old system outputs, but since the current
system output is available at the sensor node, then it can be
used to compute the output error e(k) instead of computing
e, (k). Therefore we compute e(k)=p,(k+d)—y(k) and the
quantity p,(k+d) is obtained by executing the model in the
sensor node until time k+d in order to obtain an estimate of
Yolk+d) = y(k).

Remark 4. Controller complexity. The cost to be paid by
using the approach described in this section compared to the
usual prediction using the model with no delay is in the form
of a more complex controller. The order of the controller
increases since C,(z) is designed to control the higher order

model f“d (2).

makes e,(z,) =0, where T} (z) =

VI. EXAMPLES

Example 1. (Uncertain system with delays). Consider the
unstable model

z+1 1
7-02z-09 2 (an
which models the dynamics of the system and a constant
delay z7equivalent to a 3-sample delay. The controller is
designed in order to stabilize f:i(z) and to provide zero

steady state model output tracking error and is given by:
2,638z -1.102z" -1.0612° (12)

24022 +0.88952* +035792° +0.87262° - 2.141z-1.179°
As it was mentioned before, the complexity of the
controller increases by considering the model TA;(Z) instead

T,(z)=

C,(2)=

of T(z). The real system consists of the model dynamics
with zero delay and the following multiplicative uncertainty:

z+0.61
AT, (z)= 13
W)= 0ss (1)
then, the dynamics of the real system are given by:
2
T(z)= z"+1.61z+0.61 (14)

2403522 -1.01z2—-0.495
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Fig. 5. System output and reference input for example 1 and for o=0.05
(top). Network communication instants (bottom).

Note that the real system contains no delay since the
delays are induced by the network when a feedback
measurement is sent from the sensor node to the
controller/actuator node. Good performance and reduction of
communication are obtained as shown in the simulation
results shown in Fig. 5. The network communication signal
n (k) represents the time instants at which output
measurements are sent from the sensor node to the controller
node. The rest of the time the networked system operates in
open-loop mode.

1 if measurements are sent at time k

ns(k)={0

The performance of the system using the delayed model
and controller is considerably superior to the propagation
approach used in previous work on MB-NCS [5], [24]. In
order to show the imporved performance we simulate the
same system and model using the same reference input,
delay, and threshold. The difference is that we use the
propagation method and the controller is designed for the

no-delay model T (z). Results of simulation are shown in

Fig. 6, which shows a poor tracking perfromance of the
system and a significant increase in network communication.
3

(15)

if measurements are not sent at time k

7
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Fig. 6. Control of system with network delays using propagation for &=0.05
(top). Network communication instants (bottom).



Example 2. Stabilization over an additive Gaussian channel.
We consider the unstable system:

1
_ 16
z°-02z-0.9 (16)

The system is assumed to be known. The measurements are
tranmitted over an additive Gaussian channel modeled by:

v, (k) =H, y(k) +v(k) (17)
where v(k) is zero-mean Gaussian noise with variance o,

T(z)=

and y, (k) is the measurement received at the controller
node. The parameter #, is assumed to be unknown and it

represents the uncertainty in our approach in addition to the
Gaussian noise. Fig. 7 shows the results of simulation when
an impulse external disturbance perturbs the system and
using H, =0.8 and o, =0.01. The sytem is stable since the

conditions in Corollary 2 are satisfied for this channel
uncertainity.

2 osl /]
S el
Eoell I (-l
g |- (I
: 20 I LI

Time (k)
Fig. 7. Stabilization of system over an uncertain network. Output of the
system for =0.03 (top). Network communication instants (bottom).

VII. CONCLUSION

Output feedback control using the MB-NCS framework
has been studied in this paper. The results in this paper also
provide a way to control networked systems using models
that do not necessarily have the same dimension as the
uncertain system. In particular, the set-point tracking
problem has been addressed in the presence of model-plant
mismatch and in the absence of feedback measurements for
extended periods of time. An important extension considered
the same problem but in the presence of network induced
delays. Simulation examples show the benefits of this
scheme in relation to the tracking performance and the
reduction of network bandwidth needed to control the
system. It was also shown that the framework described in
this paper is robust with respect to a class of uncertain
channels when the dynamics of the system are known with
certainty. The problem of stabilization when both the system
and the channel are uncertain will be considered in future
research. Future work will also address the time-varying
delay case and for both the single and two-channel
architecture.
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