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Abstract

In this paper, we generalize the classical definition of passivity to discrete-time periodically controlled nonlinear

systems that are open loop nonpassive and closed-loop feedback passive. In the classical passivity theory, a system

is said to be passive if there exists a storage function such that the increase in storage function is bounded by

the energy supplied to it at every time step. This definition may be overly restrictive. Therefore, we consider a

periodically controlled system to be passive as long as the increase in storage function at the end of a period as

compared to the beginning of the period is bounded by the accumulated energy supplied to it within this period.

Because the input/output structure switches periodically, we need to exploit the zero dynamics of the closed-loop

system and relate it to the passivity of the periodically controlled system. We prove that: 1) There exists a maximum

allowable transmission ratio (MATR) between the time stepsat which the system evolves open and closed-loop

within a period such that the generalized passivity of system zero dynamics is guaranteed; and 2) If the system

zero dynamics is passive, the original periodically controlled nonlinear system is also locally passive.

I. INTRODUCTION

This paper investigates the passivity properties of discrete-time periodically controlled nonlinear systems

that are nonpassive in open loops and feedback passive in closed-loops. In the classical passivity theory,

a system is said to be passive if there exists a storage function such that the increase in storage function

is bounded by the energy supplied to it at every time step. Thesupplied power is the product of system

input and output. For the periodically controlled system, since it is nonpassive in open loop, the increase

in storage function might be greater than the energy supplied to it at these time steps. Thus, the system is

considered to be nonpassive according to the classical definition of passivity. The extension of passivity to

switched systems as in [1] is not helpful either since that work assumes each of the individual modes to be
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passive. In this paper, we generalize this classical definition and consider such a periodically controlled

system to be passive if the increase in storage function at the end of a period as compared to the

beginning of the period is bounded by the total energy supplied to it within this period. Furthermore,

due to the switching between open and closed-loop in each period, the structure of system input/output

varies periodically. Exploiting the zero dynamics of the closed-loop process, we prove the existence of a

maximum allowable transmission ratio (MATR) between the open and closed-loop within a period such

that the system consisting of the open loops and the zero dynamics of the closed-loops is passive under

the generalized definition. For the sake of simplicity, we will call this system as the zero dynamics of

the original periodically controlled system. Given a passive zero dynamics, we prove that the periodically

controlled nonlinear system is locally passive using feedback.

We first review some related literature. The study of periodic systems has received considerable attention

over the last few decades due to its abundance in control and signal processing [2]. One of the main

categories uses a lifting technique to represent periodically time-varying systems by the Linear Time-

Invariant (LTI) ones (see [3]–[5] and references therein).Other popular approaches for periodic system

control include Riccati equation based [6], Linear Matrix Inequality (LMI) based [7], and Model Predictive

Control (MPC) based [8], [9] stability approaches.

In the literature, most of the work on periodic systems has focused on stability analysis. While stability

is a fundamental property of dynamical systems, passivity ([10]–[13]) is also desirable because of several

additional properties that passivity guarantees i) the free dynamics and zero dynamics of a passive system

is passive, ii) both the negative feedback and parallel interconnections of passive systems are passive,

and iii) a passive system can achieve asymptotical stability using feedback if it is zero state detectable

(ZSD) [13]. Under the classical definition, passivity has been applied to the analysis of many dynamical

systems, e.g., Cyber-Physical Systems (CPS) [14], switched systems [15], event-triggered systems [16],

and hybrid systems [17].

Although passivity has been widely used as an input-output property for systems analysis, the classical

definition may be overly restrictive. Specially, we generalize the definition to periodically controlled

nonlinear systems that are open loop nonpassive and closed-loop feedback passive. It is consistent with

the generalized passivity definition for networked nonlinear systems with nonconsecutive packet drops

in [18]. However, in this paper, we consider systems that evolve in consecutive closed-loop processes

followed by consecutive open loop processes. Feedback control is applied periodically to keep system
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passivity under the generalized definition. Also related isthe generalized asymptotic stability analysis of

discrete-time nonlinear time varying systems in [19], where the Lyapunov function is non-increasing only

on certain unbounded time sets.

Different from the stability analysis in [19], the passivity analysis is complicated by the fact that both

the input and the output are periodically time-varying. Dueto this difficulty, we analyze the passivity of the

periodically controlled system based on its zero dynamics,which is the internal dynamics of the system

that is consistent with constraining the system output to zero [12]. We prove that given a passive zero

dynamics, there exists a feedback control law to passivate the closed-loop system ([12], [20], [21], and

in particular, [22]) such that the periodically controllednonlinear system is passive under the generalized

passivity definition.

