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Abstract—This paper analyzes the passivity and feedback
passivation problems for discrete-time switched nonlinear
systems with both passive and nonpassive modes that have
relative degree zero. We generalize the classical passivity
definition for such a switched nonlinear system provided
that the increase in storage function over a finite horizon is
bounded by the total supplied energy during this time period.
We further extend this generalized passivity definition to
switched nonlinear systems with passive, feedback passive
modes and modes which can not be rendered passive using
feedback (non-feedback passive modes). The switched non-
linear system is proved to be locally feedback passive if and
only if its zero dynamics are locally passive. A lower bound
on the ratio of total activation time between (feedback)
passive and non-feedback passive modes is obtained to
guarantee passive zero dynamics with Lipschitz constraints.
We prove that output feedback control can be used to
stabilize the equilibrium point of the switched system.

I. INTRODUCTION
Passivity is an important property of dynamical systems

because i) the free dynamics and zero dynamics of passive
systems are Lyapunov stable, ii) the parallel or nega-
tive feedback interconnections of passive systems remain
passive, and iii) a passive system can achieve stability
using output feedback ([1], [2]). In the classical passivity
theory [3]–[7], a system is said to be passive if the increase
in storage function is bounded by the energy supplied to
it at every time step.
However, most physical systems, especially complex

systems such as switched systems, are not inherently
passive. In this paper, we generalize the classical passivity
definition to discrete-time switched nonlinear systems
consisting of both passive and nonpassive modes that have
relative degree zero. Such a system is said to be passive
if the increase in storage function over a finite horizon is
bounded by the total energy supplied to it during this time
period. When a nonpassive mode is active, the increase in
storage function is allowed to be greater than the supplied
energy. We further extend this generalized definition to a
switched nonlinear system consisting of passive, feedback
passive modes, and modes which can not be rendered
passive using feedback (non-feedback passive modes).
Under the generalized passivity definition, the switched
system is proved to be locally feedback passive if and
only if its zero dynamics are locally passive.
We first review the literature on passivity of switched

systems. There has been considerable attention on the
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passivity of switched systems with all passive modes.
One main category uses a common storage function for
all the modes [8]–[11]. To get less conservative results,
the techniques of multiple storage functions for differ-
ent modes have been proposed via piecewise quadratic
storage functions [12], multiple storage functions and a
same supply rate [13], and multiple storage functions
and multiple supply rates ([14], [15]). For more general
switched nonpassive systems, stability results have been
presented in [16] using passivity indices and in [17] via
average dwell time method. Unlike the above work, since
passivity is a desirable property in addition to stability
because of several additional properties that it guarantees,
here we propose necessary and sufficient conditions to
guarantee system passivity in the presence of both passive
and nonpassive modes. We also prove that output feedback
control can be used to stabilize the equilibrium point of
the switched system.
Next, we summarize some related work on classi-

cal passivity and stability theory for nonlinear systems.
The feedback passivity equivalence (Willems-Hill-Moylan
conditions) for continuous time systems were developed
in [3], [5]. The feedback equivalence for discrete-time
passive systems has been proposed in [18]. In the present
paper, we generalize the classical results to switched
nonlinear systems with passive, feedback passive and
non-feedback passive modes via the generalized passivity
equivalence (i.e., necessary and sufficient conditions for
passivity). This is analogous to the generalized asymptotic
stability of discrete-time nonlinear time-varying systems
where the Lyapunov function is non-increasing only on
certain unbounded sets [19]. However, unlike [19], the
passivity analysis is complicated by the fact that passivity
is an input-output property and both the inputs and the
outputs are time varying. Due to this difficulty, we analyze
the passivity properties of a switched system based on zero
dynamics ([1], [6], [20], and especially [18]) which are the
internal dynamics of the system that are consistent with
constraining the system output to zero.
The paper is organized as follows. Section II reviews

related background on classical passivity theory. Section
III introduces the problem formulation. In Section IV,
we propose a generalized passivity definition and develop
a necessary and sufficient condition for the passivity of
the switched nonlinear systems. Section V extends the
definition to switched systems with passive, feedback
passive, and non-feedback passive modes. The switched
system is proved to be locally feedback passive if and only
if its zero dynamics are passive. In Section VI, a lower

