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Model-Based Dissipative Control of Nonlinear Discrete-Time Systems 

over Networks 

 

Michael J. McCourt, Eloy Garcia, and Panos J. Antsaklis 

 

Abstract─The problem of output feedback control of nonlinear discrete-time systems connected 
over a network is studied in this paper. The Model-Based Networked Control Systems (MB-NCS) 
scheme is used to reduce communication to free up network resources for other applications. This 
is done by implementing an approximate model of the plant at the controller node to predict plant 
output values between sensor measurements. Communication is further reduced by considering 
an aperiodic event-triggered communication scheme that transmits data only when the error in 
the output exceeds a specified threshold. With the model and aperiodic updates, the plant is able 
to operate in open-loop for relatively large time intervals while still maintaining a desired level of 
accuracy in the control signal. When control systems are allowed to operate in open-loop like this, 
they often become sensitive to unmodeled dynamics. This paper considers model mismatch 
between the plant and model as well as bounded disturbances that may cause performance issues. 
In this paper, the model-based network architecture is represented as a standard negative 
feedback design problem for analysis purposes. Dissipative theory is applied to the feedback 
system for stability analysis and control synthesis. The results provide average squared 
boundedness with a constructive bound of the system output despite the presence of aperiodic 
updates, nonlinear dynamics, model uncertainties, and external disturbances. 

 

 

I. INTRODUCTION 

 

In Networked Control Systems (NCS) a digital communication network is used to transfer 

information among the components of a control system including actuators, controllers, and sensors. 

This type of implementation differs significantly from classical control systems where all system 

components are attached directly to the control plant exchanging information using dedicated wiring [1]. 

One of the main problems in NCS is the design of control schemes accounting for the absence of 

feedback measurements for possibly long intervals of time. Reducing the amount of communication 

between sensor and controller nodes without compromising the stability of the control system has been 

discussed by different authors [2]-[6]. In particular, Walsh, et al. [2] introduced a network control 

protocol Try-Once-Discard (TOD) to allocate network resources to the different nodes in a Networked 
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Control System, all of which may access the network at any time assuming each access occurs before 

the Maximum Allowable Transfer Time (MATI). The work in [5]-[6] more efficiently uses the packet 

structure, that is, a reduction on communication is obtained by sending packets of information using all 

data bits available (excluding overhead) in the structure of the packet.  

A different way to address reduction of communication in a feedback control network is by 

maximizing the time intervals between updates from the sensor node to the control node. An important 

framework that is able to reduce sampling rate and that also considers model uncertainties is called 

Model-Based Networked Control Systems (MB-NCS) [7]-[9]. The existence on plant-model mismatch 

is present in most control system applications. In NCS, it is especially important to design controllers 

and feedback schedulers that account for this difference between plant and model dynamics since even 

small uncertainties may produce undesired behavior and cause instability in the absence of feedback 

measurements for extended periods of time.    

The framework in [10] extends the MB-NCS approach to consider aperiodic update intervals. The 

update instants in this case are based on error events. The use of event-triggered techniques in NCS has 

been increasingly used in the last years [11]-[17] in order to reduce network communication and update 

the controller only when it is necessary.  

Montestruque [22] provided, separately, sufficient conditions for stability using the MB-NCS 

framework with periodic updates for two classes of nonlinear continuous-time systems: 

( ) ( )
( ) ( , ).

x f x g u
x f x g x u
= +
= +




 

This nonlinear MB-NCS scheme has also been used by Conte et. al. [23] and successfully applied 

for control of underwater Remotely Operated Vehicles (ROV). The work by Liu [24] also provided 

stability results for continuous-time nonlinear systems using the MB-NCS framework. A more general 

class of nonlinear systems was considered: 

( , , ) ( , , )x f t x u r t x u= +  

where ( , , )r t x u represents an additive uncertainty. With respect to the network properties, the author 

focuses on local area control networks with high data rate and considers random but bounded time 

delays. For vanishing perturbations this work provides conditions for exponential stability and 

conditions for uniformly ultimately boundedness in the case of non-vanishing perturbations. 

