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In this brief paper, an extension of the result of Fujisaki & Befekadu (2009, Reliable decentralized sta-
bilization of multi-channel systems: a design method via dilated Linear Matrix Inequalities (LIMs) and
unknown disturbance observers. Int. J. Contr., 82, 2040–2050.) concerning the problem of reliable stabi-
lization for generalized multi-channel systems is given. Specifically, we use a rectangular dilated LMIs
framework to provide a relaxed sufficient condition for the reliable stabilization of a multi-channel sys-
tem both when all of the controllers work together and when one of the controllers ceases to function due
to a failure.
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1. Introduction

Recently, the problem of reliable stabilization for generalized multi-channel systems with a single fail-
ure in any of the control channels has been addressed by Fujisaki & Befekadu (2009) via dilated LMIs
and unknown disturbance observers. In this brief paper, we extend this result for a multi-channel system
using a rectangular dilated LMIs framework. The new extension can be looked as a sufficiently decou-
pling framework (i.e. separating the design variables from the system data) that provides a tractable
(and also less-conservative) design technique for reliable stabilization of the multi-channel system.1

This brief paper is organized as follows. In Section 2, we present the main result where the prob-
lem of reliable stabilization for a generalized multi-channel system is formally restated. Specifically, a
relaxed and verifiable sufficient condition is given in terms of a set of rectangular dilated LMIs for the
reliable stabilization of the multi-channel system. In the Supplementary appendix section, for the sake
of completeness, we also present a supplementary result on the rectangular dilated LMIs framework.

Notation. For a matrix A ∈ R
n×n, He (A) denotes a hermitian matrix defined by He (A) � (A + AT),

where AT is the transpose of A. For a matrix B ∈ R
n×p with r = rank B, B⊥ ∈ R

(n−r)×n denotes an orthog-
onal complement of B, which is a matrix that satisfies B⊥B = 0 and B⊥B⊥T � 0. S+

n denotes the set of
strictly positive definite n × n real matrices and C− denotes the set of complex numbers with negative
real parts, that is, C− � {s ∈ C | Re{s} < 0}. Sp(A) denotes the spectrum of a matrix A ∈ R

n×n, that is,
Sp(A) � {λ ∈ C | rank(A − λ I) < n} and GLn(R) denotes the general linear group consisting of all n × n
real nonsingular matrices.

1 Note that the problem of reliable stabilization is essentially equivalent to a strong stabilization problem that involves an
intractable problem (e.g. see Vidyasagar & Viswanadham, 1985; Nemirovsk, 1993; Blondel & Tsitsiklis, 1997).
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2. Main result

Consider the following finite-dimensional generalized the multi-channel system

ẋ(t) = Ax(t) +
∑
j∈N

Bjuj(t), x(0) = x0, (2.1)

where x(t) ∈ X ⊆ R
n is the state of the system, uj(t) ∈ Uj ⊆ R

rj is the control input to the jth-channel,
A ∈ R

n×n, Bj ∈ R
n×rj and N = {1, 2, . . . , N} represents the set of controllers in the system.

For the above system, we restrict the set K to be the set of all linear, time-invariant (reliable) stabi-
lizing state-feedback gains that satisfies

K⊆
{

(K1, K2, . . . , KN ) ∈
∏
i∈N

Ki ⊆
∏
i∈N

R
ri×n

∣∣∣∣∣ Sp(A + B¬j ◦ K¬j) ⊂ C−, ∀j ∈N ∪ {0}
}

, (2.2)

where the sets N¬0 �N and N¬j are defined by N¬j �N \{j} for j = 1, 2, . . . , N with cardinality of
|N¬0| = N and |N¬j| = N − 1, respectively. Moreover, B¬0 = (Bi)i∈N , B¬j = (Bi)i∈N¬j and B¬j ◦ K¬j �∑

i∈N¬j
BiKi for j ∈N ∪ {0}.

Remark 2.1 In this brief paper, we consider the stability of the closed-loop system (A + B¬j ◦ K¬j)

under nominal operation condition (i.e. when j = 0) as well as under any single-channel controller fail-
ure (i.e. when j ∈N ).

Let us define the following matrices that will be later used in Theorem 2.1.