The remainder of the paper is organized as follows. In Section II, we formulate the discrete-time

periodically controlled nonlinear system and give a generalized passivity definition. Section III analyzes

the passivity properties of the system zero dynamics. In Section IV, we investigate the passivity of the

original periodically controlled system given a passive zero dynamics. A numerical example is provided

in Section V. Section VI gives the concluding remarks. Some background on the classical passivity theory

in discrete-time setting is provided in the Appendix.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system







x(t + 1) = f(x(t),u(t))

y(t) = h(x(t),u(t))
, (1)

with state spaceX = R
n, set of input valuesU = R

m and set of output valuesY = R
m. x(t) ∈ X,

u(t) ∈ U, andy(t) ∈ Y are the state, input and output variables, respectively. Here, u(t) is a nonlinear

feedback controller. Letf : Rn × R
m → R

n andh : Rn × R
m → R

m be smooth (i.e.,C∞) vector fields.

The system is assumed to have relative degree zero, i.e.,∂h(x,u)
∂u

is non-singular. This is a reasonable

assumption because it is shown respectively in [23] and [21]that, a nonlinear system can be rendered

lossless/passivity if and only if it has relative degree zero and lossless/passive zero dynamics. Therefore,

we are not concerned with the passivity of discrete-time systems with outputs independent of inputs. The
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open loop of system (1) is given as follows







x(t+ 1) = f(x(t), 0)

y(t) = h(x(t), 0)
. (2)

Let a system evolve in closed-loop (1) at time instantskc1, k
c
2, · · · and open loops (2) at time instants

ko1, k
o
2, · · · . We assume the open loop is nonpassive and the closed-loop isfeedback passive according

to Definition A.3 in the Appendix. The generalized passivitydefinition of a systemS consisted of both

nonpassive open loops and feedback passive closed-loops isgiven as follows.

Definition 2.1: [18] A nonlinear systemS is said to belocally passiveif there exists a positive

semidefinite storage functioñ̃V (x(.)) ≥ 0 ( ˜̃V (x(.)) = 0 if and only if x(.) = 0) such that for any

x(k) ∈ R
n, u(k)Rm, and any givent ∈ Z

+, the following passivity inequality holds in a neighborhood

of the equilibrium point(x∗(k),u∗(k)):

˜̃V (x(t))− ˜̃V (x(1)) ≤

t−1
∑

θ=1

uT(θ)y(θ). (3)

Now assume a system which evolves in closed-loop (1) forτ consecutive time instants followed by

T − τ consecutive open loops (2). Repeat the process periodically, we have the following periodically

controlled system:







x(t+ 1) = f(x(t),u(t))

y(t) = h(x(t),u(t))
, kT + 1 ≤ t ≤ kT + τ − 1,

and (4)






x(t+ 1) = f(x(t), 0)

y(t) = h(x(t), 0)
, kT + τ ≤ t ≤ (k + 1)T − 1,

where T is the period of the periodic system. The quantityτ is the number of time steps at which

system evolves in closed-loop feedback passive configuration andT − τ is the number of time steps at

which system evolves in open loop. The ratio between the timesteps at which the system evolves in an

uncontrolled and controlled fashion isr = T−τ
τ

. Figure 1 shows the framework of such a periodically

controlled system.

Given Definition 2.1, the generalized passivity definition for the periodically controlled system (4) is

as follows.

Definition 2.2: The discrete-time periodically controlled nonlinear system (4) is said to belocally
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Actuator Plant

Sensor

Controller

x(t + 1) = f (x(t),u(x(t)))

y(t) = h(x(t),u(x(t)))

T − ττ

Fig. 1. Basic framework of a periodically controlled system.

passivewith respect to the supply rateuTy if there exists a positive semidefinite storage function˜̃V (x)

( ˜̃V (x) = 0 if and only if x = 0) such that the following passivity inequality holds in a neighborhood of

the equilibrium point(x∗,u∗)

˜̃V (x((k + 1)T ))− ˜̃V (x(kT + 1)) ≤

(k+1)T−1
∑

t=kT+1

uT(t)y(t), ∀T ∈ Z
+, k ∈ {0}

⋃

Z
+. (5)

Remark 2.1:Assume that system (4) starts with closed-loop (1) and continues forτ consecutive time

steps. According to Definition 2.2,T − τ consecutive open loops (2) are allowed to follow as long as a

feedback control is applied periodically such that system passivity is preserved for each period.

