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Abstract

In this paper, we generalize the classical definition of ipdggo discrete-time periodically controlled nonlinear
systems that are open loop nonpassive and closed-loopdeleglassive. In the classical passivity theory, a system
is said to be passive if there exists a storage function sahthe increase in storage function is bounded by
the energy supplied to it at every time step. This definitiosyrbe overly restrictive. Therefore, we consider a
periodically controlled system to be passive as long asrhbeease in storage function at the end of a period as
compared to the beginning of the period is bounded by theraatated energy supplied to it within this period.
Because the input/output structure switches periodicaléyneed to exploit the zero dynamics of the closed-loop
system and relate it to the passivity of the periodicallytoalied system. We prove that: 1) There exists a maximum
allowable transmission ratio (MATR) between the time stapsvhich the system evolves open and closed-loop
within a period such that the generalized passivity of systero dynamics is guaranteed; and 2) If the system

zero dynamics is passive, the original periodically cdfgtbnonlinear system is also locally passive.

. INTRODUCTION

This paper investigates the passivity properties of disetiene periodically controlled nonlinear systems
that are nonpassive in open loops and feedback passivesac:loops. In the classical passivity theory,
a system is said to be passive if there exists a storage @umstich that the increase in storage function
is bounded by the energy supplied to it at every time step. Stipplied power is the product of system
input and output. For the periodically controlled systemg¢s it is nonpassive in open loop, the increase
in storage function might be greater than the energy suppdiet at these time steps. Thus, the system is
considered to be nonpassive according to the classicaittafiof passivity. The extension of passivity to

switched systems as in [1] is not helpful either since thatkvassumes each of the individual modes to be
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passive. In this paper, we generalize this classical diefinind consider such a periodically controlled
system to be passive if the increase in storage function atetid of a period as compared to the
beginning of the period is bounded by the total energy sedplo it within this period. Furthermore,
due to the switching between open and closed-loop in eadbdhehe structure of system input/output
varies periodically. Exploiting the zero dynamics of thesdd-loop process, we prove the existence of a
maximum allowable transmission ratio (MATR) between thempnd closed-loop within a period such
that the system consisting of the open loops and the zeronugsaof the closed-loops is passive under
the generalized definition. For the sake of simplicity, wél wall this system as the zero dynamics of
the original periodically controlled system. Given a passiero dynamics, we prove that the periodically
controlled nonlinear system is locally passive using fee#b

We first review some related literature. The study of ped@yistems has received considerable attention
over the last few decades due to its abundance in control igmelsprocessing [2]. One of the main
categories uses a lifting technique to represent peritigitane-varying systems by the Linear Time-
Invariant (LTI) ones (see [3]-[5] and references thereher popular approaches for periodic system
control include Riccati equation based [6], Linear Matmedjuality (LMI) based [7], and Model Predictive
Control (MPC) based [8], [9] stability approaches.

In the literature, most of the work on periodic systems hasiged on stability analysis. While stability
is a fundamental property of dynamical systems, passifA§i€[13]) is also desirable because of several
additional properties that passivity guarantees i) the thgnamics and zero dynamics of a passive system
is passive, ii) both the negative feedback and paralleréotenections of passive systems are passive,
and iii) a passive system can achieve asymptotical stahiBtng feedback if it is zero state detectable
(ZSD) [13]. Under the classical definition, passivity hagmepplied to the analysis of many dynamical
systems, e.g., Cyber-Physical Systems (CPS) [14], swdtslystems [15], event-triggered systems [16],
and hybrid systems [17].

Although passivity has been widely used as an input-outpagrty for systems analysis, the classical
definition may be overly restrictive. Specially, we genizelthe definition to periodically controlled
nonlinear systems that are open loop nonpassive and clospdeedback passive. It is consistent with
the generalized passivity definition for networked nordingystems with nonconsecutive packet drops
in [18]. However, in this paper, we consider systems thatvevan consecutive closed-loop processes

followed by consecutive open loop processes. Feedbackotastapplied periodically to keep system



passivity under the generalized definition. Also relatethes generalized asymptotic stability analysis of
discrete-time nonlinear time varying systems in [19], veh#tre Lyapunov function is non-increasing only
on certain unbounded time sets.