Definition 2.1 For j = 0

E¬0 = [ In×n In×n · · · In×n︸ ︷︷ ︸
(|N¬0|+1) times

], 〈X0, X¬0〉 = block diag{X0,

=X¬0︷ ︸︸ ︷
X0, X0, . . . , X0︸ ︷︷ ︸

(|N¬0|+1) times

},

[A, B]U0,L¬0 = [ AU0 B1L1 B2L2 · · · BNLN︸ ︷︷ ︸
(|N¬0|+1) times

], 〈U0, W¬0〉 = block diag{U0,

=W¬0︷ ︸︸ ︷
W1, W2, . . . , WN︸ ︷︷ ︸
(|N¬0|+1) times

},

and for j ∈N

E¬j = [ In×n · · · In×n In×n · · · In×n︸ ︷︷ ︸
(|N¬j|+1) times

], 〈Xj, X¬j〉 = block diag{Xj,

=X¬j︷ ︸︸ ︷
Xj, . . . , Xj, Xj, . . . , Xj︸ ︷︷ ︸

(|N¬j|+1) times

},

[A, B]Uj,L¬j = [ AUj B1L1 · · · Bj−1Lj−1 Bj+1Lj+1 · · · BNLN︸ ︷︷ ︸
(|N¬j|+1) times

],

〈Uj, W¬j〉 = block diag{Uj,

=W¬j︷ ︸︸ ︷
W1, . . . , Wj−1, Wj+1, . . . , WN︸ ︷︷ ︸

(|N¬j|+1) times

},

where Xj ∈ S+
n , Uj ∈ GLn(R) for j = 0, 1, . . . , N , Wi ∈ GLn(R) and Li ∈ R

ri×n for i = 1, 2, . . . , N .
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Remark 2.2 Note that the above set of matrices allows us to introduce a common set of matrix variables
{Li, Wi}i∈N that will be useful for the main result of this section.

Next we can characterize the set K using a new-class of dilated LMIs (i.e. rectangular dilated LMIs)
as follow.

Theorem 2.1 Suppose there exist Xj ∈ S+
n , εj > 0, Uj ∈ GLn(R), j = 0, 1, . . . , N , Wi ∈ GLn(R) and

Li ∈ R
ri×n, i = 1, 2, . . . , N such that[

0n×n E¬j〈Xj, X¬j〉
〈Xj, X¬j〉ET

¬j 0(|N¬j|+1)n×(|N¬j|+1)n

]

+ He

([
[A, B]Uj,L¬j

−〈Uj, W¬j〉
]

× [ET
¬j εjI(|N¬j|+1)n×(|N¬j|+1)n]

)
≺ 0 ∀j ∈N ∪ {0}. (2.3)

For any family of |N¬0|-tuples (L1, L2, . . . , LN ) and (W1, W2, . . . , WN ) as above, if we set Ki = LiW
−1
i

for each i = 1, 2, . . . , N , then the matrices (A + B¬j ◦ K¬j) are Hurwitz for all j ∈N ∪ {0}, that is,
(LiW

−1
i )i∈N ∈K.2

Here, we give a short proof which is based on the result of Lemma 2.1 (see Supplementary appendix
for details).

Proof. The above result can be verified by using Finsler’s lemma (e.g. Skelton et al., 1998), which is a
specialized version of the elimination lemma, with

[
[A, B]Uj,L¬j

−〈Uj, W¬j〉
]⊥

= [In×n[A, B]Uj,L¬j〈Uj, W¬j〉−1], (2.4)

[
E¬j

εjI(|N¬j|+1)n×(|N¬j|+1)n

]⊥
= [εjIn×n − E¬j], (2.5)

for j = 0, 1, . . . , N .
Note that if we eliminate 〈Uj, W¬j〉 from (2.3) by using (2.4) and (2.5). Then, we have the following

matrix inequalities

[In×n [A, B]Uj,L¬j〈Uj, W¬j〉−1]

[
0n×n E¬j〈Xj, X¬j〉

〈Xj, X¬j〉ET
¬j 0(|N¬j|+1)n×(|N¬j|+1)n

] [
In×n

(〈Uj, W¬j〉−1)T[A, B]T
Uj,L¬j

]
= He((A + B¬j ◦ K¬j)Xj) ≺ 0, (2.6)

[εjIn×n − E¬j]

[
0n×n E¬j〈Xj, X¬j〉

〈Xj, X¬j〉ET
¬j 0(|N¬j|+1)n×(|N¬j|+1)n

] [
εjIn×n

−ET
¬j

]
= −2εj(|N¬j| + 1)Xj ≺ 0. (2.7)