Remark 2.2:Definition 2.2 is consistent with the classical passivity definition if the we have both

passive open loop and closed-loop systems (see inequality (23) in the Appendix).

III. PASSIVITY ANALYSIS FOR ZERO DYNAMICS

In this section, we investigate the passivity property of the system zero dynamics. In the closed-loop,

because the system has relative degree zero, by the implication function theory ([22], [24]), it is guaranteed

that there exists a feedback controlu(x,v) such thath(x,u(x,v)) = v. Therefore, the periodically

controlled system (4) can be rewritten as the following transformed system with the open loop dynamics

remaining the same







x(t+ 1) = f(x(t),u(x(t),v(t))) = f̃(x(t),v(t))

y(t) = h(x(t),u(x(t),v(t))) = v(t)
, kT + 1 ≤ t ≤ kT + τ − 1,

and (6)






x(t+ 1) = f(x(t), 0)

y(t) = h(x(t), 0)
, kT + τ ≤ t ≤ (k + 1)T − 1.
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Without loss of generality, by shifting the system coordinates, we can consider the origin as the equilibrium

state, i.e.,f̃(0, 0) = 0. Herev(t) is chosen such that the closed-loop of system (4) is feedbackpassive

according to Definition A.3 in the Appendix.

The open loop system and the zero dynamics of the transformedclosed-loop system form the following

periodic system







x(t+ 1) = f(x(t),u∗(x(t), 0)) = f̄(x(t))

y(t) = h(x(t),u∗(x(t), 0)) = 0
, kT + 1 ≤ t ≤ kT + τ − 1,

and (7)






x(t+ 1) = f(x(t), 0)

y(t) = h(x(t), 0)
, kT + τ ≤ t ≤ (k + 1)T − 1.

For simplicity, we call (7) the zero dynamics of the transformed system (6).

Following Definition 2.2, we give the following generalizedpassivity definition for the zero dynamics.

Definition 3.1: The zero dynamics (7) is said to belocally passiveif there exists a positive semidefinite

storage functionV (V (x) = 0 if and only if x = 0) such that the following inequality is satisfied in a

neighborhood of the equilibrium pointx∗ for all k ∈ {0}
⋃

Z
+

V (x((k + 1)T ))− V (x(kT + 1)) ≤ 0, ∀T ∈ Z
+. (8)

Remark 3.1:Note that the storage function for the periodically controlled system˜̃V is not necessarily

the same as the storage function of the zero dynamicsV .

We now determine the maximum allowable transmission ratio (MATR) between the open loop non-

passive time steps and the closed-loop feedback passive time steps to ensure a passive zero dynamics

satisfying the inequality (8).

Lemma 3.1:Consider the zero dynamics given by Equation (7) and define the maximum allowable

transmission ratio (MATR) as

r∗ =
(T − 1) lnσ

ln σ − T ln ζ
, ∀T ∈ Z

+, (9)

where0 < σ < 1 and ζ > 1 are some bounded constants. If there exists a positive semidefinite storage
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function V (x), V (x) = 0 if and only if x = 0 such that

V (f̄(x(t))) ≤ σV (x(t)), 0 < σ < 1, kT + 1 ≤ t ≤ kT + τ − 1

V (f(x(t), 0)) ≤ ζV (x(t)), ζ > 1, kT + τ ≤ t ≤ (k + 1)T − 1, (10)

with ∀T ∈ Z
+, k ∈ {0}

⋃

Z
+, then the zero dynamics (7) is passive.

Proof: Under condition (10), we have

V (x((k + 1)T )) ≤ στ−1ζT−τV (x(kT + 1)).

According to the inequality (8), the zero dynamics (7) is passive if στ−1ζT−τ ≤ 1. This is satisfied with

r ≤ r∗.

Remark 3.2:Note thatr∗ gives a bound, instead of the actual value, of MATR. With thisunderstanding,

we abuse the nomenclature and refer the bound as MATR throughout the paper.

Remark 3.3:The choice ofζ andσ determines how close the ratior∗ is to the actual value of MATR.

The minimumζ andσ that satisfy the inequality (10) will result in a least conservative r∗.

Lemma 3.2:Given r∗ in Equation (9) such that the zero dynamics (7) is passive under the generalized

passivity definition, if there exists a storage function that satisfies the inequality (10), then for anyr < r∗,

system (7) is also passive.