Jaehyun
CDC '12



bound on the total activation time of the (feedback) passive
versus non-feedback passive modes is derived to guarantee
passive zero dynamics with Lipschitz constraints. In Sec-
tion VII, we prove that the equilibrium point of the passive
switched system can achieve asymptotic stability using
output feedback if the system is zero state detectable. We
conclude the paper in Section VIII.

II. PRELIMINARY

Consider a system of the form
{

x(k + 1) = f(x(k),u(k))
y(k) = h(x(k),u(k))

, (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are
the state, input, and output variables, respectively. X, U
and Y are the state, input, and output spaces, respectively.
Let Z+ denote the set of nonnegative integers. The time
index k ∈ Z+ and f , h are in C∞. All considerations
are restricted to an open set X×U containing an isolated
equilibrium point (x∗,u∗). Assume that (x∗,u∗) = (0,0)
and h(0,0) = 0.

Definition II.1. [21] A system of the form (1) is locally
passive if there exists a positive definite function V (x),
called the storage function, such that the following in-
equality holds in a neighborhood of the equilibrium point
(0,0),

V (f(x(k),u(k))) − V (x(k)) ≤ uT(k)y(k),

∀x ∈ X,u ∈ U, k ∈ Z+. (2)

Definition II.2. [18] A system of the form (1) is locally
passive if there exists a positive definite C2 storage func-
tion V (x) such that the following equation holds in a
neighborhood of (0,0),

V (f(x(k),u(k))) − V (x(k)) = uT(k)y(k)

−(l(x(k)) + e(x)u(k))T(l(x(k)) + e(x(k))u(k))

−m(x(k))Tm(x(k)), ∀x ∈ X,u ∈ U, k ∈ Z+, (3)

where l(x(k)), e(x(k)),m(x(k)) are real functions that
equal to zero if and only if x(k) = 0.

Remark II.1. Definitions II.1 and II.2 are consistent
because the term −(l+eu)T(l+eu)−mTm is nonpositive.
Contrarily, if a system is nonpassive, then there does
not exist any C2 storage function such that Equation (3)
holds. We may associate any C2 storage function with the
nonpassive system and model its increase by

V (f(x,u)) − V (x) = uTy + (l + eu)T(l + eu)

−mTm, ∀x ∈ X,u ∈ U, k ∈ Z+, (4)

where the term (l + eu)T(l + eu) − mTm can be either
positive, negative, or zero.

Let u(k) = η(x(k),v(k)) : X × U → U denote a
nonlinear feedback control law. If η is locally regular, i.e.,

∂η(x(k),v(k))
∂v(k) (= 0 for all x ∈ X,v ∈ U, the system

{

x(k + 1) = f(x(k),u(x(k),v(k))) = f̄(x(k),v(k))
y(k) = h(x(k),u(x(k),v(k))) = v(k)

(5)

is referred as the feedback transformed system. Because
h(x,u)

∣
∣
∣
(x∗,u∗)

= 0, (x∗,v∗) = (0,0) remains an isolated
equilibrium point of (5).

Definition II.3. [20] A system of the form (1) is locally
feedback passive if exist a positive definite storage func-
tion V (x) and a regular feedback control law u(k) =
η(x(k),v(k)) : X×U → U with v(k) as the new input
such that the following inequality holds in a neighborhood
of (x∗,v∗), V (f̄(x(k),v(k))) − V (x(k)) ≤ vT(k)y(k),
∀x ∈ X,v ∈ U, k ∈ Z+.