Different from the stability analysis in [19], the passy#nalysis is complicated by the fact that both
the input and the output are periodically time-varying. Daéhis difficulty, we analyze the passivity of the
periodically controlled system based on its zero dynamidsch is the internal dynamics of the system
that is consistent with constraining the system output t@ Z&2]. We prove that given a passive zero
dynamics, there exists a feedback control law to passiveecliosed-loop system ([12], [20], [21], and
in particular, [22]) such that the periodically controlladnlinear system is passive under the generalized
passivity definition.

The remainder of the paper is organized as follows. In Sectipwe formulate the discrete-time
periodically controlled nonlinear system and give a gelimd passivity definition. Section Il analyzes
the passivity properties of the system zero dynamics. Ini@edV, we investigate the passivity of the
original periodically controlled system given a passiveozéynamics. A numerical example is provided
in Section V. Section VI gives the concluding remarks. Somekiground on the classical passivity theory

in discrete-time setting is provided in the Appendix.

[I. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system

x(t+1) = f(x(t),u(t)) | (1)
y(t) = h(x(t), u(t))

with state spac&X = R”, set of input valuedJ = R™ and set of output value¥ = R™. x(t) € X,

u(t) € U, andy(t) € Y are the state, input and output variables, respectivelye Hgt) is a nonlinear
feedback controller. Lef : R” x R™ — R™ andh : R” x R™ — R™ be smooth (i.e.(C>) vector fields.
The system is assumed to have relative degree zero,%{g’.‘,‘—) is non-singular. This is a reasonable
assumption because it is shown respectively in [23] and {Ra{, a nonlinear system can be rendered
lossless/passivity if and only if it has relative degreeozand lossless/passive zero dynamics. Therefore,

we are not concerned with the passivity of discrete-timaesys with outputs independent of inputs. The



open loop of system (1) is given as follows

{X@+Uf@®ﬁ). o
t h

y(t) = h(x(t),0)

Let a system evolve in closed-loop (1) at time instakftsts, - - - and open loops (2) at time instants
k9 kS, ---. We assume the open loop is nonpassive and the closed-loeedback passive according
to Definition A.3 in the Appendix. The generalized passiwdsfinition of a systens consisted of both
nonpassive open loops and feedback passive closed-logpgeis as follows.

Definition 2.1: [18] A nonlinear systemS is said to belocally passiveif there exists a positive
semidefinite storage functioﬁ((x(.)) >0 (X:/(x(.)) = 0 if and only if x(.) = 0) such that for any
x(k) € R, u(k)R™, and any givent € Z", the following passivity inequality holds in a neighborldoo
of the equilibrium point(x*(k), u*(k)):

V(x(t) — V(x(1) < 3 uT(O)y6). 3)

1

[y

SN
Il

Now assume a system which evolves in closed-loop (1)rfaonsecutive time instants followed by
T — 7 consecutive open loops (2). Repeat the process periogdieedl have the following periodically

controlled system:

KT+ 1<t<kT+7—1,

and @
{ XD =Tx0.0 T,
y(t) - (X(t),O)

where T' is the period of the periodic system. The quantityis the number of time steps at which
system evolves in closed-loop feedback passive configurand? — 7 is the number of time steps at
which system evolves in open loop. The ratio between the staps at which the system evolves in an

uncontrolled and controlled fashion is= Z=". Figure 1 shows the framework of such a periodically

T

controlled system.
Given Definition 2.1, the generalized passivity definitiam the periodically controlled system (4) is
as follows.

Definition 2.2: The discrete-time periodically controlled nonlinear syst(4) is said to bdocally



x(t+1) = f(x(t), u(x(t)))
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Fig. 1. Basic framework of a periodically controlled system

passivewith respect to the supply rate"y if there exists a positive semidefinite storage funcﬂis(nc)
(X:/(x) = 0 if and only if x = 0) such that the following passivity inequality holds in agtgorhood of
the equilibrium point(x*, u*)

~ - (k+1)T—1
Vx((k+1)T) - V(xET+1) < > u'(t)y(t), VT € Z*, ke {0} Jz". (5)

t=kT+1
Remark 2.1:Assume that system (4) starts with closed-loop (1) and oaes forr consecutive time
steps. According to Definition 2.2 — 7 consecutive open loops (2) are allowed to follow as long as a
feedback control is applied periodically such that systersspvity is preserved for each period.
Remark 2.2:Definition 2.2 is consistent with the classical passivityfim&on if the we have both

passive open loop and closed-loop systems (see inequaBjyirf the Appendix).