Proof: We consider two cases. i) Letr = T ∗
−τ
τ

< r∗ = T ∗
−τ∗

τ∗
, where τ > τ ∗. It follows that

στ−1ζT
∗
−τ ≤ στ∗−1ζT

∗
−τ∗ ≤ 1. ii) Let r = T−τ∗

τ∗
< r∗ = T ∗

−τ∗

τ∗
, where T < T ∗. It follows that

στ∗−1ζT−τ∗ ≤ στ∗−1ζT
∗
−τ∗ ≤ 1. That is to say, the passivity of the zero dynamics is preserved by either

increasing the number of closed-loopsτ given periodT ∗ or decreasing the length of the periodT given

τ ∗ closed-loops.

Remark 3.4:Same proof holds for the case when the controlled and uncontrolled time steps are not

consecutive [18].

IV. PASSIVITY ANALYSIS FOR PERIODICALLY CONTROLLED SYSTEM

In Section III, we analyzed the passivity properties of the zero dynamics (7). In this section, we prove

that given a passive zero dynamics there exists a storage function such that the original periodically

controlled system (4) is passive using feedback. Let us firstdefine the generalized passivity inequality for

the transformed periodically controlled system (6) following Definition 2.2.
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Definition 4.1: The transformed periodically controlled system (6) is saidto be locally passivewith

respect to the supply ratevT(t)v(t) if there exists a positive semidefinite storage functionṼ (Ṽ (x) = 0

if and only if x = 0) such that the following passivity inequality holds

Ṽ (x((k + 1)T ))− Ṽ (x(kT + 1)) ≤

(k+1)T
∑

t=kT+τ

vT(t)v(t), ∀T ∈ Z
+, k ∈ {0}

⋃

Z
+. (11)

Theorem 4.1:If the zero dynamics (7) ispassiveaccording to Definition 3.1 with a storage function

V such that the determinant of Hessian matrix ofV (x) at x = 0 is non-zero and there exists a storage

function Ṽ such that the inequality (10) holds, then the transformed system (6) islocally passiveusing

feedback.

Proof: Consider the storage functioñV (x(.)) = aV (x(.)) with a constanta > 0. We first prove that

with a suitable choice of the constanta, this storage function guarantees that, for every vector sequence

{v(t)}, the following inequality holds during closed-loops

Ṽ (f̃(x(t),v(t)))− Ṽ (x(t)) ≤ vT(t)v(t) (12)

for kT + 1 ≤ t ≤ kT + τ − 1, ∀T ∈ Z
+, k ∈ {0}

⋃

Z
+.

This is equivalent to prove that

φ(x(t),v(t)) =
m
∑

i=1

v2i (t) + Ṽ (x(t))− Ṽ (f̃(x(t),v(t)), (13)

kT + 1 ≤ t ≤ kT + τ − 1 has a local minimum at(x(t),v(t)) = (0, 0). For notational convenience, we

denote this pair by(0, 0) and suppress the dependence ont of the terms in (13). Thus, consider the first

order derivatives ofφ(x,v) at (0, 0). We have fori = 1, · · · , n, r = 1, · · · , m,

∂φ(x,v)

∂xi

∣

∣

∣

∣

∣

x=0,v=0

=

[

∂Ṽ

∂xi
−

n
∑

h=1

∂Ṽ

∂f̃h

∂f̃h(x,v)

∂xi

]

x=0,v=0

∂φ(x,v)

∂vr

∣

∣

∣

∣

∣

x=0,v=0

=

[

2vr −
n

∑

h=1

∂Ṽ

∂f̃h

∂f̃h(x,v)

∂vr

]

x=0,v=0

.

The storage functionV (x(t)), and hence the functioñV (x(t)) = aV (x(t)) has a local minimum at

x(t) = 0 becauseV is positive semidefinite withV (x) = 0 if and only if x = 0. Moreover, origin is a

local equilibrium of the system; thus, atx(t) = v(t) = 0, f̃(x(t),v(t)) = 0. Combining these facts, we
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see that

∂φ(x,v)

∂xi

∣

∣

∣

∣

∣

x=0,v=0

= 0, i = 1, · · · , n

∂φ(x,v)

∂vr

∣

∣

∣

∣

∣

x=0,v=0

= 0, r = 1, · · · , m.