The zero dynamics ([1], [21]) of the feedback trans-
formed system (5) are given by constricting the system
output to zero using control u∗(x(k),v∗(k) = 0), i.e.,

{

x(k + 1) = f̄(x(k),0)
y(k) = 0

(6)

From Definition II.1, the system zero dynamics are
passive if V (f̄(x(k),0)) − V (x(k)) ≤ 0, ∀x ∈ X,v ∈
U, k ∈ Z+.

Lemma II.1. [20] Passive zero dynamics are equivalent
to a Lyapunov stable system.

Theorem II.1. [20] If system (1) is locally passive, then
its zero dynamics (6) are also locally passive.

We now consider a discrete-time nonlinear system with
affine input and local relative degree zero [20]

{

x(k + 1) = f(x(k)) + g(x(k))u(k)
y(k) = h(x(k)) + J(x(k))u(k)

. (7)

Theorem II.2. [20] Suppose there exists a positive defi-
nite C2 storage function where V (f(x(k))+g(x(k))u(k))
is quadratic in u(k), ∀f, g. System (7) is locally feedback
passive if and only if its zero dynamics are locally passive
in a neighborhood of x∗ = 0.

III. PROBLEM FORMULATION
Consider a discrete-time switched nonlinear system

which is affine in control input
{

x(k + 1) = fσ(k)(x(k)) + gσ(k)(x(k))u(k)
y(k) = hσ(k)(x(k)) + Jσ(k)(x(k))u(k)

, (8)

where σ(k) = {1, 2, · · · , N} is the switching signal.
fσ(k), gσ(k), hσ(k) and Jσ(k) are in C∞. Assume that
(x∗,u∗) = (0,0) is a common isolated equilibrium for all
the modes. The system is assumed to have local relative
degree zero and Jσ(k) is invertible in a neighborhood of
the equilibrium. Let S1, S2 denote the set of switching
signals of nonpassive and passive modes, respectively.
Furthermore, let S∗

1 denote the set of switching signals of
feedback passive modes. Therefore, the set of switching
signals of non-feedback passive modes is denoted by



S1\S∗
1 . Assume that the system starts in one of the passive

or feedback passive modes. According to the classical
definition of passivity, this system is nonpassive because
the increase in storage function is not necessarily bounded
by the energy supplied to it when a nonpassive mode is
active.

Remark III.1. The assumption of local relative degree
zero and locally invertible Jσ(k) is reasonable because it
is shown in [20] that a discrete-time nonlinear system can
be rendered passive if and only if it has relative degree
zero and passive zero dynamics.

Choose the feedback control law u(k) = −J−1
σ(k)hσ(k)+

J−1
σ(k)v(k). The transformed system dynamics is
{

x(k + 1) = f∗
σ(k)(x(k)) + g∗σ(k)(x(k))v(k)

y(k) = v(k)
, (9)

where we have f∗
σ(k) = fσ(k) − gσ(k)J

−1
σ(k)hσ(k) and

g∗σ(k) = gσ(k)J
−1
σ(k). The zero dynamics are

{
x(k + 1) = f∗

σ(k)(x(k))

y(k) = 0
. (10)

We assume f∗
σ(0) = 0.

IV. GENERALIZED PASSIVITY

In this section, we define the generalized passivity for
system (8) which has both passive and nonpassive modes.
We also derive a necessary and sufficient condition for
system (8) to be passive under the generalized definition.

Definition IV.1. A switched system of the form (8) is
locally passive if there exists a positive definite storage
function V such that the following passivity inequality
holds

V (x(T + 1))− V (x(0)) ≤
T
∑

k=0

uT(k)y(k),

∀x ∈ X,u ∈ U, T ∈ Z+. (11)

Remark IV.1. This definition allows system (8) to have
nonpassive modes as long as the increase in storage
function over a finite horizon T is bounded by the total
energy supplied to the system in the period [0, T ].