[1l. PASSIVITY ANALYSIS FOR ZERO DYNAMICS

In this section, we investigate the passivity property @& siystem zero dynamics. In the closed-loop,
because the system has relative degree zero, by the iniptidanction theory ([22], [24]), it is guaranteed
that there exists a feedback contne(x,v) such thath(x,u(x,v)) = v. Therefore, the periodically
controlled system (4) can be rewritten as the following sfarmed system with the open loop dynamics

remaining the same

PO, ux(t) v (0) = Fxt)v®)
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< ¥
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+
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and (6)



Without loss of generality, by shifting the system coord@sawe can consider the origin as the equilibrium
state, i.e.,f(0,0) = 0. Herev(¢) is chosen such that the closed-loop of system (4) is feedpaskive
according to Definition A.3 in the Appendix.

The open loop system and the zero dynamics of the transfoctnedd-loop system form the following

periodic system

KT +1<t<Kl+71-—1,
and (7)

kKT +717<t<(k+1)T—1.

For simplicity, we call (7) the zero dynamics of the transfed system (6).
Following Definition 2.2, we give the following generalizedssivity definition for the zero dynamics.
Definition 3.1: The zero dynamics (7) is said to becally passivef there exists a positive semidefinite
storage functior/ (V(x) = 0 if and only if x = 0) such that the following inequality is satisfied in a

neighborhood of the equilibrium point* for all £ € {0} JZ*
V(x((k+1)T)) = V(x(kT +1)) <0, VT € Z*. (8)

Remark 3.1:Note that the storage function for the periodically cone@IsystemI:/ is not necessarily
the same as the storage function of the zero dynaiiics

We now determine the maximum allowable transmission rafl&TR) between the open loop non-
passive time steps and the closed-loop feedback passieedstieps to ensure a passive zero dynamics
satisfying the inequality (8).

Lemma 3.1:Consider the zero dynamics given by Equation (7) and defieentaximum allowable

transmission ratio (MATR) as

*

T —1)1
. ( )Ino

. Tzt
mo—Th¢ "LEL ©)

where() < o < 1 and( > 1 are some bounded constants. If there exists a positive séimid storage



function V' (x), V(x) = 0 if and only if x = 0 such that

V(f(x(t) <oV(x(t), 0<o<1, kT+1<t<kT+7—1

V(f(x(t),0)) < (V(x(t), ¢(>1, kTH+7<t<(k+1)T -1, (10)

with VT € Z*, k € {0} | JZ™", then the zero dynamics (7) is passive.

Proof: Under condition (10), we have
V(x((k+1T)) < o™ ¢ V(x(ET + 1)).

According to the inequality (8), the zero dynamics (7) isgpaesif o™~ '¢7~" < 1. This is satisfied with
r<r*, [ ]

Remark 3.2:Note thatr* gives a bound, instead of the actual value, of MATR. With timglerstanding,
we abuse the nomenclature and refer the bound as MATR thootighe paper.

Remark 3.3:The choice off ando determines how close the ratio is to the actual value of MATR.
The minimum(¢ and o that satisfy the inequality (10) will result in a least comsdive r*.

Lemma 3.2:Givenr* in Equation (9) such that the zero dynamics (7) is passiveutite generalized
passivity definition, if there exists a storage functiont thatisfies the inequality (10), then for any< r*,
system (7) is also passive.

Proof: We consider two cases. i) Let = ©=7 < = = == wherer > 7. It follows that

o I < oT I < L) Let r = =8 < = 2T where T < T It follows that

o7 TITTT < o7 I < 1. That is to say, the passivity of the zero dynamics is presebyeeither

increasing the number of closed-loopgiven periodT™ or decreasing the length of the peri@dgiven

7* closed-loops. [ ]
Remark 3.4:Same proof holds for the case when the controlled and urdtedrtime steps are not

consecutive [18].

V. PASSIVITY ANALYSIS FORPERIODICALLY CONTROLLED SYSTEM

In Section Ill, we analyzed the passivity properties of tkeozdynamics (7). In this section, we prove
that given a passive zero dynamics there exists a storaggidansuch that the original periodically
controlled system (4) is passive using feedback. Let usdafihe the generalized passivity inequality for

the transformed periodically controlled system (6) foliogy Definition 2.2.