Next, we check the elements of the Hessian matrix ofφ(x,v) at (0, 0). We have fori, j = 1, · · · , n and

r, s = 1, · · · , m,

∂2φ(x,v)

∂xj∂xi

∣

∣

∣

∣

∣

x=0,v=0

= a

[

∂2V

∂xj∂xi
−

n
∑

h,l=1

∂2V

∂f̃h∂f̃l

∂f̃h
∂xi

∂f̃l
∂xj

]

x=0,v=0

∂2φ(x,v)

∂vr∂xi

∣

∣

∣

∣

∣

x=0,v=0

= −a

[

n
∑

h,l=1

∂2V

∂f̃h∂f̃l

∂f̃h
∂xi

∂f̃l
∂vr

]

x=0,v=0

∂2φ(x,v)

∂vs∂vr

∣

∣

∣

∣

∣

x=0,v=0

= 2δrs − a

[

n
∑

h,l=1

∂2V

∂f̃h∂f̃l

∂f̃h
∂vr

∂f̃l
∂vs

]

x=0,v=0

.

Denoteφ̃(x(t)) = φ(x(t), 0) = a
(

V (x(t))− V (f̃(x(k), 0)
)

, so that

∂2φ(x,v)

∂xj∂xi

∣

∣

∣

∣

∣

x=0,v=0

=
∂2φ̃(x)

∂xj∂xi

∣

∣

∣

∣

∣

x=0

. (14)

Because the closed-loop is passive and hence has a passive zero dynamics,φ̃(x) has a local minimum at

x = 0, and by assumption, the determinant of Hessian matrix of thestorage functionV (x) at x = 0 is

non-zero, we obtain that the eigenvalues of the Hessian matrix of φ̃(x) at x = 0 are all positive. Denote

these eigenvalues byλi, ∀i = 1, 2, · · · , n. Furthermore, the Hessian matrix ofφ̃(x) at x = 0 is symmetric

and can be diagonalized. Thus, with an appropriate choice ofcoordinates, the Hessian matrix ofφ(x,v)

at (0, 0) can be evaluated to be of the form































aλ1 · · · 0 ab11 · · · ab1m
...

. . .
...

...
. . .

...

0 · · · aλn abn1 · · · abnm

ab11 · · · abn1 2 + ac11 · · · ac1m
...

. . .
...

...
. . .

...

ab1m · · · abnm acm1 · · · 2 + acmm































. (15)



11

Now, we apply [22, Lemma 12] which states that forλi > 0 and∀a = (0, â), â = minj a
u
j where

auj = min

{

1,
2jλ1 · · ·λn − ε

|α1|+ · · ·+ |αj|

}

, j = 1, · · · , m (16)

with 0 < ε � 1 andαl, l = 1, · · · , j being some constants related toλi, bil and crl, i = 1, · · · , n, r =

1, · · · , j, l = 1, · · · , j, the determinant of matrix (15) is greater than zero. Sylester’s criterion now readily

yields that the Hessian matrix ofφ(x,v) at (0, 0) as evaluated in (15) is positive definite. Therefore,

φ(x,v) has a local minimum at(0, 0). Thus, during closed-loops, the relation (12) holds. Summing (12)

for all the time stepst in closed-loops, we then obtain the following inequality

Ṽ (x(kT + τ))− Ṽ (x(kT + 1)) ≤

kT+τ−1
∑

t=kT+1

vT(t)v(t), ∀T ∈ Z
+, k ∈ {0}

⋃

Z
+. (17)

with the equality holds at(0, 0).

During open loopskT + τ ≤ t ≤ (k + 1)T , since the corresponding zero dynamics is nonpassive,

according to (10), we have

Ṽ (f(x(t), 0))− Ṽ (x(t)) = a (V (f(x(t), 0))− V (x(t)))

≤ a(ζ − 1)V (x(t)). (18)

We now choosea in the interval(0, ã) where

ã = min
T

∑kT+τ−1
t=kT+1 φ(x(t),v(t))

(ζ − 1)
∑(k+1)T−1

t=kT+τ V (x(t))

for all T ∈ Z
+, then the following inequality is satisfied,

a(ζ − 1)

(k+1)T−1
∑

t=kT+τ

V (x(t)) +

kT+τ−1
∑

t=kT+1

[

Ṽ (f̃(x(t),v(t))− Ṽ (x(t))
]

≤

kT+τ−1
∑

t=kT+1

vT(t)v(t). (19)

Since

(k+1)T−1
∑

t=kT+τ

[

Ṽ (f(x(t), 0))− Ṽ (x(t))
]

+ Ṽ (x(kT + τ))− Ṽ (x(kT + 1))

= Ṽ (x((k + 1)T ))− Ṽ (x(kT + 1)),

according to the inequalities (18) and (19), there existsa ∈ (0,min(â, ã)), such that the inequality (11)

holds with the equality holding if and only if(x,v) = (0, 0).
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Given this result, we can now establish that local passivityof the transformed system (6) implies local

passivity of the original periodically controlled system (4).