In relation to nonlinear systems and MB-NCS, Polushin et al. [25] considered a sampled version of 

a nonlinear continuous-time-varying system controlled by an approximate discrete-time model and 
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proposed a communication protocol that considers network induced communication constraints such as 

irregularity of transfer intervals, existence of time-varying communication delays, and possibility of 

packet dropouts. Stability results were given that depend on the integration step parameter; that is, it is 

assumed that the mismatch between plant and model arises only from the approximate integration of the 

nonlinear dynamics and by making the parameter small (close to zero) it is possible to recover an exact 

model of the system. This assumption may be unrealistic in many real problems and may lead to results 

that lack robustness to parameter uncertainty. The work in [26] studies different control choices for 

nonlinear systems with sensor data losses which include: zero control, last available control, and open-

loop control. The last one is equivalent to the MB-NCS approach in which the nominal nonlinear model 

is used to estimate the state of the plant and that estimate is used to compute the control input when 

sensor measurements are not available. The authors do not consider model uncertainties and the only 

difference between the model and the plant is that the plant is perturbed by external bounded 

disturbances.  

Existing results concerning nonlinear MB-NCS only address the state feedback case. In contrast, the 

present paper considers the stabilization of nonlinear discrete-time systems subject to external 

disturbances and does not assume that the entire state of the system is available for measurement but 

only an output of the system can be measured. This approach can also be used for control of nonlinear 

continuous-time systems where the model represents an approximate discretization of the nonlinear 

dynamics and the mismatch between the plant and the model is due to both modeling and discretization 

errors. 

This paper focuses on dissipative systems theory in the MB-NCS framework for nonlinear systems. 

Dissipativity is an energy-based property of dynamical systems. Roughly speaking, a dissipative system 

stores and dissipates energy supplied by its environment without generating its own energy. The notion 

of energy is a generalized energy represented by an energy storage function and an energy supply rate. 

The concept of dissipativity was formalized in [18] and [19]. Specifically the notion of QSR 

dissipativity [20]-[21] is used in this paper. The tools that dissipativity theory provides are powerful for 

analyzing nonlinear systems. For example, stability of a single system or of feedback loops can be 

analyzed when considering the dissipative rates. Additionally, the theory provides guidelines for 

designing stabilizing feedback controllers. 

The main contribution of this paper is in proposing an alternative approach for designing MB-NCS 

with aperiodic updates that can be applied to nonlinear systems with uncertain models and ℓ2 

disturbances. This approach recasts the problem as a standard negative feedback design problem for 

analysis purposes. At this point, dissipativity theory can be applied for designing a feedback controller 
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for the original MB-NCS. These results will be given in Section III. In order to present these results, 

background material will be provided on MB-NCS as well as dissipativity theory in Section II. 

Examples to illustrate this approach are given in Section IV. The paper is concluded in Section V.  

 

II. BACKGROUND MATERIAL 

 

A.   Model-Based Networked Control Systems 

One of the main problems in NCS which is studied in this paper is the design of control schemes 

accounting for the absence of feedback measurements for possibly long intervals of time. Model 

uncertainties are especially important to be considered under this situation. One of the attractive 

properties of a classical closed loop system with continuous feedback is that the appropriate design of 

closed loop controllers reduces sensitivity to model uncertainties. Naturally, this property is lost as 

feedback measurements are no longer received at the controller node. The MB-NCS approach represents 

an important framework that considers model uncertainties in the absence of continuous feedback. MB-

NCS were introduced by Montestruque and Antsaklis [7]-[9]; this configuration makes use of an explicit 

model of the plant which is added to the actuator/controller node to compute the control input based on 

the state of the model rather than on the plant state.  

In contrast to previous work in MB-NCS, the work in this paper does not assume that the entire 

state vector is available for measurement but only the output of the system. It is assumed that the 

dynamics of each system in Fig. 1 are decoupled. Without loss of generality the focus will be on a 

particular system/model pair. In MB-NCS the actuator/controller node with output feedback can be 

represented as in Fig. 2.  

This work considers Single-Input Single-Output (SISO) uncertain and unstable nonlinear discrete-

time systems that can be described by: 

( ) ( ( 1),..., ( ), ( ),..., ( ))ioy k f y k y k n u k u k m= − − −                                       (1) 

and the dynamics of the model are given by: 

ˆˆ ˆ ˆ( ) ( ( 1),..., ( ), ( ),..., ( ))ioy k f y k y k n u k u k m= − − −                                        (2) 

where the nonlinear function ˆ ( )iof 
 represents the available model of the system function ( )iof  .  
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Fig. 1. Representation of Networked Control Systems. A: actuator nodes. S: sensor nodes. iw  

represent external disturbances. 

 

 

 

Fig. 2. Model-Based Networked Control System actuator node containing the model and controller. 
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The aim using this configuration is to operate in open-loop mode for as long as possible 

while maintaining desirable boundedness properties. This is done by using the estimated outputs 

ˆ ˆ( ),..., ( )y k y k n−  provided by the model to generate the control input u. The system output 

measurements are used directly to update the current and past output variables of the model 

without need of implementing a state observer.  