Theorem IV.1. Suppose there exists a C2 storage function
V , which is positive definite and V (fσ(k) + gσ(k)u(k)) is
quadratic in u. Then the switched system (8) is passive
with the storage function V if and only if there exist real
functions lσ(k)(x(k)), mσ(k)(x(k)), and eσ(k)(x(k)) such
that ∀T ∈ {0}

⋃

Z+, k = 0, 1, · · · , T,

If σ(k) ∈ S1,
V (fσ(k))− V (x(k)) = lTσ(k)lσ(k) −mT

σ(k)mσ(k) (12)
∂V (z)

∂z

∣
∣
∣
z=fσ(k)

gσ(k) = hTσ(k) + 2lTσ(k)eσ(k) (13)

gTσ(k)
∂2V (z)

∂z2

∣
∣
∣
z=fσ(k)

gσ(k)

= JTσ(k) + Jσ(k) + 2eTσ(k)eσ(k) (14)

If σ(k) ∈ S2,
V (fσ(k))− V (x(k)) = −lTσ(k)lσ(k) −mT

σ(k)mσ(k)(15)
∂V (z)

∂z

∣
∣
∣
z=fσ(k)

gσ(k) = hTσ(k) − 2lTσ(k)eσ(k) (16)

gTσ(k)
∂2V (z)

∂z2

∣
∣
∣
z=fσ(k)

gσ(k)

= JTσ(k) + Jσ(k) − 2eTσ(k)eσ(k) (17)

∑

k:σ(k)∈S1
k≤T

(lσ(k) + eσ(k)u(k))
T(lσ(k) + eσ(k)u(k))

−
∑

k:σ(k)∈S2
k≤T

(lσ(k) + eσ(k)u(k))
T(lσ(k) + eσ(k)u(k))

≤
T
∑

k=0

mT
σ(k)mσ(k) (18)

Proof: The switched system (8) is composed of both
passive and nonpassive modes. If the system is in a passive
mode, i.e., σ(k) ∈ S2, Equation (3) holds. Similarly, if the
system is in a nonpassive mode (σ(k) ∈ S1), Equation (4)
holds for any choice of C2 storage function V .
(Necessity) We will derive i) Equations (12)-(14) from

Equation (4), ii) Equations (15)-(17) from Equation (3),
and iii) the inequality (18) based on Equations (3) and (4).
i) Equation (12) is obtained by setting u(k) = 0 in

Equation (4). Next, we take the first-order derivative of
Equation (4) with respect to u(k) and then set u(k) = 0

to derive Equation (13). We further take the second-order
derivative of Equation (4) with respect to u(k) and set
u(k) = 0 and obtain Equation (14).
ii) Similarly, by setting u(k) = 0 in Equation (3),

we obtain Equation (15). Take the first and second-order
derivatives of Equation (3) with respect to u(k) and set
u(k) = 0, we derive Equations (16) and (17).
iii) Sum Equations (3) and (4) from k = 0 to T . To

have the generalized passivity inequality (11) hold, the
inequality (18) must be satisfied.
(Sufficiency) We derive i) Equation (4) from Equations

(12)-(14), and ii) Equation (3) from Equations (15)-(17).
i) We right multiply Equation (13) by u(k) and add

Equation (12) to obtain

V (fσ(k))− V (x(k)) +
∂V (z)

∂z

∣
∣
∣
z=fσ(k)

gσ(k)u(k)

= hTσ(k)u(k) + (lσ(k) + eσ(k)u(k))
T(lσ(k) + eσ(k)u(k))

−mT
σ(k)mσ(k) − uT(k)eTσ(k)eσ(k)u(k). (19)

Similarly, we left multiply Equations (14) by uT(k) and
right multiply by u(k). We then multiply the resulting



equation by 1
2 and add it to Equation (19), it follows

V (fσ(k))− V (x(k)) +
∂V (z)

∂z

∣
∣
∣
z=fσ(k)

gσ(k)u(k)

+
1

2
uT(k)gTσ(k)

∂2V (z)

∂z2

∣
∣
∣
z=fσ(k)

gσ(k)u(k)

= hTσ(k)u(k) +
1

2
uT(k)

(

JTσ(k) + Jσ(k)

)

u(k)