Hence, we see that Equations (2.6) and (2.7) state the Liapunov stability condition with Xj ∈ S+
n and

state-feedback gains (LiW
−1
i )i∈N ∈K. �

2 Note that the theorem is solvable only if all of the pairs (A, B¬j) for j ∈N are stabilizable. Moreover, the stabilizability of
one of the pairs implies stabilizability of (A, B¬0), thus we do not have to assume this explicitly.
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Remark 2.3 We remark that the above dilated LMI framework stated in Theorem 2.1 is useful in the
context of reliable control for a system with generalized multi-channel configurations, since the frame-
work effectively separates design variables such as Xj from the system data (A, B¬j) for all j ∈N ∪ {0}.

Note that Theorem 2.1 is a generalization of the square dilated LMIs technique that has been con-
sidered by Fujisaki & Befekadu (2009) in the context of reliable stabilization for multi-channel systems
(e.g. see Geromel et al., 1998; Ebihara & Hagiwara, 2005; Fujisaki & Befekadu, 2007; Pipeleers et al.,
2009 and references therein for a review of square dilated LMI technique). In fact, if we multiply
Equation (2.3) from the left side by

Γ¬j =
[
(|N¬j| + 1)In×n 0n×(|N¬j|+1)n

0n×n E¬j

]
, (2.8)

and from the right side by the transpose matrix Γ T
¬j. Finally, making use of the relation E¬jET

¬j =
(|N¬j| + 1)In×n and setting Wi → W for i = 1, 2, · · · , N and Uj → W for j = 0, 1, · · · , N (which also
gives us the condition 〈W , W¬j〉ET

¬j = ET
¬jW ), then (2.3) reduces to

[
0 (|N¬j| + 1)Xj

(|N¬j| + 1)Xj 0

]
+ He

([
(AW + B¬j ◦ L¬j)

−W

]
[(|N¬j| + 1)In×n εjIn×n]

)
≺ 0, (2.9)

where B¬j ◦ L¬j =
∑

i∈N¬j
BiLi for j ∈N . Note that the above equation is basically a square dilated LMI

condition presented in Fujisaki & Befekadu (2009), that is, if we let further εj → (|N¬j| + 1)ε′
j for all

j ∈N ∪ {0}, we then have

[
0 Xj

Xj 0

]
+ He

([
(AW + B¬j ◦ L¬j)

−W

]
[In×n ε′

j In×n]

)
≺ 0. (2.10)

Moreover, for any family of |N¬0|-tuple (L1, L2, . . . , LN ) and W ∈ GLn(R) as above, if we set Ki =
LiW−1 for each i = 1, 2, . . . , N , then the matrices (A + B¬j ◦ K¬j) are Hurwitz for all j ∈N ∪ {0}.

We remark that Equation (2.3) describes a new class of dilated LMI conditions in terms of Wi ∈
GLn(R), Li ∈ R

ri×n, i = 1, 2, . . . , N , and Uj ∈ GLn(R), Xj ∈ S+
n , j = 0, 1, . . . , N . Note also that a common

set of matrix variables {Li, Wi}i∈N is used for all failure modes, that is, for all j ∈N ∪ {0}. This is
because we need an |N¬0|-tuple state-feedback gain K � (K1 K2 . . . KN ) with Ki ∈Ki for i ∈N that
ensures stability for all possible closed-loop systems. However, it should be noted that, since we use a
new class of dilated LMI framework, we do not require either a common quadratic Liapunov stability
certificate X ∈ S+

n as in the case of quadratic Liapunov technique or a common W ∈ GLn(R) and {Li}i∈N
that will be needed in the case of a square dilated LMI technique for all possible failure modes (cf.
Equation (2.10)). In this sense, the new extension, which is based on Theorem 2.1, is not as conservative
as the quadratic Liapunov technique or the square dilated LMIs technique.

Note that although we have considered a reliable state-feedback stabilization problem, the prob-
lem of reliable stabilization via multi-controller configuration that was actually explored by Fujisaki &
Befekadu (2009) can be treated in the same way. In fact, that paper also presented a tractable design
method which covers a class of plants that can be stabilized reliably using dynamic output feedback
controllers (with fixed order of the controllers).
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