  In the MB-NCS literature the update measurements are implemented in periodic fashion. 

The work in this paper discards the periodicity assumption for updating the model. Instead, a 

non-periodic approach is used that is based on events as in [10]. The estimate of the output given 

by the model of the plant is compared with the actual output. The sensor then transmits the 

current output of the plant and previous n output measurements in a single packet if the error is 

above some predefined tolerance. These measurements are used to update the internal variables 

of the model in the controller. At the same time the sensor uses exactly the same measurements 

to update its own copy of the model. The sensor contains a copy of the model and the controller 

so it can have access to the model output. It continuously measures the actual output and 

computes the model-plant output error, defined by: 

ˆ( ) ( ) ( ).e k y k y k= −                                                         (3) 

The sensor also compares the norm of the error to a predefined threshold α, and it broadcasts the 

plant output to update the model state if the error is greater than the threshold. It is clear that 

while e α≤ the plant is operating in open loop mode based on the model outputs. 

It is important to note the reduction in network traffic by using this approach compared to 

the case in which a measurement of the current output y(k) is sent at every sampling instant even 

in the case that n is large compared to the inter-update intervals. This case requires the 

transmission of n measurements of the output at every update instant, the current one and the 

past n-1 measurements. It has been shown that packet-based control [5]-[6] is able to 

significantly reduce data transmission by more efficiently using the packet structure, that is, 

reduction of communication is obtained by sending packets of information using all data bits 

available (excluding overhead) in the structure of the packet. The work in [5]-[6] focuses in the 

transmission of control input sequences. In the present paper a similar approach is taken but it is 

applied to the transmission of output measurements. Instead of sending a single output value in 

one data packet at every sampling instant, the packet structure is used more efficiently in order to 



 

8 
 

 

include past measurements in the same packet as well. Packet size is a new feature in NCS 

compared to point-to-point architectures and it is a variable that depends on the protocol or type 

of network being implemented. For example, the minimum effective load in an Ethernet packet 

is 46 bytes and, if 2 bytes are used to represent a sensed quantity, which is accurate enough for 

most applications since those 16 bits can encode 162 65536=  different levels of sensed signals, 

then it is possible to send at least 23 sensed signals in such a packet. Other networks that 

specialize in control applications require a considerably smaller minimum size packet. For 

instance, the Controller Area Network (CAN) protocol is optimized for small messages. With an 

overhead of 47 bits (minimum packet size), and a maximum data load of 8 bytes encourages 

designers to use all bits available to send different sensed data. In general, it is possible to 

decrease network traffic by reducing the number of packets sent by the sensor node since a high 

percentage of bits transmitted over the network is related to the large number of bits that are used 

as the packets overheads.   

B.   Dissipative System Theory 

The approach for nonlinear MB-NCS used in this paper relies on dissipativity theory. 

Dissipativity is an energy-based property of dynamical systems. This property relates energy 

stored in a system to the energy supplied to the system. Dissipativity can be seen as an extension 

of Lyapunov stability theory to systems with an input-output representation. The energy stored in 

the system is defined by a positive definite energy storage function. The energy supplied to the 

system is a function of the system input u and output y. A system can be considered dissipative if 

it only stores and dissipates energy with respect to the specific energy supply rate and does not 

generate energy on its own. Let us consider nonlinear discrete-time systems represented by: 

( 1) ( ( ), ( ))
( ) ( ( ), ( )).

x k f x k u k
y k h x k u k
+ =

=
                                                       (4) 

 

Definition 1. Consider a nonlinear discrete-time system in the form (4). This system is 

dissipative with respect to the energy supply rate ω(y,u) if there exists a positive definite energy 

storage function V(x) such that the following inequality holds, for all times 1k  and 2k  such that 

21 kk ≤ ,  
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This form of input-output dissipativity is very general but it is difficult to determine a 

supply rate. A more tractable form of dissipativity is the quadratic form in QSR dissipativity.  

 

Definition 2. A nonlinear discrete-time system (4) is QSR dissipative if it is dissipative with 

respect to the supply rate  
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where TQQ =  and TRR = . 

 

The QSR dissipative framework generalizes many well-known areas of nonlinear systems 

analysis. The property of passivity can be captured when 0== RQ and IS 21= , where I  is 

the identity matrix. Systems that are finite-gain l2 stable can be represented by 0=S , IQ γ1= , 

and IR γ=  where γ  is the gain of the system. The following theorems give stability results for 

single QSR dissipative systems as well as feedback interconnections of dissipative systems. 

 

Theorem 1. A discrete-time system is finite-gain l2 stable if it is QSR dissipative with Q<0. 