Definition 4.1: The transformed periodically controlled system (6) is saicbe locally passivewith
respect to the supply rate' (t)v(t) if there exists a positive semidefinite storage functiofl’ (x) = 0
if and only if x = 0) such that the following passivity inequality holds

(k+1)T
Vx((k+1)T) = VKT +1)) < > vI(t)v(t), VT € Z*, ke {0} JZ*. (11)

t=kT+1
Theorem 4.1:1f the zero dynamics (7) ipassiveaccording to Definition 3.1 with a storage function
V' such that the determinant of Hessian matrixldf) at x = 0 is non-zero and there exists a storage
function V' such that the inequality (10) holds, then the transformesdesy (6) islocally passiveusing
feedback.
Proof: Consider the storage functidri(x(.)) = aV/(x(.)) with a constani > 0. We first prove that
with a suitable choice of the constamtthis storage function guarantees that, for every vectquesece

{v(t)}, the following inequality holds during closed-loops
V(f(x(t),v(t)) = V(x(t)) < vT(t)v(t) (12)

for kT +1<t<kT+7-1, VT €Z", ke {0}UZ".

This is equivalent to prove that
o(x(t),v(t)) = Z v () + V(x() = V(F(x(t), v(t)), (13)

kT +1 <t <kT+ 71— 1 has a local minimum atx(¢),v(t)) = (0,0). For notational convenience, we

denote this pair by0, 0) and suppress the dependencet af the terms in (13). Thus, consider the first

order derivatives ofy(x,v) at (0,0). We have fori=1,--- . n,r=1,--- ,m,
96(x,v) ARSI v>]
8372‘ x=0,v=0 _83)2‘ h=1 a‘fh axl x=0,v=0
3¢éx, v) P Z v 8fha<x, v)
Ur x=0,v=0 L h=1 a‘fh Yr x=0,v=0

The storage functior//(x(t)), and hence the functio' (x(t)) = aV(x(t)) has a local minimum at
x(t) = 0 becausé/ is positive semidefinite with’(x) = 0 if and only if x = 0. Moreover, origin is a

local equilibrium of the system; thus, aft) = v(t) = 0, f(x(t), v(t)) = 0. Combining these facts, we
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see that

a¢(x7v) :07 1 = 1’~ ’n
3@-
x=0,v=0
99, v) =0, r=1---,m.
ov,
x=0,v=0
Next, we check the elements of the Hessian matrix(©f, v) at (0,0). We have fori,j = 1,--- ,n and
rs=1,---,m,
0%6(x, V) v e afha_ﬁ]
09:j8xi x=0,v=0 0%8% hie1 afhafl 01', 8xj e 0v—0
2 n 2 r af
aa¢<>5, v) . [Z PV gfh gfl]
UrOTi | o v—o i1 Ofn0fy 0% OUr om0
Potx.v) o4 [Z PV gfh gﬁ] |
UsOUr x=0,v=0 h,l=1 8fh8fl Ur 90 x=0,v=0
Denoted(x(t)) = ¢(x(t),0) = a <V(x(t)) ~V(F(x(k), 0)) , 50 that
2 2 7
8@8@ —0v—0 61’383}2 0

Because the closed-loop is passive and hence has a passi\m/amics,g%(x) has a local minimum at
x = 0, and by assumption, the determinant of Hessian matrix otbeage function/(x) atx = 0 is
non-zero, we obtain that the eigenvalues of the Hessiarixmftr&(x) at x = 0 are all positive. Denote
these eigenvalues by, Vi = 1,2, - - -, n. Furthermore, the Hessian matrix ofx) atx = 0 is symmetric
and can be diagonalized. Thus, with an appropriate choiamofdinates, the Hessian matrix ofx, v)

at (0,0) can be evaluated to be of the form

a)\1 0 abll ablm

(15)
ab11 abnl 24+ aciq aCim
abiy, abny,  aCm 2 + acym
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Now, we apply [22, Lemma 12] which states that for> 0 andVa = (0,a), a = min; aj where