+(lσ(k) + eσ(k)u(k))
T(lσ(k) + eσ(k)u(k))

−mT
σ(k)mσ(k). (20)

Because the storage function V (fσ(k) + gσ(k)u(k)) is
quadratic in u(k), Equation (20) is the Taylor series
expansion of Equation (4) at u(k) = 0.
ii) Following similar derivation, we can obtain Equation

(3) from Equations (15)-(17).
iii) Sum up Equation (4) for all the time steps when

σ(k) ∈ S1 and Equation (3) for all the time steps when
σ(k) ∈ S2 up to T . According to inequality (18), we
have V (x(T + 1)) − V (x(0)) ≤

∑T
k=0 u(k)y(k), i.e.,

the switched system (8) is passive under the generalized
definition IV.1.

V. GENERALIZED FEEDBACK PASSIVITY

In this section, we extend the generalized passivity
results to generalized feedback passivity by passivating
some of the nonpassive modes using feedback. We relate
the feedback passivity of system (8) with its zero dynam-
ics (10). From Definition IV.1, the system zero dynamics
(10) are locally passive if

V (x(T + 1))− V (x(0)) ≤ 0, ∀x ∈ X, T ∈ Z+. (21)

Consider a new control input w ∈ U for the transformed
dynamics (9), y(k) = v(k) = h̄σ(k) + J̄σ(k)w(k), where
J̄σ(k) is assumed to be symmetric and

J̄σ(k) =

(

1

2
g∗σ(k)

T ∂
2V

∂z2

∣
∣
∣
z=f∗

σ(k)

g∗σ(k)

)−1

h̄σ(k) = −J̄σ(k)

(

∂V

∂z

∣
∣
∣
z=f∗

σ(k)

g∗σ(k)

)T

(22)

The new system dynamics is given by
{

x(k + 1) = f∗
σ(k) + g∗σ(k)h̄σ(k) + g∗σ(k)J̄σ(k)w(k)

y(k) = h̄σ(k) + J̄σ(k)w(k)
(23)

Definition V.1. The switched system (8) is locally feed-
back passive if there exist a positive definite storage
function V (x) and a control laww such that the following
inequality holds

V (x(T + 1))− V (x(0)) ≤
T
∑

k=0

wT(k)y(k),

∀x ∈ X,w ∈ U, T ∈ Z+. (24)

Lemma V.1. If the switched system (8) is locally feedback
passive, then its zero dynamics (10) are also locally

passive.

Proof: Because system (8) is locally feedback pas-
sive, the inequality (24) holds. The zero dynamics enforces
y(k) = 0. Hence, the inequality (24) is converted to the
inequality (21). That is, the zero dynamics (10) are locally
passive.

Lemma V.2. The passive and feedback passive modes of
the switched system (8) correspond to the passive modes of
the zero dynamics (10). The non-feedback passive modes
of (8) correspond to the nonpassive modes of (10).

Proof: According to Theorem II.1, if a mode is
locally passive, then the corresponding zero dynamics are
also locally passive. According to Theorem II.2, a locally
feedback (non)passive mode has locally (non)passive zero
dynamics.

Theorem V.1. Suppose there exists a C2 positive definite
storage function V (x) where V (fσ(k) + gσ(k)u(k)) is
quadratic in u. Then the switched nonlinear system (8) is
locally feedback passive if and only if its zero dynamics
(10) are passive.

Proof: The necessity is given by Lemma V.1.
We next prove the sufficiency based on Theorem IV.1.
Because V (fσ(k) + gσ(k)u(k)) is quadratic in u, the
Taylor series expansion for V (f∗

σ(k) + g∗σ(t)h̄σ(k)) can be
expressed as

V (f∗
σ(k) + g∗σ(k)h̄σ(k))

= V (f∗
σ(k)) +

∂V

∂z

∣
∣
∣
z=f∗

σ(k)

g∗σ(k)h̄σ(t)

+
1

2
h̄Tσ(k)(g

∗
σ(k))