 

 
 

Fig. 3. The negative feedback interconnection of two nonlinear systems G1 and G2. 
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Theorem 2. Consider the feedback interconnection of two QSR dissipative nonlinear systems. 

System G1 is dissipative with respect to Q1, S1, R1 and system G2 is dissipative with respect to Q2, 

S2, R2.  The feedback interconnection of these two systems is ℓ2 stable if there exists a positive 

constant 𝑎 such that the following matrix is negative definite, 

.0
2112

1221 <








+−
−+
aQRSaS

SaSaRQ
T

T

                                               (7) 

 

While this paper considers dissipativity for general nonlinear systems, the linear time-

invariant (LTI) case is important for many applications. A discrete-time LTI system is given by 

the model, 

).()()(
)()()1(

kDxkCxky
kBxkAxkx

+=
+=+

                                                    (8) 

A LTI system is dissipative if and only if there exists a quadratic storage function,  

PxxxV T=)( ,                                                               (9) 

where 0>= TPP , to satisfy the dissipativity inequality. The matrix P can be found 

computationally using linear matrix inequality (LMI) methods. An optimization problem can be 

formulated to find a positive definite matrix P. The problem is feasible when P can be found to 

satisfy the following matrix inequality, 

0≤








−−−−−−
−−−−

RDSSDQDDPBBCSQCDPAB
SCQDCPBAQCCPPAA
TTTTTTT

TTTTT

,                  (10) 

For general nonlinear systems, there doesn’t exist a computational method of finding 

storage functions or proving dissipativity.  

 

III. MAIN RESULTS 

The main results of this paper are presented in this section. The goal of the first subsection 

III.A is to reconcile the two models discussed up to this point of the paper. The first model 

covered is the nonlinear input-output representation of a system, and the second is the nonlinear 

state space model. The second subsection III.B covers the notion of boundedness used in this 

paper and proves boundedness under appropriate assumptions. 
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A.   Proposed Equivalent Representation of a MB-NCS 

The type of nonlinear systems represented by (1) can also be described by the state 

representation (4). A straightforward way to obtain a state space representation of the input-

output system (1) is as follows: 

Define the state space variables: 

1

2

1

2

( ) ( 1)
( ) ( 2)

( ) ( )
( ) ( 1)
( ) ( 2)

( ) ( )

n

n

n

n m

x k y k
x k y k

x k y k n
x k u k
x k u k

x k u k m

+

+

+

= −
= −

= −
= −
= −

= −





                                                     (11.a) 

and the state space vector 

1 2( ) [ ( ) ( ) ( )] .T
n mx k x k x k x k+=                                          (11.b) 

Then a system of the form (1) can be represented as a state space dynamical system as 

follows: 

1 1 1

2 1

1

1

12

1

( 1) ( ( ),..., ( ), ( ), ( )..., ( ))
( 1) ( )

( 1) ( )
( 1) ( ( ), ( )

( 1) ( )
( )( 1)

( )( 1)

io n n n m

n n

n

nn

n mn m

x k f x k x k u k x k x k
x k x k

x k x k
x k f x k u k

x k u k
x kx k

x kx k

+ +

−

+

++

+ −+

+   
   +   
   
   

+   + = = =   +
   

+   
   
   
   +   

 



)      (12) 

1 1( ) ( ( ),..., ( ), ( ), ( )..., ( )) ( ( ), ( )).io n n n my k f x k x k u k x k x k h x k u k+ += =  

Following a similar procedure it is possible to obtain a state space representation of the 

model: 

ˆˆ ˆ( 1) ( ( ), ( ))
ˆˆ ˆ( ) ( ( ), ( ))

x k f x k u k

y k h x k u k

+ =

=    
                                               (13) 

The structure of the state space model is the same as that of the real plant. The uncertainty in 
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the plant is only due to the output equation and to the first term in the state equation of (12), 

which is repeated in the output equation as well; those expressions contain the nonlinear 

uncertain dynamics given by (1) with respect to the nominal model (2).   

By using the model parameters in (13) it is possible to follow the QSR dissipative analysis 

described in the previous section in order to design QSR dissipative and stabilizing controllers.  

Now, the Model-Based Event-Triggered (MB-ET) architecture described in section II.A can 

be represented in the negative feedback interconnection suitable for dissipativity analysis as in 

Fig. 3.  