Theorem 4.2:If the transformed system (6) is passive such that the inequalities (11) hold, under a

feedback control lawu(t), then the original periodically controlled system (4) is locally passive.

Proof: According to Theorem 4.1, for the closed-loop of the transformed system there exists a positive

semidefinite storage functioñV (x(t)) ≥ 0 with Ṽ (x(t)) = 0 if and only if x(t) = 0, such that for any

T ∈ Z
+, Ṽ (x(kT + τ)) − Ṽ (x(kT + 1)) ≤

∑kT+τ−1
t=kT+1 v

T(t)v(t). For the periodically controlled system

(4), consider the storage functioñ̃V = ρṼ where ρ > 0 is a constant to be suitably designed. Also,

define the termη(k) =
∑(k+1)T−1

t=kT+1 uT(t)y(t), ∀k ∈ {0}
⋃

Z
∗. Since bothu(t) andy(t) are bounded in

the neighborhood ofx(t) = 0 andv(t) = 0, we see thatη(k) is also bounded. Now, there are two cases.

1) If η(k) ≥ 0, we have ˜̃V (x((k + 1)T )) − ˜̃V (x(kT + 1)) = ρ(Ṽ (x((k + 1)T )) − Ṽ (x(kT + 1))) ≤

ρ
∑kT+τ−1

t=kT+1 v
T(t)v(t). The inequality (5) holds ifρ ≤ mink

η(k)
∑

kT+τ−1

t=kT+1
vT(k)v(k)

.

2) If η(k) < 0, this corresponds to the case when the periodically controlled system (4) is Lyapunov

stable as well. Becauseη(k) is bounded, we can guarantee that with a sufficiently large choice ofρ,

the following inequality holds:̃̃V (x((k+1)T ))− ˜̃V (x(kT + 1)) = ρ(Ṽ (x((k+1)T ))− Ṽ (x(kT +

1))) ≤ η(k) =
∑(k+1)T−1

t=kT+1 uT(t)y(t) ≤ 0, ∀ρ > 0, where we choose

ρ ≥ max
k

η(k)

Ṽ (x((k + 1)T ))− Ṽ (x(kT + 1))
. (20)

Thus, we can design the constantρ > 0 and the corresponding storage function˜̃V = ρṼ , ρ > 0 such that

the periodically controlled system (4) is locally passive in the neighborhood ofx(k) = 0 andv(k) = 0.

Definition 4.2: A system is said to be locally zero state detectable (ZSD) ([25]) if there exists a

neighborhoodN of the origin such that∀x(0) = x0 ∈ N,

y(k)|u(k)=0 = h(φ(k;x0)) = 0, ∀k ∈ Z+

implies

lim
k→+∞

φ(k;x0) = 0,

whereφ(k;x0) is a trajectory of the uncontrolled systemx(k + 1) = f(x(k), 0) from x(0) = x0.

Theorem 4.3:If the system (4) is passive and locally zero state detectable (ZSD) [25], under a feedback
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control law of the formu(t) = −ψ(y(t)) whereψ(0) = 0 and yT(t)ψ(y(t)) > 0, ∀y 6= 0, then the

equilibrium (0, 0) is locally asymptotically stable.

Proof: According to the passivity definition, for every time stepk in the closed-loop, we have

˜̃V (f(x(t),u(x(t))))− ˜̃V (x(t)) ≤ uT(t)y(t) = −yT(t)ψ(y(t)) ≤ 0

with equality holding if and only ify(t) = 0. For every time stept in open loop, the storage function

may increase. However, the increase is always bounded (conditions (10)). Therefore, with the finite period

T , we have

V (x((k + 1)T ))− V (x(kT + 1)) ≤ 0.

According to Theorem 2 in [19], the equilibrium pointx∗ = 0 is Lyapunov stable. The asymptotic stability

follows from ZSD. Observe that all the trajectories of the closed-loop system eventually approach the

invariant set

I = {x ∈ R
n : V (x(t + 1)) = V (x(t))},

which implies

yT(t)ψ(y(t)) = 0, ∀t ∈ {0}
⋃

Z+.

Hencey(t) = 0 andw(t) = −ψ(y(t)) = 0 ∀t ∈ {0}
⋃

Z+. Thus by ZSDlimt→∞ x(t) = 0.

Theorem 4.1:If two periodically controlled systemsS1 andS2 of the form (4) are both passive, then

their parallel and negative feedback interconnections (asdefined in Figure 2) are both passive.

