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Abstract

In this paper, we consider the problem of reliable stabilization for large power systems – when some of the

controllers are faulty in the sense that they fail to act optimally, or do not function in the way that they were

originally intended to function. Specifically, we introduce a solution concept that requires controllers to respond

optimally (i.e., in the sense of mutual best-response correspondences) to the non-faulty controllers regardless of the

identity or actions of the faulty controllers.At any time, we assume that the non-faulty controllers know only that

there can be at most one faulty controller in the system, but they know neither the identity of the faulty controller nor

how this faulty controller behaves. We present a design framework using an extended LMI technique for deriving

reliable state-feedback gains; while a set of filters whose estimation-error dynamics satisfy certain quadratic integral

constraints is used as decentralized observers within the subsystems for extending the result to the output-feedback

case. Moreover, a sufficient condition for solvability of the problem is provided in terms of the minimum-phase

condition of the subsystems. We also present an application of the results to a practical power system problem.

Index Terms

Decentralized control, extended LMI, filters, integral quadratic constraints, power system, reliable control,

stabilization.

I. INTRODUCTION

Over the last decades, the electric power systems such as the Eastern/Western North American grids and European

grid have experienced unprecedented changes due to the emergence of deregulation in the sector as well as the

development of competitive electricity market. These changes have caused a noticeable uncertainty in the load

flows, and moreover pushed the networks to their operational limits. Besides, the integration of land-based/offshore

large-scale wind generations into the existing network will bring a significant effect on the system dynamics as well

as on the load flow of the system. On the other hand, the transmission grids have seen very little expansion due to

environmental restrictions. As a result, available transmission and generation facilities are highly utilized with large
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amounts of power interchanges taking place through tie-lines and geographical regions. It is also expected that this

trend will continue in the future and result in more stringent operational requirements to maintain reliable services

and adequate system dynamic performances. Critical controls like excitation systems, power system stabilizers,

static VAR compensators, and a new class of control devices (driven by modern power electronics) will play

increasingly key roles in maintaining adequate system dynamic performance. Moreover, proper design of these

control systems that takes into account the continually changing dynamic structure of the network is imperative

to ensure/guarantee robustness over wide operating conditions in the system. With the emphasis on the robustness

and reliability or system performance, there is a need to analyze and design controls in an integrated manner,

taking into effect the interaction between the various subsystems and controllers in the system.

In this paper, we consider the problem of reliable decentralized stabilization for large power systems using multi-

controller configurations to enhance system robustness/reliability against some changes in operating conditions

and/or possible component failures that may occur in actuators, sensors or controllers. In a multi-channel control

configuration (e.g., see [1], [2], [3], [4], [5] and references therein on the problem of reliable stabilization with

multi-controller configurations), the main objective is to guarantee stability and/or to maintain certain performance

criteria of the closed-loop system both when all of the controllers work together and when some controllers become

faulty or deviate from nominal operating conditions. Specifically, we introduce a solution concept that requires

controllers to respond optimally (i.e., in the sense of mutual best-response correspondences) to the non-faulty

controllers regardless of the identity and/or actions of the faulty controllers. At any time, the non-faulty controllers

know only that there can be at most one faulty controller in the system, but they know neither the identity of

the faulty controller nor how this faulty controller behaves. Such solution concept (which is also required to be

robust to any deviations from the equilibrium solutions) is then linked with the problem of reliable state-feedback

stabilization using an extended LMI technique, while a set of filters whose estimation-error dynamics satisfy

certain quadratic integral constraints (IQCs) is used as decentralized observers within the subsystems to extend

the result to the output-feedback case. As an application of our approach, we present a practical power system

problem where model reduction and low pass filters are further utilized.

The outline of this paper is as follows. In Section II, we present a preliminary result on the problem of reliable

stability for a multi-channel system using a new class of extended LMIs. Section III presents the main results,

where the problem of reliable stabilizing for a general multi-channel system is formally stated. Then, a design

method of reliable decentralized state feedback stabilization is derived using the extended LMI technique. The

design is further extended to decentralized output feedback case using a set of filters (whose estimation error

dynamics satisfy certain IQCs) that is also used as decentralized observers within the subsystems. In Section IV,

we also present an application of the results to a power system problem, and Section V contains concluding

remarks.

Notation: For a matrix A ∈ Rn×n, He (A) denotes a hermitian matrix defined by He (A)
def
= (A + AT ), where

AT is the transpose of A. For a matrix B ∈ Rn×p with r = rankB, B⊥ ∈ R(n−r)×n denotes an orthogonal

complement of B, which is a matrix that satisfies B⊥B = 0 and B⊥B⊥T � 0. Sn and Sn+ denote the set of

positive definite and strictly positive definite n×n real matrices, respectively, and C− denotes the set of complex
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numbers with negative real parts, that is C− def
= {s ∈ C |Re{s} < 0}. RH∞ denotes the set of rational functions

with real coefficients that are proper and analytic in the closed right-half of the complex plane. RHm×n∞ denotes

the set of m×n matrices whose elements are in RH∞. Sp(A) denotes the spectrum of a matrix A ∈ Rn×n, i.e.,

Sp(A)
def
= {λ ∈ C | rank(A−λ I) < n} and GLn(R) denotes the general linear group consisting of all n×n real

nonsingular matrices.

II. PRELIMINARIES

Consider the following finite-dimensional generalized multi-channel system

ẋ(t) = Ax(t) +
∑
i∈N

Biui(t),

yi(t) = Cix(t), x(0) = x0, t ∈ [0,+∞), (1)

where x(t) ∈ X ⊂ Rn is the state of the system, ui(t) ∈ Ui ⊂ Rri is the control input to the ith-channel of

the system, yi(t) ∈ Yi ⊂ Rmi is the output of the i-th channel, A ∈ Rn×n, Bi ∈ Rn×ri , Ci ∈ Rmi×n, and

N def
= {1, 2, . . . , N} represents the set of controllers in the system.

For the above system, we restrict the set K to be the set of all linear, time-invariant (reliable) stabilizing state-

feedback gains that satisfies

K ⊆

(K1,K2, . . . ,KN ) ∈
∏
i∈N
Ki ⊆

∏
i∈N

Rri×n
∣∣∣ Sp(A+

∑
i∈N¬j

BiKi) ⊆ C−, ∀j ∈ N ∪ {0}

 , (2)

where the sets N¬0
def
= N and N¬j are defined by N¬j

def
= N \{j} for j = 1, 2, . . . , N with cardinality of

|N¬0| = N and |N¬j | = N − 1, respectively.