Fig. 4 shows an equivalent representation of a MB-ET control system in which the updates 

of the state of the model are implicit in the model/controller block. From (3) it is clear that 

   ˆ( ) ( ) ( ).y k y k e k= +                                                       (14) 

The input to the controller is the output of the model ˆ( )y k ; this can be easily represented by 

(14) as in Fig. 4 where the output of the model is the result of the contribution of two terms: the 

output of the system and the output error. Although the actual implementation of the control 

system is not in this form, this form is useful for the analysis and design of stabilizing controllers 

using dissipative techniques. 

 

 

 
 

Fig. 4. This figure shows an equivalent feedback loop for the Model-Based Event-Triggered 

control system used for analysis.  
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By using a MB-ET implementation [10] the output error can be bounded by the appropriate 

design of a stabilizing threshold. The error (3) can be seen as piece-wise bounded external 

disturbance and at the communication update instants ik  , ( ) 0ie k =  because the model and plant 

output variables are equal.  

 

B.   Stabilization of networked discrete-time systems using output feedback event-triggered 

measurements 

 

This section considers discrete-time nonlinear systems and models of the form (1)-(2) that 

are interconnected using a model-based implementation as described in Section II.A. The 

analysis and design of the stabilizing controller can be performed as shown in the previous 

section using the equivalent representation (12)-(13). Since it is only possible to measure the 

output of the system and not the whole state it is not possible to implement a state-space 

representation of the model directly. Instead, the model in both the controller and the sensor 

nodes is implemented as an equivalent nonlinear difference equation which represents the same 

input-output behavior as the state-space model. When the sensor decides that a measurement 

update needs to be sent according to the current output error, then it sends the current and n past 

output measurements which are used to update the model in the controller. At the same time the 

sensor uses exactly the same measurements to update its own copy of the model.  

In order to make a decision as to whether or not it is necessary to send a measurement to 

update the model, the absolute value of the output error (3) is compared to a fixed positive 

threshold α. When the relation ( )e k α>  holds, the sensor transmits a measurement update. 

Assuming negligible delay the model is updated using the current and past n system output 

values at the same update instant ik . At this point, the output error (3) is set to zero, since the 

model output is made equal to the real output of the system at time k. Therefore, the output error 

is bounded by: 

( ) .e k α≤                                                              (15) 

Before the main results will be provided, the notion of stability must be covered. For 

uncertain systems that are perturbed by an external disturbance and that are operated open loop 
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for some time periods, the notion of stability must be relaxed. While asymptotic stability is 

appealing, it simply is not achievable. When the system runs open loop, the state may diverge 

due to unstable dynamics that are not known exactly. A more reasonable notion of stability is in 

a form of boundedness such as uniform ultimate boundedness [27]. For systems that are 

ultimately bounded, as time goes to infinity the state is bounded by a known constant.  

Instead of internal state stability, input-output stability is considered in this paper. For input-

output stability, a notion such as ℓ2 stability must be relaxed to a bound on the output as time 

goes to infinity. In general, a uniform bound on the output may not be tight. The output can be a 

function of internal state and system input. Since the input may not be predictable, a uniform 

bound on the output may be quite large. Instead a tighter bound on the average output amplitude 

may be found. In this paper the notion considered is average output squared boundedness. 

 

Definition 3. A nonlinear system is average output squared bounded if there exist a time 𝑘� 

and a constant 𝑏 such that the following bound on the output holds for all times 𝑘1 and 𝑘2 such 

that 𝑘� ≤ 𝑘1 < 𝑘2, 

1
(𝑘2 − 𝑘1)

� 𝑦𝑇(𝑘)𝑦(𝑘)
𝑘2−1

𝑘=𝑘1

≤ 𝑏. 

This form of boundedness is a practical form of stability on the system output. While the output 

doesn’t necessarily converge to zero, it is bounded on average with a known bound as time goes 

to infinity. Although this concept may not be useful for an arbitrarily large bound b, the concept 

is very informative for a small bound. The notion should be restricted to being used in the case 

when the bound is constructive and preferably when the bound can be made arbitrarily small by 

adjusting system parameters. 

For the following theorem, assume that the plant and the model of the plant are QSR 

dissipative with respect to parameters 𝑄𝑝 , 𝑆𝑃 , and 𝑅𝑃 . Although the plant dynamics are not 

known exactly, experimental testing can be done to verify that the dissipative rate is at least a 

bound on the actual dissipative behavior of the system. The data taken to verify that the 

parameters hold to a specified level of certainty is similar data taken to identify system 

parameters. It is also assumed that a model-stabilizing dissipative controller has been designed 
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such (7) is satisfied with 𝑄𝐶, 𝑆𝐶, and 𝑅𝐶 representing the QSR parameters of the controller. Next, 

we provide conditions under which we are able to stabilize uncertain unstable systems with 

limited feedback.  