S

u
S1

S2

u1

u2

y1

y2

y

(a)

S
r1

r2

S1

S2

u1

u2

y1

y2

(b)

Fig. 2. (a) Parallel, and (b) negative feedback interconnections for two passive switched nonlinear systemsS1 andS2.
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Proof: Let the control inputs forSi be ui(t), the corresponding output beyi(t) and the storage

function be ˜̃Vi(t). For the parallel interconnection, we have for the interconnected systemS, the control

input u(t) = u1(t) = u2(t) and the outputy(t) = y1(t) + y2(t). For S, consider the storage function

˜̃V (t) = ˜̃V1(t) +
˜̃V2(t). For any timeT ∈ Z

+, k ∈ {0}
⋃

Z
+, we have

˜̃V (x((k + 1)T ))− ˜̃V (x(kT + 1))

= ( ˜̃V1(x((k + 1)T ))− ˜̃V1(x(kT + 1))) + ( ˜̃V2(x((k + 1)T ))− ˜̃V2(x(kT + 1)))

≤

(k+1)T−1
∑

t=kT+1

uT
1(t)y1(t) +

(k+1)T−1
∑

t=kT+1

uT
2(t)y2(t)

≤

(k+1)T−1
∑

t=kT+1

uT(t)y(t). (21)

Similarly, for the negative feedback interconnection, we have for the interconnected systemS, the control

inputs and outputs asr1(t) = u1(t) + y2(t) and r2(t) = u2(t) + y1(t). Consider the storage function

˜̃V (t) = ˜̃V1(t) +
˜̃V2(t). For any timeT ∈ Z

+, k ∈ {0}
⋃

Z
+, we have˜̃V (x((k+1)T ))− ˜̃V (x(kT +1)) ≤

∑(k+1)T−1
t=kT+1 (rT

1(t)y1(t) + rT
2(t)y2(t)).

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate the major concept presented in the above

sections. Let us consider the following periodically controlled nonlinear system



















x1(t+ 1) = −0.3x21(t)x2(t) + 1.5x2(t) + u(k)

x2(t+ 1) = x1(t)− u2(t)

y(t) = 2x2(t) + u(t)

, kT + 1 ≤ t ≤ kT + τ − 1,



















x1(t+ 1) = −0.3x21(t)x2(t) + 1.5x2(t)

x2(t+ 1) = x1(t)

y(t) = 2x2(t)

, kT + τ ≤ t ≤ (k + 1)T.
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The transformed system is given as:



















x1(t+ 1) = −0.3x21(t)x2(t)− 0.5x2(t) + v(t)

x2(t+ 1) = x1(t)− (v(t)− 2x2(t))
2

y(t) = v(t)

, kT + 1 ≤ t ≤ kT + τ − 1,



















x1(t+ 1) = −0.3x21(t)x2(t) + 1.5x2(t)

x2(t+ 1) = x1(t)

y(t) = 2x2(t)

, kT + τ ≤ t ≤ (k + 1)T.

The zero dynamics of the above system is



















x1(t + 1) = −0.3x21(t)x2(t)− 0.5x2(t)

x2(t + 1) = x1(t)− 4x22(t)

y(t) = v(t)

, kT + 1 ≤ t ≤ kT + τ − 1



















x1(t + 1) = −0.3x21(t)x2(t) + 1.5x2(t)

x2(t + 1) = x1(t)

y(t) = 2x2(t)

, kT + τ ≤ t ≤ (k + 1)T.

Note that the closed-loop of system (22) is locally ZSD and has relative degree zero. The controlu(t) =

−y(t) = −x2(t) is used. For the zero dynamics (22), we choose a quadratic storage functionV =

xTPx = x21 + 0.5x22 with the positive definite matrixP =





1 0

0 0.5



. One can easily verify that the

determinant of the Hessian matrix ofV at x = [0 0]T is not zero. We choose the parametersζ = 1.908

andσ = 0.5594. According to Equation (9), it follows thatr∗ = 0.5809(T−1)
0.5809+0.6461T

. We fix the periodT = 8

and obtainr∗ = 0.7072 and τ = d4.6860e = 5. Next, we calculate the storage functionV at each

time step to check condition (10). Table I shows the maximum ratio of V (f(x(t),0)
V (x(t))

for the uncontrolled

and controlled time steps within three periods, i.e.,k = 1, 2, 3. From the table, we can verify that the

inequality (10) is satisfied at every time step withζ = 1.908 andσ = 0.5594. The storage functioñV for

the transformed periodically controlled system (22) is chosen as0.48V with â = 0.48 and ã = 5.6915.

The storage function for the original periodically controlled system can be chosen as12V with ρ = 12

satisfies inequality (20) under the case whenη < 0.