Remark 1: In this paper, we consider the stability of the closed-loop systems
(
A+

∑
i∈N¬j BiKi

)
under a nominal

operation condition (i.e., when j = 0) as well as under a possible single-channel controller failure (i.e., when

j ∈ N ). However, following the same discussion, we can also consider at most two or more possible controllers

failures in the system.

Let us introduce the following matrices that will be used in the sequel.

Definition 1:

E¬0
def
=
[
In×n In×n · · · In×n︸ ︷︷ ︸

(|N¬0|+1) times

]
, 〈X0, X¬0〉

def
= block diag{X0,

=X¬0︷ ︸︸ ︷
X0, . . . , X0︸ ︷︷ ︸

(|N¬0|+1) times

},

[A,B]U0,L¬0

def
=[ AU0 B1L1 B2L2 · · · BNLN ],

〈U0,W¬0〉
def
= block diag{U0,

=W¬0︷ ︸︸ ︷
W1,W2, . . . ,WN︸ ︷︷ ︸
(|N¬0|+1) times

},

B¬0
def
=
[
B1 B2 · · · BN

]
, C¬0

def
=
[
CT1 CT2 · · · CTN

]T
,
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and for i ∈ N

E¬i
def
=
[
In×n · · · In×n In×n · · · In×n︸ ︷︷ ︸

(|N¬i|+1) times

]
,

〈Xi, X¬i〉
def
= block diag{Xi,

=X¬i︷ ︸︸ ︷
Xi, . . . , Xi, Xi, . . . , Xi︸ ︷︷ ︸

(|N¬i|+1) times

},

[A,B]Ui,L¬i

def
= [ AUj B1L1 · · · Bi−1Li−1 Bj+1Lj+1 · · · BNLN ],

〈Ui,W¬i〉
def
= block diag{Ui,

=W¬i︷ ︸︸ ︷
W1, . . . ,Wi−1, Xi+1, . . . , XN︸ ︷︷ ︸

(|N¬i|+1) times

},

B¬i
def
=
[
B1 · · · Bi−1Bi+1 · · · BN

]
, C¬i

def
=
[
CT1 · · · CTi−1 CTi+1 · · · CTN

]T
.

Then, we can characterize the set K using a new-class of extended LMIs as follows.1

Theorem 1: Suppose the pairs (A,B¬j) are stabilizable for all j ∈ N ∪{0}. Then, there exist Xj ∈ Sn+, εj > 0,

Uj ∈ GLn(R), j = 0, 1, . . . , N , Wi ∈ GLn(R) and Li ∈ Rri×n, i = 1, 2, . . . , N such that 0n×n E¬j〈Xj , X¬j〉

〈Xj , X¬j〉ET¬j 0(|N¬j |+1)n×(|N¬j |+1)n

+ He

(  [A,B¬j ]Uj ,L¬j

−〈Uj ,W¬j〉


×
[
ET¬j εjI(|N¬j |+1)n×(|N¬j |+1)n

] )
≺ 0. (3)

Moreover, for any family of |N¬0|-tuples ( L1, L2, . . . , LN ) and ( W1, W2, . . . , WN ) as above,

if we set Ki = LiW
−1
i for each i = 1, 2, . . . , N , then the matrices

(
A +

∑
i∈N¬j BiKi

)
are Hurwitz for all

j ∈ N ∪ {0}, i.e., Sp
(
A+

∑
i∈N¬j BiKi

)
⊆ C−, ∀j ∈ N ∪ {0}.

Proof: Sufficiency: Note that 〈Xj , X¬j〉ET¬j = ET¬jXj and [A,B]Uj ,L¬j

−〈Uj ,W¬j〉

⊥ =
[
In×n [A,B]Uj ,L¬j

〈Uj ,W¬j〉−1
]
,

def
=
[
In×n

(
A+

∑
i∈N¬j BiKi

) ]
, (4) E¬j

εjI(|N¬j |+1)n×(|N¬j |+1)n

⊥ =
[
εjI(|N¬j |+1)n×(|N¬j |+1)n − E¬j

]
, (5)

for j = 0, 1, . . . , N .

Then, eliminating 〈Uj ,W¬j〉 from (3) by using these matrices, we have the following matrix inequalities

[
In×n [A,B]Uj ,L¬j

〈Uj ,W¬j〉−1
] 0n×n E¬j〈Xj , X¬j〉

〈Xj , X¬j〉ET¬j 0(|N¬j |+1)n×(|N¬j |+1)n


×

 In×n

(〈Uj ,W¬j〉−1)T[A,B]
T
Uj ,L¬j

 = He

(A+
∑
i∈N¬j

BiKi)Xj

 ≺ 0, (6)

1Recently, a similar extended LMI condition together with dissipativity-based certifications have been investigated by Befekadu et al. [6]

in the context of reliable stabilization for multi-channel systems.
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[
εjI(|N¬j |+1)n×(N+1)n −E¬j

] 0n×n E¬j〈Xj , X¬j〉

〈Xj , X¬j〉ET¬j 0(|N¬j |+1)n×(|N¬j |+1)n


×

 εjI(|N¬j |+1)n×(|N¬j |+1)n

−ET¬j

 = −2εj(|N¬j |+ 1)Xj ≺ 0. (7)

Hence, we see that equations (6) and (7) state the Lyapunov stability condition with Xj ∈ Sn+ and state-feedback

gains Ki = LiW
−1
i for i = 1, 2, . . . , N .

Necessity: Suppose the system in (1) is stable with state-feedback gains Ki = LiW
−1
i for Wi ∈ GLn(R),

i = 1, 2, . . . , N . Then, there exist sufficiently small εj > 0 for j = 0, 1, . . . N that satisfy

He
(

(A+
∑
i∈N¬j

BiKi)Xj

)
+

1

2
εj
[
A,B

]
Xj ,L¬j

〈Xj , X¬j〉
[
A,B

]T
Xj ,L¬j

≺ 0, (8)

where [A,B]Xi,L¬i = [ AXi B1L1 · · · Bi−1Li−1 Bi+1Li+1 · · · BNLN ] for i ∈ N and [A,B]X0,L¬0 =

[ AX0 B1L1 B2L2 · · · BNLN ].