 

Theorem 3. Consider the networked system (1) with uncertain dynamics, event-triggered 

aperiodic updates, and model-based output error (3). This feedback system, from external 

disturbance 𝑤 to output 𝑦, is average output bounded stable if there exists a positive constant 𝑎 

such that the following matrix 𝑄�  is negative definite, 

𝑄� = �
𝑄𝑝 + 𝑎𝑅𝐶 𝑎𝑆𝐶𝑇 − 𝑆𝑝
𝑎𝑆𝐶 − 𝑆𝑃𝑇 𝑅𝑝 + 𝑎𝑄𝐶

� < 0.  

Proof.  The plant being QSR dissipative implies the existence of a positive definite storage 

function 𝑉𝑃, bounded above and below by class-K functions,  

𝛼𝑃(|𝑥𝑃|)  ≤  𝑉𝑃(𝑥𝑃)  ≤   𝛼𝑃(|𝑥𝑃|) , 

such that the following inequality holds, 

∆𝑉𝑃(𝑥𝑃)  ≤ �𝑦𝑢�
𝑇
�
𝑄𝑃 𝑆𝑃
𝑆𝑃𝑇 𝑅𝑃

� �𝑦𝑢�.  

The same applies for the controller being QSR dissipative, i.e. 

𝛼𝐶(|𝑥𝐶|)  ≤  𝑉𝐶(𝑥𝐶)  ≤   𝛼𝐶(|𝑥𝐶|), and 

∆𝑉𝐶(𝑥𝐶)  ≤ �
𝑢𝑐
𝑦� �

𝑇
�
𝑄𝐶 𝑆𝐶
𝑆𝐶𝑇 𝑅𝐶

� �
𝑢𝑐
𝑦� �.  

A total energy storage function can be defined, 𝑉(𝑥) = 𝑉𝑃(𝑥𝑃) + 𝑎𝑉𝐶(𝑥𝐶), where 𝑥 = �
𝑥𝑃
𝑥𝐶�. The 

total energy storage function has the dissipative property,  

∆𝑉(𝑥)  ≤ �

𝑦
𝑢𝑐
𝑤
𝑒
�

𝑇

� 𝑄
� �̃�
�̃�𝑇 𝑅�

� �

𝑦
𝑢𝑐
𝑤
𝑒
� , 

where  
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𝑄� = �
𝑄𝑝 + 𝑎𝑅𝐶 𝑎𝑆𝐶𝑇 − 𝑆𝑝
𝑎𝑆𝐶 − 𝑆𝑃𝑇 𝑅𝑝 + 𝑎𝑄𝐶

�,   �̃� = � 𝑆𝑃 𝑎𝑅𝐶
−𝑅𝑃 𝑎𝑆𝐶

� ,  and   𝑅� = �𝑅𝑃 0
0 𝑎𝑅𝐶

� . 

By assumption, 𝑄�  is negative definite and can be bounded above by a constant 𝑞, 𝑄� ≤ −𝑞𝐼. The 

other two matrices can be bounded above,  �̃� ≤ 𝑠𝐼 and 𝑅� ≤ 𝑟𝐼. This yields the following bound 

on ∆𝑉  

∆𝑉(𝑥) ≤ −𝑞[𝑦𝑇𝑦 + 𝑢𝑐𝑇𝑢𝑐] + 2𝑠[𝑦𝑇𝑤 + 𝑢𝑐𝑇𝑒] + 𝑟[𝑤𝑇𝑤 + 𝑒𝑇𝑒]. 

A completing the square approach can be applied to remove the cross term leaving the following 

bound 

∆𝑉(𝑥) ≤ −
𝑞
2

[𝑦𝑇𝑦 + 𝑢𝑐𝑇𝑢𝑐] +
(4𝑠2 + 2𝑞𝑟)

2𝑞
[𝑤𝑇𝑤 + 𝑒𝑇𝑒]. 

Summing this inequality over a time interval from 𝑘1 to 𝑘2 yields the following evolution of the 

storage function.  

𝑉�𝑥(𝑘2)� ≤ 𝑉�𝑥(𝑘1)� −
𝑞
2
� (𝑦𝑇𝑦 + 𝑢𝑐𝑇𝑢𝑐)
𝑘2−1

𝑘=𝑘1

+
(4𝑠2 + 2𝑞𝑟)

2𝑞
� (𝑤𝑇𝑤 + 𝑒𝑇𝑒)
𝑘2−1

𝑘=𝑘1

 

The effect of the continuous ℓ2 disturbance 𝑤 can be bounded by some value 𝜀𝑤 > 0 after some 

time 𝑘�, 

�
4𝑠2 + 2𝑞𝑟

2𝑞
|𝑤(𝑘)| ≤ 𝜀𝑤. 