29Ny -\, —
a;:min{l, ! E},jzl,-~-,m (16)
o]+ + o]
with0 <e< 1landq, [ =1,---,j being some constants relatedXg b; andc¢,, i =1,--- ,n, r =
1,---,4,1l=1,---, 4, the determinant of matrix (15) is greater than zero. Sgl&striterion now readily

yields that the Hessian matrix of(x,v) at (0,0) as evaluated in (15) is positive definite. Therefore,
¢(x,v) has a local minimum a0, 0). Thus, during closed-loops, the relation (12) holds. SungniL2)
for all the time stepg in closed-loops, we then obtain the following inequality

kT+7—1
V(KT +7) = V(x(kT+1)) < Y vI()v(t), ¥ € ZT, ke {o}| Jz*. (17)

t=kT+1
with the equality holds at0, 0).
During open loopskT + 7 < t < (k + 1)T, since the corresponding zero dynamics is nonpassive,

according to (10), we have

< a(C—1DV(x(1)). (18)

We now choose: in the interval(0, a) where

kT+7m—1
o i O(x(1), V(1))
a = 1min

(-1 E TV (x()

for all T € Z*, then the following inequality is satisfied,

(k+1T 1 kT+7—1 ET+1—1
) 3 Ve + 3 [T v) V)] < 3 viove. @)
Since
(k+1)T—1
. [V ,0)) — V(x(f))} + V(x(ET + 7)) = V(x(kT + 1))

= V(x((k+ 1)T)) — V(x(kT + 1)),

according to the inequalities (18) and (19), there exists (0, min(a, a)), such that the inequality (11)
holds with the equality holding if and only ifx, v) = (0, 0). [ |
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Given this result, we can now establish that local passwitthe transformed system (6) implies local
passivity of the original periodically controlled systed).(

Theorem 4.2:1f the transformed system (6) is passive such that the ifgigsa(11) hold, under a
feedback control lawa(t), then the original periodically controlled system (4) isddly passive.

Proof: According to Theorem 4.1, for the closed-loop of the trarmsfed system there exists a positive
semidefinite storage functiol(x(¢)) > 0 with V(x(t)) = 0 if and only if x(t) = 0, such that for any
T € 7%, V(x(KT + 7)) — V(x(kT + 1)) < M7 vT(t)v(t). For the periodically controlled system
(4), consider the storage function — pV wherep > 0 is a constant to be suitably designed. Also,
define the termy(k) = S r T uT(1)y (), Yk € {0} (JZ*. Since bothu(t) andy(t) are bounded in
the neighborhood o%(¢) = 0 andv(t) = 0, we see that(k) is also bounded. Now, there are two cases.

1) If (k) > 0, we haveV (x((k + 1)T)) — V(x(kT + 1)) = p(V(x((k + 1)T)) — V(x(kT +1))) <
p L INT(t)v(t). The inequality (5) holds ifp < miny, Z%ﬁ’ﬁ e
2) If n(k) < 0, this corresponds to the case when the periodically cdattaystem (4) is Lyapunov

stable as well. Becausgk) is bounded, we can guarantee that with a sufficiently largecehof p,

the following inequality holds¥ (x((k + 1)T)) — V(x(kT + 1)) = p(V (x((k + 1)T)) — V(x(kT +

1)) < nk) = ST uT(1)y () < 0, ¥p > 0, where we choose

p > max —= (k) ~ ) (20)
EVix((k+1)T)) = V(x(ET 4+ 1))

Thus, we can design the constant- 0 and the corresponding storage function- pV, p > 0 such that

the periodically controlled system (4) is locally passiuethe neighborhood of(k) = 0 andv(k) = 0.
u

Definition 4.2: A system is said to be locally zero state detectable (ZSOB])(# there exists a

neighborhoodN of the origin such that'x(0) = x, € N,
Y () |uky=0 = h(¢(k; %)) =0, Vk € Z,,
implies

lim ¢(k;xo) =0,

k——4o00

where¢(k; xo) is a trajectory of the uncontrolled systenik + 1) = f(x(k),0) from x(0) = x,.
Theorem 4.3:If the system (4) is passive and locally zero state deteet@®D) [25], under a feedback
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control law of the formu(t) = —¢(y(t)) where(0) = 0 andy' () (y(t)) > 0, Vy # 0, then the
equilibrium (0, 0) is locally asymptotically stable.

Proof: According to the passivity definition, for every time stepn the closed-loop, we have

with equality holding if and only ify(¢) = 0. For every time step in open loop, the storage function
may increase. However, the increase is always boundeditmord(10)). Therefore, with the finite period

T, we have
V(x((k+1)T)) = V(x(EkT + 1)) <0.