Note that 〈Xj , X¬j〉 � 0 and 〈Xj , X¬j〉ET¬j = ET¬jXj , employing the Schur complement for (8), then we

have  He
(

(A+
∑
i∈N¬j BiKi)Xj

)
εj [A,B]Xj ,L¬j

〈Xj , X¬j〉

εj〈Xj , X¬j〉([A,B]Xj ,L¬j
)T −2εj〈Xj , X¬j〉


=

 0n×n E¬j〈Xj , X¬j〉

〈Xj , X¬j〉ET¬j 0(|N¬j |+1)n×(|N¬j |+1)n

+ He

( [A,B]Xj ,L¬j
〈Uj ,W¬j〉−1

−I(|N¬j |+1)n×(|N¬j |+1)n


× 〈Xj , X¬j〉

[
ET¬j εjI(|N¬j |+1)n×(|N¬j |+1)n

])
≺ 0. (9)

Thus, the above expression (i.e., equation (9)) implies that (3) holds with 〈Uj ,W¬j〉 = 〈Xj , X¬j〉 for Uj ∈

GLn(R) and j ∈ N ∪ {0}.

Remark 2: We remark that the above extended LMI framework stated in Theorem 1 is useful in the context

of reliable control for systems with generalized multi-channel configurations, since the framework effectively

separates design variables such as Xj from the system data (A,B¬j) for all j ∈ N ∪ {0}.

Note that Theorem 1 is a generalization of the square-extended LMI technique that has been considered in [7]

in the context of reliable stabilization for multi-channel systems (e.g., see [8], [9] and references therein for a

review of square extended LMIs). In fact, if we multiply equation (3) from the left side by

Γ¬j =

 (|N¬j |+ 1)In×n 0n×(|N¬j |+1)n

0n×n E¬j

 , (10)

and from the right side by

ΓT¬j =

 (|N¬j |+ 1)In×n 0n×n

0(|N¬j |+1)n×n ET¬j

 , (11)
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make use of the relation E¬jE
T
¬j = (|N¬j | + 1)I and set Wi → W for i = 1, 2, · · · , N and Uj → W for

j = 0, 1, · · · , N (which also gives us the condition 〈W,W¬j〉ET¬j = ET¬jW ), then (3) reduces to 0 (|N¬j |+ 1)Xj

(|N¬j |+ 1)Xj 0

+ He

(  (AW +
∑
i∈N¬j BiLi

)
−W


×
[

(|N¬j |+ 1)In×n εjIn×n

] )
≺ 0, (12)

which is basically the square extended LMI condition presented in [7], i.e., if we let further εj → (|N¬j |+ 1)ε′j

for all j ∈ N ∪ {0}, we then have 0 Xj

Xj 0

+ He

 (AW +
∑
i∈N¬j BiLi

)
−W

[ In×n ε′jIn×n

] ≺ 0. (13)

Moreover, if we set Ki = LiW
−1, i = 1, 2, . . . , N , for any W ∈ GLn(R) and a family of |N¬0|-tuple

( L1, L2, . . . , LN ) as above, then the matrices
(
A+
∑
i∈N¬j BiKi

)
are Hurwitz for all j ∈ N∪{0}.

We remark that equation (3) describes a new-class of extended LMI conditions in terms of Wi ∈ GLn(R),

Li ∈ Rri×n, i = 1, 2, . . . , N , and Uj ∈ GLn(R), Xj ∈ Sn+, j = 0, 1, . . . , N . Note also that a common set of

{Wi, Li}Ni=1 matrix variables is used for all failure modes, i.e., for all j ∈ N ∪{0}. This is because we need an

|N¬0|-tuple state-feedback gain K def
= ( K1 K2 . . . KN ) with Ki ∈ Ki for i ∈ N that ensures stability for

all possible closed-loop systems. However, it should be noted that, since we use a new-class of extended LMI

framework, we do not require either a common quadratic Lyapunov stability certificate X ∈ Sn+ as in the case of

quadratic Lyapunov technique or a common W ∈ GLn(R) and {Li}Ni=1 that will be needed in the case of square

extended LMI technique for all possible failure modes (c.f. equation (13)).

In the following, we assume that the following statement holds for the system in (1).

Assumption 1: There are no unstable decentralized fixed modes (DFMs) with respect to triplets of (C¬j , A,B¬j)

for all j ∈ N ∪ {0}.

Remark 3: In the following section, this assumption is required for synthesizing the main results that include

decentralized stabilization problems with respect to triplets of (C¬j , A,B¬j) for all j ∈ N ∪ {0}. The necessary

and sufficient condition for decentralized stabilization can be characterized in terms of the fixed modes of the

system (e.g., see reference [10]). Moreover, if any one of these triplets is decentralized stabilizable, then the triplet

(C¬0, A,B¬0) is also decentralized stabilizable.

III. MAIN RESULTS

In this section, we introduce a solution concept for the problem of reliable stabilization that, at any time, the

non-faulty controllers know only that there can be at most one faulty controller in the system, but they know

neither the identity of the faulty controller nor how this faulty controller behaves. Note that the framework

presented in the preceding section (which is based on the extended LMI technique for deriving reliable stabilizing

state-feedback gains) is in fact equivalent to the problem of simultaneously stabilizing (|N¬0| + 1) systems

which also requires full-state information from each channel. In the following, we consider a set of filters that
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is used as decentralized observers within the subsystems. By imposing some restrictions on these filters, i.e.,

if the corresponding estimation-error dynamics are required to satisfy certain IQCs (e.g., see [11], [12] and

references therein for a review of IQC formulation), then we can extend the result to the output-feedback case,

where the extension implicitly requires each non-faulty controller to respond optimally (i.e., in the sense of best-

response correspondences) to the other non-faulty controllers regardless of the identity or actions of the faulty

controllers.

Consider the following set of filters

ξ̇i(t) = Aπi
ξi(t) +Bπi

ui(t) + Lπi
yi(t),

ûi(t) = Cπiξi(t) +Dπiyi(t), (14)

where the matrix Aπi
, Sp (Aπi

)⊆C− and appropriate matrices Bπi
,Cπi

,Dπi
,Lπi

for i∈N .2 Let us also introduce

the estimation-error ei(t) as

ei(t) = ξi(t)− Zπi
x(t), (15)

where Zπi
∈ Rni×n (with ni ≤ n) for i ∈ N .

We further assume that the estimation-error dynamics satisfy certain IQCs. To see the idea more precisely, let us

rewrite the system in (1) as

ẋ(t) = Ax(t) +Biui(t) +B¬iu¬i(t),

yi(t) = Cix(t),

where

u¬i(t) =
[
uT1 (t) · · · uTi−1(t) uTi+1(t) · · · uTN (t)

]T
.