T ∂
2V

∂z2

∣
∣
∣
z=f∗

σ(k)

g∗σ(k)h̄σ(k). (25)

Use Equation (22) to Equation (25), we have

V (f∗
σ(k) + g∗σ(k)h̄σ(k)) = V (f∗

σ(k)). (26)

According to Lemma V.2, when σ(k) ∈ S∗
1

⋃

S2,
the corresponding zero dynamics are passive. Based on
Equations (4) and Equation (26), it follows that

V (f∗
σ(k))− V (x(k)) = V (f∗

σ(k) + g∗σ(k)h̄σ(k))− V (x(k))

= −
(

lσ(k) + eσ(k)h̄σ(k)

)T (
lσ(k) + eσ(k)h̄σ(k))

−mT
σ(k)mσ(k). (27)

Similarly, if σ(k) ∈ S1 \ S∗
1 , we have

V (f∗
σ(k))− V (x(k)) =

(

lσ(k) + eσ(k)h̄σ(k)

)T

·
(

lσ(k) + eσ(k)h̄σ(k)

)

−mT
σ(k)mσ(k). (28)

i) We first consider the case when σ(k) ∈ S∗
1

⋃

S2.
Equation (27) gives the passivity condition (15) with
lσ(k) = lσ(k) + eσ(k)h̄σ(k) and mσ(k) = mσ(k).
Next, subtract V from Equation (25) and substitute

Equation (27) into the resulting equation, we have

V (f∗
σ(k) + g∗σ(k)h̄σ(k))− V (x(k))



= −
(

lσ(k) + eσ(k)h̄σ(k)

)T (
lσ(k) + eσ(k)h̄σ(k)

)

−mT
σ(k)mσ(k) +

∂V

∂z

∣
∣
∣
z=f∗

σ(k)

g∗σ(k)h̄σ(k)

+
1

2
h̄Tσ(k)(g

∗
σ(k))

T ∂
2V

∂z2

∣
∣
∣
z=f∗

σ(k)

g∗σ(k)h̄σ(k). (29)

Differentiate both sides of Equation (29) with respect
to h̄σ(k), right multiply the result by J̄σ(k), and substitute
Equation (22), we have

∂V

∂z

∣
∣
∣
z=f∗

σ(k)
+g∗

σ(k)
h̄σ(k)

g∗σ(k)J̄σ(k)

= h̄Tσ(k) − 2
(

lσ(k) + eσ(k)h̄σ(k)

)T
eσ(k)J̄σ(k). (30)

Therefore, Equation (30) gives the passivity condition (16)
with lσ(k) = lσ(k) + eσ(k)h̄σ(k) and eσ(k) = eσ(k)J̄σ(k).
Take the second-order derivatives of Equation (29) with

respect to h̄σ(k). Left multiply the results by J̄Tσ(k) and
right multiply by J̄σ(k), use Equation (22), we yield the
following equation

[

g∗σ(k)J̄σ(k)

]T ∂V

∂z

∣
∣
∣
z=f∗

σ(k)
+g∗

σ(k)
h̄σ(k)

g∗σ(k)J̄σ(k)

= J̄Tσ(k) + J̄σ(k) + 2J̄Tσ(k)e
T
σ(k)eσ(k)J̄σ(k) (31)

Therefore, Equation (31) gives the passivity condition (17)
with eσ(k) = eσ(k)J̄σ(k).
ii) Similarly, when σ(k) ∈ S1 \ S∗

1 , we can derive
the passivity conditions (12)-(14) following the above
procedure.
iii) We now prove that there exists a control w(k) such

that the passivity condition (18)
∑

k:σ(k)∈S1\S
∗

1
k≤T

(lσ(k) + eσ(k)h̄σ(k)(k) + eσ(k)J̄σ(k)(k)w(k))T

·(lσ(k) + eσ(k)h̄σ(k)(k) + eσ(k)J̄σ(k)(k)w(k)) −
∑

k:σ(k)∈S2
⋃

S∗

1
k≤T

(lσ(k) + eσ(k)h̄σ(k)(k) + eσ(k)J̄σ(k)(k)w(k))T

·(lσ(k) + eσ(k)h̄σ(k)(k) + eσ(k)J̄σ(k)(k)w(k))