According to Theorem 2 in [19], the equilibrium poixt = 0 is Lyapunov stable. The asymptotic stability
follows from ZSD. Observe that all the trajectories of theseld-loop system eventually approach the

invariant set
I={xeR": V(x(t+1)) = V(x(t))},
which implies
YT (Ou(y(t) =0, vt € {0} JZ.

Hencey(t) =0 andw(t) = —¢(y(t)) = 0 Vt € {0} | UZ,. Thus by ZSDlim;_,, x(t) = 0. [
Theorem 4.1:1f two periodically controlled systems§; and S, of the form (4) are both passive, then

their parallel and negative feedback interconnectionsléimed in Figure 2) are both passive.

Fig. 2. (a) Parallel, and (b) negative feedback intercotioes for two passive switched nonlinear systefiisand S2.
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Proof: Let the control inputs forS? be u,(t), the corresponding output be(¢) and the storage
function beI:/i(t). For the parallel interconnection, we have for the intensmted systensd, the control

input u(t) = uy(t) = uy(t) and the outpuly(t) = yi(t) + y2(t). For S, consider the storage function

V(1) = Vi(t) + Va(t). For any timeT € Z*, k € {0} JZ*, we have

(x((k + 1)T)) — V(x(kT + 1))

— (Vi(x((k + 1)T)) = Vi(x(KT + 1)) + (Va(x((k + )T)) = Va(x(kT + 1))

(k+1)T—1 (k+1)T—1
< D ulvi)+ D> wt)ya(t)

t=kT+1 t=kT+1

(k+1)T—1
< u' )y (). (21)
t=kT+1

Similarly, for the negative feedback interconnection, vagénfor the interconnected systenthe control
inputs and outputs as;(t) = u(t) + y2(¢t) andry(t) = uy(t) + y1(t). Consider the storage function

V(t) = Vi(t) + Va(t). For any timeT € Z*, k € {0} JZ*, we haveV (x((k + 1)T)) — V(x(kT +1)) <

T T () (8) + el ()ya(t)). O

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illugtrdite major concept presented in the above
sections. Let us consider the following periodically cofied nonlinear system

;

r1(t +1) = —0.32%(t)22(t) + 1.529(t) + u(k)

To(t+1) = z1(t) — u?(¢) , KT +1<t<kT+71-1,
y(t) = 225(t) + u(t)

z1(t+1) = —0.323(t)xo(t) + 1.525(¢)

To(t +1) = a1 (t) KT +7<t<(k+1T.

[ y(t) = 222(t)
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The transformed system is given as:

([ 1(t 4+ 1) = —0.322(1) 22 (t) — 0.525(8) + v (t)

Ta(t+ 1) = z1(t) — (v(t) — 224())? KT +1<t<kET+71-1,
L y(t) =0(t)
([ 21(t+ 1) = —0.322(£)22(t) + 1.525(t)

Tyt + 1) = a1 (1) KT+ 7 <t < (k+1)T.

y(t) = 2x5(t)

The zero dynamics of the above system is

;

1(t+1) = —0.32%(t)x2(t) — 0.525(t)
2o(t + 1) = () — 4a2(t) VKT +1<t<kT+7-1
L y(t) =)
z1(t+ 1) = —0.323(t)z2(t) + 1.525(t)

ot + 1) = x4(1) KT+ 17 <t<(k+1)T.

y(t) = 2a(t)

~

Note that the closed-loop of system (22) is locally ZSD ansdl tedative degree zero. The contrdlt) =

—y(t) = —xy(t) is used. For the zero dynamics (22), we choose a quadratiagetdunctionl =
1 0

x'Px = 2?2 + 0.523 with the positive definite matrix® = . One can easily verify that the
0 0.5

determinant of the Hessian matrix &f at x = [0 0]" is not zero. We choose the parametérs: 1.908
ando = 0.5594. According to Equation (9), it follows that" = (ﬁg’ﬁ% We fix the periodl’ = 8
and obtainr* = 0.7072 and 7 = [4.6860] = 5. Next, we calculate the storage functidh at each
time step to check condition (10). Table | shows the maximatio rof % for the uncontrolled
and controlled time steps within three periods, ife+= 1,2,3. From the table, we can verify that the
inequality (10) is satisfied at every time step with= 1.908 ando = 0.5594. The storage functiof” for
the transformed periodically controlled system (22) issgoas).48V with a = 0.48 anda = 5.6915.
The storage function for the original periodically conkedl system can be chosen 85" with p = 12
satisfies inequality (20) under the case whes 0.