Then, we have the following two equations

ėi(t) = ξ̇i(t)− Zπi ẋ(t),

= Aπi
ξi(t) +Bπi

ui(t) + Lπi
yi(t)− Zπi

Ax(t)− Zπi
Biui(t)− Zπi

B¬ju¬i(t),

= Aπi
ei(t) + (Bπi

− Zπi
Bi︸ ︷︷ ︸)ui(t) + (AπiZπi − ZπiA+ LπiCi︸ ︷︷ ︸)x(t)− ZπiB¬iu¬i(t), (16)

and

ũi(t) = ûi(t)− ui(t),

= Cπi
ξi(t) + (Dπi

Ci −Ki︸ ︷︷ ︸)x(t),

= Cπi
ei(t) + (Cπi

Zπi
+Dπi

Ci −Ki︸ ︷︷ ︸)x(t). (17)

2Note that the eigenvalues for these filters are at least assumed to the left of all eigenvalues of the closed-loop systems, i.e.,

max
i∈N

{
Re
{
Sp (Aπi )

}}
≤ min

j∈N∪{0}

{
Re
{
Sp
(
A+

∑
i∈N¬j

BiKi

)}}
.
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Suppose that the |N¬0|-tuple of state-feedback gains K def
= (K1,K2, . . . ,KN ) ∈ K that satisfy the conditions in

Theorem 1 are given. Moreover, let the matrices Aπi with Sp(Aπi) ⊆ C− and Bπi , Cπi , Dπi , Lπi , Zπi satisfy

the following conditions

Zπi
A = Aπi

Zπi
+ Lπi

Ci, (18)

Zπi
Bi = Bπi

, (19)

Ki = Cπi
Zπi

+Dπi
Ci, (20)

for all i ∈ N . Then, we can rewrite equations (16) and (17) as

ėi(t) = Aπi
ei(t)− Zπi

B¬iu¬i(t), (21)

ũi(t) = Cπiei(t). (22)

Next, for all i ∈ N , we require that the pairs (u¬i(t), ũi(t)) to satisfy the following IQCs∫ ∞
−∞

 û¬i(jω)

ˆ̃ui(jω)

∗Πi(jω)

 û¬i(jω)

ˆ̃ui(jω)

 dω ≥ 0, (23)

where û¬i(jω) and ˆ̃ui(jω) are Fourier transforms of u¬i(t) and ũi(t), respectively.

Note that if the above bounded self-adjoint functions Πi(jω) further satisfy the following factorization

Πi(jω) = Ψ∗i (jω)MiΨi(jω) ∈ C(r¬i+ri)×(r¬i+ri), (24)

where

Ψi(jω) = Cπi

(
jωI −Aπi

)−1
B¬i ∈ RH(r¬i+ri)×(r¬i+ri)

∞ and Mi =

 Qi STi

Si Ri

 ∈ Rr¬i+ri ,

with symmetric matrices Qi and Ri for i ∈ N . Then, it is easy to see that the following time-domain integral

constraints will hold∫ Tk

0

 u¬i(t)

ũi(t)

T Mi

 u¬i(t)

ũi(t)

 dt =

∫ Tk

0

{
uT¬i(t)Qiu¬i(t) + 2uT¬i(t)S

T
i ũi(t) + ũTi (t)Riũi(t)

}
dt,

≥ 0, (25)

for i ∈ N and every Tk > 0 (see [13], [14]).3

In the following, we provide conditions on the constant matrices Mi (i.e., the matrices Qi, Si and Ri) under

which the asymptotic estimate for ui(t) can be guaranteed, i.e.,

lim
t→∞

‖ũi(t)‖ = lim
t→∞

‖ûi(t)− ui(t)‖,

= 0, (27)

3We remark that the estimation-error dynamics satisfy the passivity property when Qi = 0, Ri = 0 and∫ Tk

0
uT¬i(t)S

T
i ũi(t)dt ≥ 0, ∀i ∈ N , (26)

for every Tk > 0 and for all square-integrable u¬i(t).
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for all i ∈ N . This further implies that the set of filters in (14) will work well as a decentralized estimator

for ui(t), i ∈ N , even if the inputs of the other channels u¬i(t) are nonzero or unknown (but assumed to be

square-integrable on [0,+∞)).4

Then, we have the following result which completely characterizes this set of filters within the subsystems.

Theorem 2: Suppose that the |N¬0|-tuple of state-feedback gains K = (K1,K2, . . . ,KN ) ∈ K satisfying the

conditions in Theorem 1 are given. Let the matrices Aπi with Sp(Aπi) ⊆ C− and Bπi , Cπi , Dπi , Lπi , Zπi ,

i ∈ N satisfy conditions (18)–(20). Then, there exist Pi ∈ Sn+, Qi = QTi , Si ∈ Rri×r¬i and −Ri ∈ Sri for i ∈ N

that satisfy  PiAπi
+ATπi

Pi − CTπi
QiCπi

PiZπi
B¬i − CTπi

Si

BT¬iZ
T
πi
Pi − STi Cπi −Ri

 � 0, (28)

where r¬i
def
=
∑
k∈N¬i rk.

Proof: To prove the above theorem, we require that the estimation-error dynamics

ėi(t) = Aπi
ei(t)− Zπi

B¬iu¬i(t),

ũi(t) = Cπiei(t),

to satisfy certain dissipativity property for all i ∈ N . To this end, consider the following supply rate func-

tions

wi(u¬i(t), ũi(t))
def
=

 u¬i(t)

ũi(t)

T  Qi STi

Si Ri

 u¬i(t)

ũi(t)

 , (29)

that satisfy wi(0, ũi(t)) ≤ −αi‖ũi(t)‖2 for all ũi(t) ∈ Rri , for some constants αi > 0 and for all i ∈ N with

wi(0, 0) = 0.

Since all of Aπi
for i ∈ N are assumed to be Hurwitz matrices, then we clearly see that the dissipative property

is characterized by the following dissipation inequality

Vi(x(0)) +

∫ Tk

0

wi(u¬i(t), ũi(t))dt ≥ Vi(x(Tk)), (30)

for every Tk ≥ 0 and non-negative quadratic storage functions Vi(x(t)) = xT (t)Pix(t) with Pi ∈ Sn+ satisfying

Vi(0) = 0 for i ∈ N (e.g., see reference [15]).

Hence, the set of conditions in (30) together with (29) further imply that there exist Pi ∈ Sn+ for i ∈ N such that

the following LMI conditions hold PiAπi
+ATπi

Pi − CTπi
QiCπi

PiZπi
B¬i − CTπi

Si

BT¬iZ
T
πi
Pi − STi Cπi −Ri

 � 0.