As shown in Figure 3(a), the periodically controlled system(22) is passive during time steps[8k +

1, 8k + 5] and nonpassive (i.e., the increase in storage function is not bounded by the supplied energy at
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maxV (x(t+ 1))/V (x(t)) kT + 1 ≤ t ≤ kT + τ − 1 kT + τ ≤ t ≤ (k + 1)T
k = 0 0.5594 1.908
k = 1 0.5308 1.907
k = 2 0.5166 1.8897

TABLE I
CHECK OF EQUATION (10) WITHIN THREE PERIODS.

each time step) during time steps[8k + 6, 8k + 8]. Figure 3(b) shows the generalized passivity check for

the system. We can see that the generalized passivity inequalities (5) hold for each period. Figure 3(c)

shows the evolution of the state dynamics of the periodically controlled system in 6 periods. Both states

are locally asymptotically stable at the origin.
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Fig. 3. (a) Passivity check for the periodically controlledsystem (22) according to classical passivity definition in 3periods, (b) Passivity
check for system (22) according to the generalized passivity definition (5) in 3 periods, and (c) State dynamics of system(22) after 6 periods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a generalized concept of passivityfor discrete-time periodically controlled

systems with consecutive feedback passive closed-loops followed by consecutive nonpassive open loops.

Different from the classical passivity theory, the increase in storage function is not required to be bounded

by the supplied energy at each time step during a period. The system is said to be passive if the increase



17

in storage function at the end of a period as compared to the beginning of the period is bounded by

the accumulated energy supplied to it within the period. A feedback control is applied periodically to

guarantee system passivity under the generalized definition. We study the passivity properties of the

periodically controlled systems based on its zero dynamics. We prove that given a maximum allowable

transmission ratio, the system zero dynamics is guaranteedto be passive. Given a passive zero dynamics,

it is proved that the periodically controlled system is alsolocally passive. Further research will focus on

the extension of the results presented in this paper to event-triggered control systems. The generalized

concept of passivity will also be investigated in the stochastic settings.
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APPENDIX

BACKGROUND ON PASSIVITY

Consider a system of the form







x(t + 1) = f(x(t),u(t))

y(t) = h(x(t),u(t))
, (22)

wherex ∈ X = R
n, u ∈ U = R

m andy ∈ Y = R
m are the state, input, and output variables, respectively.

X,U andY are the state, input, and output spaces, respectively.t ∈ {0}
⋃

Z
+, f andh are smooth. All

considerations are restricted to an open set ofX×U containing(x∗,u∗) havingx∗ = f(x∗,u∗). Without

loss of generality, it is assumed that(x∗,u∗) = (0, 0) andh(0, 0) = 0.

Definition A.1: [23] A system of the form (22) is said to bedissipativewith respect to thesupply rate

w ∈ U×Y → R if there exists a positive semidefinite functionV : X → R
+, V (x) = 0 if and only if

x = 0, called thestorage function, such that∀(x(t),u(t)) ∈ X×U, ∀t

V (f(x(t),u(t)))− V (x(t)) ≤ w(y(t),u(t)).
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Note that the above inequality holds if and only if∀(x(t),u(t)) ∈ X×U, ∀t

V (f(x(t),u(t)))− V (x(0)) ≤

t
∑

θ=0

w(y(θ),u(θ)). (23)

Definition A.2: [23] A system of the form (22) is said to bepassiveif it is dissipative with respect to

the supply ratew(y(t),u(t)) = uT(t)y(t). That is,∀(x(t),u(t)) ∈ X×U, ∀t

V (f(x(t),u(t)))− V (x(t)) ≤ uT(t)y(t).

Let u(x,v) : X ×U → U denote a nonlinear feedback control law. Ifu(x,v) is locally regular, i.e.,

∂u(x(k),v(k))
∂v(k)

6= 0 for all (x,v) ∈ X×U, the system







x(t+ 1) = f(x(t),u(x(t),v(t))) = f̃(x(t),v(t))

y(t) = h(x(t),u(x(t),v(t))) = v(t)

is referred as the feedback transformed system.

Definition A.3: [21] Consider system (22) with a positive semidefinite storage functionV (x) with

V (x) = 0 if and only if x = 0 and supply ratevT(t)v(t). The system is said to befeedback passivewith

respect toV (x) andvT(t)v(t) if there exists a regular feedback control lawu(x(t),v(t)) with v(t) as

the new input such that

V (f̃(x(t),v(t)))− V (x(t)) ≤ vT(t)v(t).
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