As shown in Figure 3(a), the periodically controlled syst&8) is passive during time stepsk +

1,8k + 5] and nonpassive (i.e., the increase in storage functiontidmoended by the supplied energy at
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max V(x(t+1))/V(x(t)) | KT +1<t<kT+7—1|kI'+7<t<(k+1)T
k=0 0.5594 1.908
k=1 0.5308 1.907
k=2 0.5166 1.8897
TABLE |

CHECK OF EQUATION (10) WITHIN THREE PERIODS

each time step) during time stef®: + 6, 8%k + 8|. Figure 3(b) shows the generalized passivity check for
the system. We can see that the generalized passivity iligemd5) hold for each period. Figure 3(c)
shows the evolution of the state dynamics of the periodicadintrolled system in 6 periods. Both states

are locally asymptotically stable at the origin.
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Fig. 3. (a) Passivity check for the periodically controllggstem (22) according to classical passivity definition ipeiods, (b) Passivity
check for system (22) according to the generalized pagsieiinition (5) in 3 periods, and (c) State dynamics of sys(2g) after 6 periods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a generalized concept of pasdmitdiscrete-time periodically controlled
systems with consecutive feedback passive closed-lodimsverl by consecutive nonpassive open loops.
Different from the classical passivity theory, the inceea@s storage function is not required to be bounded

by the supplied energy at each time step during a period. ¥éters is said to be passive if the increase
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in storage function at the end of a period as compared to tgenheg of the period is bounded by
the accumulated energy supplied to it within the period. Adfeack control is applied periodically to
guarantee system passivity under the generalized definitide study the passivity properties of the
periodically controlled systems based on its zero dynanWés prove that given a maximum allowable
transmission ratio, the system zero dynamics is guararitebd passive. Given a passive zero dynamics,
it is proved that the periodically controlled system is discally passive. Further research will focus on
the extension of the results presented in this paper to dxiggered control systems. The generalized

concept of passivity will also be investigated in the st@titasettings.
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APPENDIX
BACKGROUND ON PASSIVITY

Consider a system of the form

x(t+1) = f(x(t),u(t)) (22)

wherex € X = R", u € U =R"andy € Y = R™ are the state, input, and output variables, respectively.
X,U andY are the state, input, and output spaces, respectively{0} | JZ*, f andh are smooth. All
considerations are restricted to an open seXof U containing(x*, u*) havingx* = f(x*, u*). Without
loss of generality, it is assumed that*, u*) = (0,0) andh(0,0) = 0.

Definition A.1: [23] A system of the form (22) is said to liBssipativewith respect to thesupply rate
w € U xY — R if there exists a positive semidefinite functidh: X — R*, V(x) = 0 if and only if

x = 0, called thestorage functionsuch thatv(x(t),u(t)) € X x U, Vt

V{f(x@),u()) = V(x(t)) < w(y(t), a(t)).
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Note that the above inequality holds if and onlyifx(¢), u(t)) € X x U, Vt

t

V(f(x(t),u(t))) = V(x(0)) < p_ w(y(8),u(®)). (23)

6=0
Definition A.2: [23] A system of the form (22) is said to hmassivelf it is dissipative with respect to
the supply ratev(y(t),u(t)) = u'(t)y(t). That is,V(x(t),u(t)) € X x U, V¢

V(f(x(t),u(t)) - V(x(t)) <u'(t)y(t).

Let u(x,v) : X x U — U denote a nonlinear feedback control lawulfx, v) is locally regular, i.e.,

%(),;‘)’(k” # 0 for all (x,v) € X x U, the system

is referred as the feedback transformed system.

Definition A.3: [21] Consider system (22) with a positive semidefinite sjerdunctionV(x) with
V(x) = 0 if and only if x = 0 and supply ratev"(¢)v(t). The system is said to Heedback passiveith
respect toV (x) and v (¢)v(t) if there exists a regular feedback control lam(t), v(t)) with v(t) as

the new input such that
V(f(x(t),v(t)) = V(x(t)) < v ()v(?).
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