4Note that such frameworks within the subsystems will allow controllers to respond optimally (i.e., in the sense of best-response

correspondences) to the non-faulty controllers regardless of the identity and actions of the faulty controllers. For example, for any single-

channel failure that belongs to the set of channels N¬i, then the i-th controller always responds with an optimal value, i.e., ui(t) = Kix(t),

to the other (|N¬0| − 2) non-faulty controllers regardless of the identity or action of the faulty controller. This fact is further clarified in

Section IV (see also footnotes in Section IV).
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On the other hand, suppose the inputs and outputs of the estimation-error dynamics in equations (21) and (22),

i.e., u¬i(t) and ũi(t) for i ∈ N , satisfy the following IQCs∫ ∞
−∞

 û¬i(jω)

ˆ̃ui(jω)

∗Πi(jω)

 û¬i(jω)

ˆ̃ui(jω)

 dω ≥ 0,

where û¬i(jω) and ˆ̃ui(jω) are Fourier transforms of u¬i(t) and ũi(t), respectively, and Πi : jR→ C(r¬i+ri)×(r¬i+ri)

are bounded self-adjoint functions for i ∈ N .

Then, there exist uniformly-bounded rational functions Ψi(jω) ∈ RH(r¬i+ri)×(r¬i+ri)
∞ and constant matrices

Mi ∈ Rr¬i+ri for i ∈ N that satisfy the following factorization

Πi(jω) = Ψ∗i (jω)MiΨi(jω),

where

Ψi(jω) = Cπi

(
jωI −Aπi

)−1
B¬i, and Mi =

 Qi STi

Si Ri

 ,
with Sp(Aπi

) ⊆ C−, Qi = QTi and −Ri ∈ Sri (e.g., see [16]); moreover, the LMI conditions in (28) will hold

for all i ∈ N .

Remark 4: We remark that, for every pair of (u¬i(t), ũi(t)), the estimation-error dynamics in equations (21) and

(22) with restriction (25) further imply that there exist positive constants δi such that

‖ei(t)‖ ≤ δi‖ei(0)‖,

for every t ≥ 0 and for all i ∈ N .

Next, let us define the following matrices that will be used in Theorem 3 below.

Definition 2:

AπD¬0 = block diag{Aπ1 , Aπ2 , . . . , AπN
}, BπD¬0 = block diag{Bπ1 , Bπ2 , . . . , BπN

},

CπD¬0 = block diag{Cπ1
, Cπ2

, . . . , CπN
}, Dπ

D¬0 = block diag{Dπ1
, Dπ2

, . . . , DπN
},

LπD¬0 = block diag{Lπ1 , Lπ2 , . . . , LπN
}, Zπ¬0 =

[
ZTπ1

ZTπ2
· · · ZTπN

]T
,

and for i ∈ N

AπD¬i = block diag{Aπ1 , . . . , Aπi−1 , Aπi+1 , . . . , AπN
}, BπD¬i = block diag{Bπ1 , . . . , Bπi−1 , Bπi+1 , . . . , BπN

},

CπD¬i = block diag{Cπ1
, . . . , Cπi−1

, Cπi+1
, . . . , CπN

}, Dπ
D¬i = block diag{Dπ1

, . . . , Dπi−1
, Dπi+1

, . . . , DπN
},

LπD¬i = block diag{Lπ1 , . . . , Lπi−1 , Lπi+1 , . . . , LπN
}, Zπ¬j =

[
ZTπ1

· · · ZTπi−1
ZTπi+1

· · · ZTπN

]T
.

Theorem 3: Suppose that Theorem 2 holds, then there exist Fi, Gi, Hi, Ji, i ∈ N such that

Sp

 A+B¬jJD¬jC¬j B¬jHD¬j

GD¬jC¬j FD¬j

 ⊆ C−, (31)
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for all j ∈ N ∪ {0}. Moreover, these matrices (i.e., the decentralized output-feedback controllers C̃i(s) =

Hi(sI − Fi)−1Gi + Ji for i ∈ N ) that achieve reliable stabilization are given by

Fi = Aπi
+Bπi

Cπi
, Gi = Lπi

+Bπi
Dπi

,

Hi = Cπi , Ji = Dπi , (32)

for all i ∈ N .

Proof: For j ∈ N ∪ {0}, let us rewrite equations (18)–(20) as

Zπ¬jA = AπD¬jZ
π
¬j + LπD¬jC¬j ,

Zπ¬jB¬j = BπD¬j ,

K¬j = CπD¬jZ
π
¬j +Dπ

D¬jC¬j ,

and also equation (32) as

FD¬j = AπD¬j +BπD¬jC
π
D¬j , GD¬j = LπD¬j +BπD¬jD

π
D¬j ,

HD¬j = CπD¬j , JD¬j = Dπ
D¬j .

Then, the rest of the proof follows a standard state-space transformation of the closed-loop systems for all

j ∈ N ∪ {0}.

To this end, let us introduce the following state-space transformations x(t)

ξ¬j

 7→ Γπ¬j

 x(t)

ξ¬j

 , (33)

with nonsingular matrices

Γπ¬j =

 I 0

−Zπ¬j I

 for j ∈ N ∪ {0},

where ξ¬0(t) =
[
ξT1 (t) ξT2 (t) · · · ξTN (t)

]T
and ξ¬i(t) =

[
ξT1 (t) · · · ξTi−1(t) ξTi+1(t) · · · ξTN (t)

]T
for i ∈ N .

Then, we obtain the following set of transformed systems

Γπ¬j

 A+B¬jJD¬jC¬j B¬jHD¬j

GD¬jC¬j FD¬j

 (Γπ¬j)
−1

=

 I 0

−Zπ¬j I

 A+B¬jD
π
D¬j

C¬j B¬jC
π
D¬j

(LπD¬j +BπD¬jD
π
D¬j

)C¬j AπD¬j +BπD¬jC
π
D¬j

 I 0

Zπ¬j I

 ,
=

 A+B¬jK¬j B¬jC
π
D¬j

0 AπD¬j

 ,
for all j ∈ N ∪{0}. Since all of (A+

∑
i∈N¬j BiKi) for j ∈ N ∪{0} and Aπi

for i ∈ N are Hurwitz matrices,

then we immediately see that the statement of the theorem holds.
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We remark that the solvability condition of Theorem 2 is given by the following lemma, i.e., the minimum-phase

condition of each subsystem.5

Lemma 1: The set of equations (18)–(20), together with conditions in (28), are solvable with Hurwitz matrices

Aπi
for all i ∈ N , if the following relative-degree and minimum-phase conditions hold

rankCiB¬i = rankB¬i,

= r¬i

(
def
=
∑
k∈N¬i

rk

)
, (34)

rank

 A− sI B¬i

Ci 0

 = n+ r¬i, (35)

for all i ∈ N and for all s ∈ C−0
def
= {s ∈ C |Re{s} ≤ 0}.

Remark 5: Note that the conditions of Lemma 1 implicitly require r¬i ≤ mi for all i ∈ N , i.e., the number of

outputs of each channel is bounded below. For example, if all of the system channels have single input, then

we can see that two outputs are at least required for three-channel system, while one output can be allowed for

two-channel system.