Using the previous two equations, the following bound on the squared output can be found 

� 𝑦𝑇𝑦
𝑘2−1

𝑘=𝑘1

≤
2
𝑞
�𝑉�𝑥(𝑘1)� + 𝜀𝑤2� +

(4𝑠2 + 2𝑞𝑟)
𝑞2

� 𝑒𝑇𝑒
𝑘2−1

𝑘=𝑘1

 

This bound is made up of two quantities that are constant and the final summation that may 

increase with time.  
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The rest of this proof is done by breaking the analysis in two cases. Fixing the time 𝑘1 ≥ 𝑘�, for 

each time 𝑘2 one of the following is true. 

1. In the time range of 𝑘1 to 𝑘2 and for 𝛿 in the range 0 < 𝛿 < 1, the squared output is on 

average bounded by the following expression, 

1
(𝑘2 − 𝑘1)

� 𝑦𝑇𝑦
𝑘2−1

𝑘=𝑘1

≤
(4𝑠2 + 2𝑞𝑟)𝛼2

𝑞2(1 − 𝛿)
 

 

 

2. If the previous bound does not hold, the following holds 

1
(𝑘2 − 𝑘1)

� 𝑦𝑇𝑦
𝑘2−1

𝑘=𝑘1

>
(4𝑠2 + 2𝑞𝑟)𝛼2

𝑞2(1 − 𝛿)
 

 

This quantity can be used to bound the squared error accumulated over time. It can be 

shown that the following bound on the squared output holds. 

� 𝑦𝑇𝑦
𝑘2−1

𝑘=𝑘1

≤
2
𝛿𝑞

[𝜀𝑤2 + 𝑉(𝑥(𝑘1))] 

 

With this bound on the total of the output squared, it is clear that the average value of the 

squared output is bounded. Since this bound is independent of time, it is fixed for 

arbitrarily large 𝑘2 and any 𝛿. This means that this bound would imply that the average of 

the output squared goes to zero as 𝑘2 goes to infinity.  

 

For either of the above cases, the squared output is bounded on average by a constant bound that 

is independent on time. Since both bounds hold, the maximum of the two is always at least a 

loose bound on the average of the squared output. Since the second average bound goes to zero 

over time, the first bound is the more relevant one on the infinite time horizon. 
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Remark 1. One important takeaway from the proof is that the average squared output is 

bounded by a constructive bound. These bounds can be made smaller by adjusting the values of 

control parameters. The bounds depend on 𝑞, 𝑠, and 𝑟 which involve parameters of the plant that 

cannot be changed and parameters of the controller which may change. The first bound, the more 

relevant one, depends on the value of the state error threshold 𝛼. The output squared bound can 

be made arbitrarily small by making the error threshold smaller. Lastly, the bounds depend on 𝛿 

and 𝜀𝑤 , which are constructed to analyze the behavior of the disturbance after time 𝑘� . The 

bounds can be made tighter by considering larger 𝑘� . Additionally, the parameter 𝛿  may be 

changed to adjust the relative magnitude of the two bounds. By picking an appropriate 𝛿 for each 

time 𝑘2, the bounds may be chosen to be tighter.  

 

Remark 2. The selection of the constant threshold α is made by considering the following 

tradeoff. A small threshold results in a smaller bound on the system’s average output but, in 

general, increases the communication rate by sending measurement updates more frequently. A 

reduction on network usage can be achieved by increasing the threshold at the cost of a larger 

average output of the system.   

In the case of linear systems it is possible to estimate the set of admissible uncertain plants 

that can be stabilized given a model and a controller. Using the same QSR parameters 𝑄𝑝, 𝑆𝑃, 

and 𝑅𝑃  that were used for the model and assuming that the real parameters contain additive 

uncertainties with respect to the nominal model parameters, i.e. ˆ ˆ, ,A BA A B B= + ∆ = + ∆

ˆ ˆ,C DC C D D= + ∆ = + ∆ , then the following can be solved  

0T

X W
W Y
 

≤ 
 

 

for P and using different values of , ,A B∆ ∆ ,C D∆ ∆ , where 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T
A A C CX A P A P C Q C= + ∆ + ∆ − − + ∆ + ∆  

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )T T T T
B B D D D DY B P B D Q D D S S D R= + ∆ + ∆ − + ∆ + ∆ − + ∆ − + ∆ −  

and  ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )T T T
A B C D CW A P B C Q D C S= + ∆ + ∆ − + ∆ + ∆ − + ∆  
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When the above problem is feasible for given choice of uncertainties , ,A B∆ ∆ ,C D∆ ∆  then 

the uncertain system A, B, C, D is an element of the set of admissible uncertain plants.    