≤
T
∑

k=0

mT
σ(k)mσ(k) (32)

holds with lσ(k) = lσ(k) + eσ(k)h̄σ(k), eσ(k) = eσ(k)J̄σ(k)
and mσ(k) = mσ(k). The equality holds if and only if
lσ(k) = eσ(k) = mσ(k) = 0.
Because the zero dynamics are passive, we have
∑

k:σ(k)∈S1\S
∗

1
k≤T

(lσ(k) + eσ(k)h̄σ(k)(k))
T(lσ(k) + eσ(k)h̄σ(k)(k))

−
∑

k:σ(k)∈S2
⋃

S∗

1
k≤T

(lσ(k) + eσ(k)h̄σ(k)(k))
T(lσ(k) + eσ(k)h̄σ(k)(k))

≤
T
∑

k=0

mT
σ(k)mσ(k). (33)

Note that when σ(k) ∈ S∗
1

⋃

S2, the zero dynamics
are passive and the following equation holds V (f∗

σ(k))−
V (x(k)) = −lTσ(k)lσ(k) − mT

σ(k)mσ(k). According to
Equation (27), we have −lTσ(k)lσ(k) − mT

σ(k)mσ(k) =

−
(

lσ(k) + eσ(k)h̄σ(k)

)T (
lσ(k) + eσ(k)h̄σ(k)

)

−
mT

σ(k)mσ(k). For this to hold for any h̄σ(k), it follows that
eσ(k) = 0. Similar derivation holds when σ(k) ∈ S1 \S∗

1 .
Thus, with eσ(k) = 0, the inequality (32) reduces to

∑

k:σ(k)∈S1\S
∗

1
k≤T

lTσ(k)lσ(k) −
∑

k:σ(k)∈S2
⋃

S∗

1
k≤T

lTσ(k)lσ(k) ≤

∑T
k=0 m

T
σ(k)mσ(k). Because the zero dynamics of the

switched system are passive under the generalized passiv-
ity definition, the above inequality naturally holds. Hence,
all the conditions in Theorem IV.1 are satisfied and the
switched system (8) is locally feedback passive.

VI. SWITCHING SIGNAL FOR PASSIVE ZERO
DYNAMICS

In this section, we derive a lower bound on the ratio
of the total activation time of (feedback) passive versus
nonpassive modes such that the system zero dynamics (10)
are passive.
Assume that the zero dynamics of each subsystem are

Lipschitz, i.e.,

|f∗
σ(x)− f∗

σ(x
′)| ≤ Lσ|x− x′|, ∀x,x′,

{

0 ≤ Lσ < 1 if σ ∈ S2
⋃

S∗
1

Lσ ≥ 1 if σ ∈ S1 \ S∗
1

. (34)

Let

L1 = max
σ

{Lσ|σ ∈ S2

⋃

S∗
1}, L1 ∈ [0, 1),

L2 = max
σ

{Lσ|σ ∈ S1 \ S
∗
1}, L2 ∈ [1,+∞)

with σ = 1, 2, · · · , N .

Theorem VI.1. Design the switching signal such that
K−(0, T )

K+(0, T )
≥

lnL2 − lnL0

lnL0 − lnL1
, (35)

where L0 ∈ (L1, 1), K−(0, T ) is the total activation time
of the (feedback) passive modes, andK+(0, T ) is the total
activation time of the non-feedback passive modes during
time interval [0, T ), ∀T ∈ {0}

⋃

Z+. The zero dynamics
(10) are passive under the switching signal (35).