IV. MODELING OF POWER SYSTEMS AND SIMULATION RESULTS

In this section, for the sake of completeness, we briefly discuss about modeling of power system with respect to

an industrial-scale Power System Dynamics (PSD) simulation software [18] since this software is used primarily

in this paper for analysis and simulation of power systems. This section also presents a four machine two area test

system which is used for all simulation studies in this paper. Detail information about this test system including

the controllers and their parameter values can be found in the appendix part of the paper.

A. Nonlinear modeling of power systems

Modern power systems are characterized by complex dynamic behaviors owing to their size and complexity. As the

size of power systems increases, the dynamical processes are becoming more challenging for analysis as well as

understanding the underlying physical phenomena. Power systems, even in their simplest form, exhibit nonlinear

and time-varying behaviors. Moreover, there are numerous equipment found in todays power systems.6 Though

these equipment found in todays power systems are well-established and quite uniform in design, their precise

modeling plays important role for analysis and simulation studies of the whole system. To obtain a meaningful

model of power systems, each equipment or component of the power system should be described by appropriate

algebraic and/or differential equations. Combining the dynamic models of these individual components together

5This is a direct interpretation of Theorem 2, where the existence condition for this class of decentralized estimators/observers entails

strong* detectability conditions (e.g., see reference [17]).
6Such as synchronous generators, loads, reactive-power control devices like capacitor banks and shunt reactors, power electronically switched

devices such as static Var Compensators (SVCs), and the newly developed flexible AC transmission systems (FACTS) devices, series capacitors

and other equipments.
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with the associated algebraic constraints leads to the dynamic model of power systems. In general, the dynamic

model of power systems can be formulated by the following nonlinear differential-algebraic equations:

ẋ(t) = f(x(t), y(t), u(t), p(t)),

0 = g(x(t), y(t), u(t), p(t)), (36)

where x(t), y(t) and u(t) are the state output and input variables of the power system, respectively. The parameters

p(t) represent parameters and/or effects of control at particular time in the system.

In the following, a brief explanation of the PSD environment, which includes the main model components and

their interaction or implementation (see Fig. 1), is given:

• The block in the middle of Fig. 1 is used to describe the dynamics of synchronous machines. Their overall

dynamics involve the full scale of energy-storing elements from mechanical masses to electric and magnetic

fields, all driven by prime mover, normally turbines and under direct primary controls. Synchronous machines

provide virtually all power generations in all todays power system. Moreover, synchronous machines have

major influence on the overall dynamic performance of power systems due to their characteristics. A reduced

5th-order model, where stator transient dynamics are neglected [18] and [19], is used for all synchronous

machines in this study. The model consists of a set of differential and a set of algebraic equations. Input

variables to the models are the complex terminal voltage vi, the mechanical turbine torque mTi and the

excitation voltage Efdi . Moreover, the injected currents into the network which depend on the corresponding

state variables of the synchronous machines are used as input to the algebraic network equations.

• The nodal voltages shown at the bottom of the right-side are computed by solving the algebraic network

equations of the nodal admittance matrix. Moreover, nonlinear voltage dependent loads are incorporated in

the system where the solutions for updating injection currents are carried out iteratively.

• The blocks in the left of Fig. 1 represent the voltage and governor controllers. The governor control block

contains, in addition to the direct primary control of the turbine torque (i.e., the governor mechanism), the

mechanical dynamics of the equipment, such as the turbine or boiler that tie to the system dynamically

through the governor control valve. Similarly, the voltage control block typically includes voltage regulators

and exciters; and their dynamics depend on the nature of the feedback control arrangement and the nature

of the source of DC voltage. Moreover, additional supplementary controllers with special structures can be

easily incorporated either through voltage or governor controller sides and such options give greater flexibility

in analysis and simulation studies.

The PSD performs nonlinear simulation for large power systems by using efficient numerical algorithms. Moreover,

the PSD contains functional units for numerically linearizing the nonlinear differential-algebraic equations of the

system, and then based on the modified Arnoldi’s algorithm, it determines a set of eigenvalues and eigenvectors

of the linearized system matrix near a given point on the complex plane.
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Fig. 1. Nonlinear modeling and simulation of large power system (see [19])

B. Power systems modeling for small-signal analysis

The starting model for small-signal analysis in power system is derived by linearizing the general nonlinear

dynamic model of (36) around an operating (or equilibrium) point (x0, y0, u0, p0) and given as follows:

ẋ(t) = Ax(t) +B1u(t) +B2p(t), (37)

where x(t) = x̃(t) − x0, u(t) = ũ(t) − u0 and p(t) = p̃(t) − p0. Here the tilde stands for the actual values of

states x̃(t) outputs ỹ(t), inputs ũ(t) and parameters p̃(t). Moreover, the matrices A, B1 and B2 are evaluated at

the operating point (x0, y0, u0, p0) and given as follows:

A =

[
∂f(x̃, ỹ, ũ, p̃)

∂x̃
−
[
∂g(x̃, ỹ, ũ, p̃)

∂ỹ

]−1 [
∂g(x̃, ỹ, ũ, p̃)

∂x̃

]]∣∣∣∣
(x0,y0,u0,p0)

(38)

B1 =

[
∂f(x̃, ỹ, ũ, p̃)

∂ũ
−
[
∂g(x̃, ỹ, ũ, p̃)

∂ỹ

]−1 [
∂g(x̃, ỹ, ũ, p̃)

∂ũ

]]∣∣∣∣
(x0,y0,u0,p0)

(39)

and

B2 =

[
∂f(x̃, ỹ, ũ, p̃)

∂p̃
−
[
∂g(x̃, ỹ, ũ, p̃)

∂ỹ

]−1 [
∂g(x̃, ỹ, ũ, p̃)

∂p̃

]]∣∣∣∣
(x0,y0,u0,p0)

(40)

Depending on how detailed the model in (36) is used; the resulting linearized model (37) may or may not be

applicable to study particular physical phenomena in power system. To start with, any disturbance affects all

system states, and their exact changes are complex and can only be analyzed by using the full-order model. In

a large power system consisting of weakly connected subsystems, it is possible to derive a relatively low-order

model relevant for understanding the interactions among the subsystems (inter-area dynamics), as well as detailed

models relevant for understanding the dynamics inside each subsystem (intra-area dynamics) [18], [21], [22],

[23].7 Once the models are introduced, the small-signal stability analysis of these models is straightforward.