 

IV. EXAMPLES 

 

The following examples demonstrate how the MB-NCS design method introduced in this 

paper may be used. The examples were chosen to be LTI for simplicity and ease of 

understanding. The theory applies to general nonlinear systems.  

 

Example 1. Consider a model of an unstable system given by: 

[ ]0.81 0.37 1ˆ ˆˆ ˆ, , 1 2 , 1.
0.88 0.21 0

A B C D
−   

= = = =   
                             

 (16) 

It can be shown that the model is QSR dissipative with respect to QP=0.5, SP=0.5, and 

RP=0.1, by using the storage function: 

0.8 0.87ˆ ˆ ˆ ˆ( ) .
0.87 1.28

TV x x x 
=  

 
 

A stabilizing controller is given by 

0.5, 0.3, 1, 1.c c c cA B C D= = = =                                     (17) 

This controller is passive and QSR dissipative with respect to QC=-0.2, SC=0.5, and RC=-0.6 

which can be shown using the storage function 2( ) 1.23c u uV x x= . 

The controller can be shown to stabilize the model by evaluating (7).  

𝑄� = �−0.1 0
0 −0.1� < 0.                                                   (18) 

For this example, an actual uncertain plant is given by: 

[ ]0.71 0.55 1
, , 0.75 2.3 , 1.1.

0.95 0.35 0
A B C D

−   
= = = =   
   

                      (19) 

The plant is also dissipative with respect to the same choice of QSR parameters QP=0.5, 

SP=0.5, and RP=0.1, This can be verified using the storage function 
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1.21 1.13
( ) .

1.13 1.78
TV x x x 

=  
 

 

Since the QSR parameters for the plant and the model are the same, then the controller (17) 

also stabilizes the plant and satisfies the inequality (7) with (18). Simulations of the model-based 

networked system that is also affected by an (ℓ2) external disturbance w(k) are shown in Fig. 5 

using a threshold value α=0.02. The network communication signal ( )cn k  in Fig. 6 represents the 

time instants at which output measurements are sent from the sensor node to the controller node. 

The rest of the time the networked system operates in open-loop mode. 

1 if measurements aresent at time
( )

0 if measurements are not sent at timec

k
n k

k


= 
                        

     (20) 

 

 

 

 

Fig. 5. Outputs of the plant (top) and the model (bottom) for example 1. 
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Fig. 6. Output error (top) and network communication instants for example 1. 

 

Fig. 5 shows that the outputs of the model-based networked uncertain system are bounded, 

as expected. Although the parameters of the nominal model differ significantly from those of the 

real plant, it is still possible to stabilize the system. A larger reduction of network 

communication can be achieved by using a more accurate model that is QSR dissipative using 

the same choice of QSR parameters and that it also reflects more accurately the dynamics of the 

plant.  

Example 2. Consider the same plant dynamics (19) and the following model parameters: 

[ ]0.7 0.52 1ˆ ˆˆ ˆ, , 0.73 2.2 , 1.2.
0.88 0.4 0

A B C D
−   

= = = =   
                   

         (21) 

The results of simulations to the same external disturbance using the same threshold and the 

new model are shown in Fig. 7 and Fig. 8. 
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Fig. 7. Outputs of the plant (top) and the model (bottom) for Example 2. 

 

Fig. 8. Output error (top) and network communication instants for Example 2. 
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V. CONCLUSIONS 

 

The stabilization of networked nonlinear systems using the MB-NCS approach has received 

little attention compared to the linear systems problem. Furthermore, previous results that 

consider nonlinear systems only address the state feedback case. This paper provides a method 

for designing stabilizing controllers based on dissipativity theory and the results can be applied 

to a general class of nonlinear systems with model uncertainties, with disturbances, and with 

states that cannot be measured directly as long as the output can be measured. The design of 

dissipative controllers for MB-NCS is made possible by modeling the model-based networked 

architecture as a standard negative feedback interconnection and by implementing the model as a 

difference (input-output) equation which can be updated using the system’s output measurements 

directly without need of state observers. Communication rates are reduced significantly with the 

MB-NCS framework and then further reduced by implementing aperiodic event-triggered 

communication. The main result of the paper demonstrates boundedness of the average output 

squared with a constructive bound. This bound can be made quite small by varying the design 

parameters of the controller and varying the acceptable error threshold. Two examples 

demonstrate how communication can be significantly reduced while still maintaining a desirable 

bound on the output.  
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