Proof: Let 0 = k0 < k1 < k2 · · · denote the
switching points and σ(ki−1) = pi. Assume ki is the
ith switch, at time T ∈ [ki, ki+1), the state of the zero
dynamics evolve as

x(T ) = (f∗
pi+1

◦ f∗
pi+1

. . . f∗
pi+1

◦ f∗
pi+1

︸ ︷︷ ︸

T−ki

f∗
pi
◦ f∗

pi
. . . f∗

pi
◦ f∗

pi
︸ ︷︷ ︸

ki−ki−1

· · · f∗
p1

◦ f∗
p1

· · · f∗
p1

◦ f∗
p1

︸ ︷︷ ︸

k1−k0

)x(0).

Since we assume that f∗
σ(0) = 0, based on (34),

we have |x(T )| ≤ L
K−(0,T )
1 L

K+(0,T )
2 |x(0)|. From the



switching signal (35), we have

|x(T )| ≤ L
K−(0,T )
1 L

K+(0,T )
2 |x(0)| ≤ LT

0 |x(0)|. (36)

Hence, the zero dynamics (10) are stable with L0 ∈
(L1, 1). According to Lemma II.1, the zero dynamics are
passive.

VII. STABILITY OF THE SWITCHED SYSTEMS
Theorem VII.1. Under the switching signal (35), system
(8) with zero dynamics satisfying the Lipschitz condition
(34) is locally feedback passive with a C2 storage function.
Let φ : Rm → Rm be any smooth function such that
φ(0) = 0 and yTφ(y) > 0 for all y (= 0. Then the smooth
feedback w(k) = −φ(y(k)) locally asymptotically stabi-
lizes the equilibrium x∗ = 0, provided that (8) is locally
locally zero state detectable (ZSD) ([7]).

Proof: According to Theorem VI.1, under the
switching signal (35), system zero dynamics (10) sat-
isfying the Lipschitz condition (34) are locally pas-
sive. From Theorem V.1, the switched system (8) is
locally feedback passive given the passive zero dynamics
(10). Under the feedback law w(k) = −φ(y(k)), we
have V (x(T + 1)) − V (x(0)) ≤

∑T
k=0 y

T(k)w(k) =
−
∑T

k=0 y
T(k)φ(y(k)) ≤ 0, ∀x ∈ X,w ∈ U.

Define the sequence of time steps {ti} such that t0 = 1
and ti = the least time > ti−1 such that σ(ti − 1) ∈
S1 \ S∗

1 and σ(ti) ∈ S∗
1

⋃

S2. Choosing T + 1 = t1
yields in particular V (x(t1))− V (x(0)) ≤ 0, ∀x(·) ∈ X.
We can repeat the same argument starting from time ti
with x(ti) as the initial condition. Thus we obtain the
series of inequalities V (x(ti+1)) − V (x(ti)) ≤ 0, ∀i =
0, 1, · · · , ∀x ∈ X. Since {ki} is an infinite sequence,
V (x(·)) is a Lyapunov function for the switched system.
The asymptotic stability follows from ZSD. Observe

that all the trajectories of the (feedback) passive system
eventually approach the invariant set I = {x ∈ Rn :
V (x(k+1)) = V (x(k))}, which implies yT(k)φ(y(k)) =
0, ∀k ∈ {0}

⋃

Z+. Hence y(k) = 0 and w(k) =
−φ(y(k)) = 0 ∀k ∈ {0}

⋃

Z+. Thus by ZSD
limk→∞ x(k) = 0.

VIII. CONCLUSION
In this paper, we generalize the classical passivity

definition for a class of discrete-time switched nonlinear
systems with both passive and nonpassive modes. We
propose necessary and sufficient conditions for such sys-
tems to be locally passive. Using the passivation methods,
some of the nonpassive modes are rendered passive using
feedback. The switched nonlinear system is proved to be
locally feedback passive if and only if its zero dynamics
are locally passive. A lower bound on the total activation
time of non-feedback passive modes versus (feedback)
passive modes is derived to guarantee passive zero dy-
namics if it satisfies the Lipschitz condition. We prove
that the system equilibrium point can achieve asymptotic
stability using output feedback.
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