7The reduced model of the subsystem should accurately captures the system dynamics in the frequency range (which lies usually between

0.1 Hz and 10.0 Hz) under considerations and forcing inputs, for instance, the frequency range for the electromechanical dynamic studies of

power systems.
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Basic analysis uses the elementary result that, given u(t) = 0 and p(t) = 0, the system of time-invariant linear

differential equations (37) will have a stable response to initial conditions x(0) = 0 when all eigenvalues of

system matrix A are in the left-half plane. Moreover, the robustness of system dynamics can be analyzed using

the more involved sensitivity techniques with respect to parameter uncertainties.

C. Simulation results

In this section, we present simulation results to a practical problem in power systems. The system, which is

shown in Figure 2, has been specifically designed to study the fundamental behavior of large-interconnected

power systems including inter-area oscillations in power systems [20]. This system has four generators and each

generator is equipped with the IEEE standard exciter (i.e., IEEE Type DC1A Excitation System) and governor

controllers (i.e., Thermal Type Governors). In the simulation studies, the parameters for the exciter and governor

controllers were taken from [19], while the generators for all simulations were represented by their 5th-order

models with a rated terminal voltage of 15.75 kV. Moreover, the following base-loading condition was assumed:

Area-1 at node-1 a load of PL1 = 1600 MW, QL1 = 150 Mvar and Area-2 at node-2 a load of PL2 = 2400 MW,

QL2 = 120 Mvar. Detail information about this system including controllers and their parameter values can be

found in the appendix part of the paper (see Tables II–VI).

In the actual design, the deviation of real-power ∆PG from generators G2 and G3 were used for decentralized

stabilization control through the excitation submodule of a two-channel system. Notice that the corresponding

linearized system around the nominal operating, i.e., the base-loading condition, is described by a 36th-order

model. We further considered the absolute rotor angle of the first-generator, i.e., δ1(t), as a reference frame and,

with this setting, we obtained a two-channel model of 35th-order system (c.f. equation (1)), where A is a 35×35

matrix, B1 and B2 are 35× 1 matrices, and C1 and C2 are 1× 35 matrices. Furthermore, we performed a model

reduction, since a direct design approach for such a system will likely lead to undesirable high-order controllers.

With the Hankel model reduction for the minimal realization of the system, we in fact have a 2nd-order model

with the following system matrices

Ar =

 −0.5077 6.4908

−1.5679 −0.5077

 , Br1 =

 −0.8810

−0.2435

 , Br2 =

 −1.2060

−0.2922

 ,
Cr1 =

[
0.6277 −0.4804

]
, Cr2 =

[
0.8933 −0.5763

]
.

Moreover, for εj = 1, j = 0, 1, 2, if we solve the set of extended LMIs feasibility problems that are stated in

Theorem 1, then we have the following set of solutions

{Xj}2j=0 =


 45.1129 1.0916

1.0916 19.9119

 ,
 50.8752 1.6663

1.6663 17.2309

 ,
 50.4210 1.2997

1.2997 17.3699

 ,
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{Uj}2j=0 =


 8.4638 7.2871

−5.9527 3.0610

 ,
 8.2312 8.0194

−6.2452 2.4340

 ,
 8.3024 7.9405

−6.3351 2.3713

 ,

{Wi}2i=1 =


 29.4321 −0.0476

−6.8470 19.6245

 ,
 28.9167 0.0079

−6.0835 19.9291

 ,

{Li}2i=1 =
{[

13.2190 19.9114
]
,
[

10.9075 13.1214
]}

.

Therefore, the corresponding reliable decentralized state-feedback gains Ki = LiW
−1
i for i = 1, 2 are, respec-

tively, given by K1 =
[
0.6856 1.0163

]
and K2 =

[
0.5157 0.6582

]
. To design the corresponding output-feedback

controllers, we need to solve simultaneously the set of equations (18)–(20) and the LMI conditions of (28) (c.f.

Theorem 2).8 With Hurwitz matrices Aπi for i = 1, 2, we can determine a set of candidate matrices that satisfies

the conditions of (18)–(20) and (28), namely, they are given by9

Aπ1 = −3.9115, Bπ1 = 0.0079, Cπ1 = −7.2117,

Dπ1
= 1.8225, Lπ1

= 1, Zπ1
=
[

0.0636 −0.2623
]
,

Aπ2 = −3.9220, Bπ2 = −0.0152, Cπ2 = −3.3645,

Dπ2
= 0.9449, Lπ2

= 1, Zπ2
=
[

0.0992 −0.3574
]
.

Using Equation (32) of Theorem 3, then the reliable decentralized output-feedback controllers, i.e., C̃ri(s) =

Hi(sI − Fi)−1Gi + Ji for i = 1, 2, are given by

C̃r1(s) =
1.8230s− 0.0823

s+ 3.9690
and C̃r2(s) =

0.9449s− 0.3415

s+ 3.8710
.

Note that, since we have employed a model reduction, any high-frequency residual modes of the original system

may affect the stability and/or performance of the closed-loop system, which is composed of the original system

as well as controllers that may have direct-feedthrough terms (e.g., see [25]). Therefore, we used a first-order low

pass filter H̃(s) = 20/(s+ 20) in both channels.

For a short circuit of 150 ms duration near to the 380 kV high-voltage side of the generator’s G2 transformer

(i.e., a bus-fault occurred at “Fault” in Figure 2), the transient responses of this generator with/without the

reliable stabilization controllers in the system are shown in Figure 3. We remark that any fault conditions

corresponding to failure in controller, actuator or sensor in the system are realized by removing the controller

from the corresponding excitation submodule, which essentially makes the supplementary control-input signal

of the corresponding controller to zero. We also remark that the reliable decentralized state-feedback controllers

guaranteed the stability of all closed-loop systems, i.e., Sp(Ar + Br1K1) = {−0.9148 ± j3.1216} ⊆ C−,

Sp(Ar+Br2K2) = {−0.9334 ± j3.1105} ⊆ C− and Sp(Ar+Br1K1 +Br2K2) = {−1.3405 ± j2.9831} ⊆ C−

8Here we remark that such equilibrium solutions are obtained by simultaneously resolving the |N¬0|-system problems (i.e., the set of

equations (18)–(20) together with (28)). Note that the behavior of such solutions as a result of changes in the system problem is always a

concern when, in particular, robustness is assessed for those essential equilibrium solutions.
9Note that the reduced-order system, which is a 2nd-order model, satisfies the minimum-phase conditions of Lemma 1 and, moreover, the

invariant (or transmission) zeros of the triplet (Cri , Ar, Br¬i ) for i = 1, 2 are −3.9115 and −3.9220, respectively. Hence, we can set the

values of Aπi for i = 1, 2 to these invariant zeros (e.g., see reference [24]).
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that correspond to controller failure at channel-one, channel-two and without any controller failure for the reduced-

order system, respectively. Implementing further these reliable output-feedback controllers in the original system,

the maximum value for Re(Sp), which corresponds to the output-feedback controller failure at G2, G3 or without

any controller failure, is at least less than −0.1225 with damping ratio greater than 25 %.

Moreover, to assess the effectiveness of the approach with respect to transient performances for different loading

conditions in the system, we computed the transient performance indices for the generator real-powers PGi ,

generator terminal-voltages Vti and excitation-voltages Efdi following a short circuit of 150 ms at the bus-fault

location of “Fault” using the following indices10

IPG =

NG∑
i=1

∫ tf

t0

∣∣ PGi
(t)− P 0

Gi

∣∣ dt, (41)

IVt =

NG∑
i=1

∫ tf

t0

∣∣ Vti(t)− V 0
ti

∣∣ dt, (42)

IEfd =

NG∑
i=1

∫ tf

t0

∣∣ Efdi(t)− E0
fdi

∣∣ dt, (43)

where P 0
Gi

, V 0
ti and E0

fdi
are the pre-fault generator real-power, terminal and excitation voltages for the i-th

generator, respectively, and NG is the number of generators in the system, while the time-interval (tf − t0) is

usually 10 to 15 seconds for such transient analyses.
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Fig. 2. One-line diagram of four machine two area system.

Notice that these transient performance indices, which are used to investigate the behavior of the system for

possible failure modes and/or sudden-load changes, are further normalized to the corresponding transient perfor-

mance indices of the base-operating condition at which the controller design has been carried-out. That is, the

normalized index Inorm is computed as: Inorm = Idoc/Iboc, where Iboc is the transient performance index for

the base-operating condition (i.e., Area-1 at node-1 a load of PL1 = 1600 MW, QL1 = 150 Mvar and Area-2 at

node-2 a load of PL2 = 2400 MW, QL2 = 120 Mvar), while Idoc is the transient performance index for different

operating conditions in Area-1 and Area-2. For different loading conditions, the computed normalized transient

performance indices are also given in Table I, and it can be seen from this table that these indices for Inorm(PG),

10Notice that, for transient performance analysis, we first validate the feasibility of load flow analysis for each load profile, while the total

load in the system, i.e., [PLtotal
, QLtotal

] = [4000MW, 270Mvar], is kept constant. Then, we perform the fault analysis (and/or the

load-switching) in the system.
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Fig. 3. Transient responses of Generator G2 to a short circuit of duration 150 ms.

Inorm(Vt) and Inorm(Efd) are either near to unity or less than unity for wide-operating conditions. This shows

that the transient responses of the generators are significantly damped for different operating conditions – and

which clearly indicates the robustness of the system behavior for all loading conditions and possible failure modes.

TABLE I

THE NORMALIZED TRANSIENT PERFORMANCE INDICES FOR PG , Vt AND Efd

[PL1, QL1] [PL2, QL2] Inorm(PG) Inorm(Vt) Inorm(Efd)

100.0 % 0.0 % 0.8153 0.7677 0.6560

87.5 % 12.5 % 0.8714 0.8561 0.8015

75.0 % 25.0 % 0.9290 0.9328 0.9259

62.5 % 37.5 % 0.9760 0.9862 1.0054

50.0 % 50.0 % 0.9993 1.0080 1.0269

37.5 % 62.5 % 0.9994 0.9967 0.9893

25.0 % 75.0 % 0.9904 0.9622 0.9033

12.5 % 87.5 % 0.9721 0.9179 0.7847

0.0 % 100.0 % 0.9541 0.8669 0.6478

Remark 6: Note that these normalized indices provide a “qualitative” measure on the behavior of the system for

possible failure modes and/or sudden-load changes. A value much greater than one implies the system behaves

poorly as compared to the base-operating condition.

We remark that the main features of the reliable decentralized output-feedback controllers that have been imple-

mented in this test system are as follows.
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(i) The steady-state tie-lines power exchange and the frequency deviation are reduced to zero in a short-time

for disturbances such as

- three-phase faults with normal fault-clearing time and single-line to ground faults with delayed fault-

clearing time and/or

- load-switchings during light and peak loading conditions with or without failure in either channels.

(ii) The reliable decentralized output-feedback controllers are all linear (with fixed-order, c.f. equation (15)) and

use local accessible or measurable information such as deviation of real-power ∆PG from the generators.

Here we remark that there is, in general, no upper-bound on the order of the reliable controllers in terms

of the multi-channel system’s order. This is a direct consequence of strong stabilization which is essentially

involved in reliable stabilization problem.

V. CONCLUDING REMARKS

In this paper, we considered the problem of reliable stabilization for power systems using multi-controller

configurations. A sufficient condition for the solvability of the problem are also derived in terms of a set of

extended LMI conditions, while a set of filters whose estimation-error dynamics satisfy certain quadratic integral

constraints is used as decentralized estimators within the subsystems for extending the result to the output-

feedback case. This advantage has been confirmed through practical problems in power systems, where we use

model reduction to capture some of the relevant system dynamics, i.e., the frequency range which normally lies

between 0.1 Hz and 10 Hz for power system small-signal stability analysis.
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APPENDIX – FOUR MACHINE TWO AREA TEST SYSTEM DATA

TABLE II

SYNCHRONOUS MACHINE PARAMETERS

Sr/MVA 247 x′′
q/p.u. 0.24

Ur/kV 15.75 x′
q/p.u. -

Tm/s 7.0 x′′
q/p.u. 0.24

rs/p.u. 0.002 T′
d/s 0.93

xs/p.u. 0.19 T′′
d/s 0.11

xd/p.u. 2.49 T′
q/s -

xq/p.u. 2.49 T′′
q/s 0.2

x′
d/p.u. 2.49 xfDd/p.u. -

TABLE III

TRANSMISSION LINES DATA

Single Lines: Z11 = 0.0309 + j0.266Ω/km Cb = 0.0136F/km

Double Lines: Z11 = 0.0155 + j0.1358Ω/km Cb = 0.0267F/km

TABLE IV

TWO WINDING TRANSFORMERS DATA

Sr/MVA 235 rps 0.246 zps 14.203

TABLE V

IEEE DC1A TYPE EXCITER

TC 0.0173 s BEX 1.55 TB 0.06 s KF 0.05

KA 187 TF 0.62 s TA 0.89 s VRMAX 1.7

TE 1.15 s VRMIN -1.7 AEX 0.014

TABLE VI

THERMAL TYPE GOVERNOR

TR 0.167 s T1 1.0 s TG 0.25 s T2 0.9 s


