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a b s t r a c t

This paper considers nonlinear symmetric control systems. By exploiting the symmetric structure of the
system, stability results are derived that are independent of the number of components in the system.
This work contributes to the fields of research directed toward compositionality and composability of
large-scale system in that a system can be ‘‘built-up’’ by adding components while maintaining system
stability. The modeling framework developed in this paper is a generalization of many existing results
which focus on interconnected systems with specific dynamics. The main utility of the stability result
is one of scalability or compositionality. If the system is stable for a given number of components, un-
der appropriate conditions stability is then guaranteed for a larger system composed of the same type of
components which are interconnected in a manner consistent with the smaller system. The results are
general and applicable to a wide class of problems. The examples in this paper focus on the formation
control problems for multi-agent robotic systems.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recent research efforts have been directed toward the analy-
sis of composability and compositionality of control systems, and
especially cyber-physical systems (Julliand, Mountassir, & Oudot,
2007; Sztipanovits et al., 2011). These concepts are not equivalent,
but each does relate to the nature in which system components
affect overall system properties. In this paper, conditions are de-
termined under which a stable symmetric system remains stable if
additional components are added in a structured manner, partic-
ularly, in a manner which maintains the symmetric aspects of the
system. While the results in this paper are general, one important
application, which is the focus of the examples, is mobile robot for-
mation control.

Control of multi-agent systems is an important area of engi-
neering research which has received much attention for several
decades, but most intensively since approximately the mid-1990s
(see, for example, Fax & Murray, 2004; Jadbabaie, Lin, & Morse,
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2003; Murray, 2007; Ren, Beard, & Atkins, 2007 and many others).
Formation control for multiple mobile robotic systems is a proto-
typical application and similarly has a long history, with one fo-
cus being on the use of potential functions for coordination (see
for example Leonard & Fiorelli, 2001; Olfati-Saber &Murray, 2002;
Rimon&Koditschek, 1992 and the citations therein). The use of po-
tential functions has an obvious appeal in that they facilitate sta-
bility analyses using Lyapunov functions. The drawbacks are well-
known also, which include among other things, the existence of
multiple local minima in complex environments, the fact that real-
istic potential functions representing the realities of sensor ranges
introduce mathematical limitations which complicate and limit
the stability analysis, etc.. As observed in Ögren, Egerstedt, and Hu
(2002), many of the prior efforts have assumed specific dynamics
with the correct observation that they probably generalize. Our ap-
proach in this paper is to develop that generalization.

Perhaps the work closest to this present work is that of Ögren
et al. (2002)wherein a control Lyapunov function is assumed to ex-
ist for each agent, from which formation functions and bounds on
formation speed can be derived to ensure stability. Also, Tan and
Ikeda (1990) focuses on control synthesis for adding components,
which has a similar theme to the results here. However, the re-
sults in that paper are limited to the linear case and are focused on
decentralized control, rather than the more symmetric aspects of
the systems considered. In this paper, our formulation provides the
type of cases and underlying structure for systems to which the re-
sults in Ögren et al. (2002)will apply. Furthermore, our results here
apply to a broader class of systems, such as fully distributed ones,
to which the previous results do not necessarily apply.

http://dx.doi.org/10.1016/j.automatica.2013.07.003
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The main contributions of the present paper are

1. a nonlinear extension of the model and results in D’Andrea and
Dullerud (2003) and Recht and D’Andrea (2004) with a simpler
representation of system symmetries than our previous work,

2. the development of a theoretical framework that is underlying
many of the formation control algorithms in the literature,

3. general stability results that are applicable to such systems
regardless of the number of components (compositionality),
and,

4. robustness results that ensure stability evenunder certain types
of component failures.

These results will allow a control design engineer to focus the anal-
ysis on a smaller, more tractable system, with a guarantee that sta-
bility will hold for a much larger system. This paper essentially
extends the previous work of one of the authors related to the
properties of symmetric systems (McMickell & Goodwine, 2002,
2003a,b, 2007; McMickell, Goodwine, & Montestruque, 2003) to
consider nonlinear system stability. This previous work cited con-
siders system symmetries that are defined by a group action on the
configuration manifold for a distributed system that was induced
by the action of a permutation group. The main drawback of such
an approach is that, in the general case, identifying such symme-
tries can be problematic. However, in the case of most engineering
and robotics systems, where the individual robots are the compo-
nents that are easily identified, symmetry identification is much
less of a problem. Rather than using this prior approach, this paper
will introduce a more straight-forward approach which is a non-
linear extension of the approach used in D’Andrea and Dullerud
(2003) and Recht and D’Andrea (2004). However, it is emphasized
that the prior approaches (Goodwine & Antsaklis, 2011; McMick-
ell & Goodwine, 2001, 2002, 2003a,b, 2007; McMickell et al., 2003)
andMcMickell (2003) offer a general approach to the problem that
can be used in cases more general than the ones addressed here.

The rest of this paper is organized as follows. Section 2 defines
a symmetric system, equivalence relations among different sym-
metric systems and equivalence classes of symmetric systems. It
first develops the idea for a simpler case of one-dimensional in-
terconnections between components and then generalizes it based
on group theoretic tools. Section 3 presents the nonlinear stability
results for symmetric systems. Section 4 presents an example of
the application of these results. Section 5 presents an extension of
the results from Section 3 to the case of robust stability in the case
where an agent or agents in a symmetric system fail. Finally, Sec-
tion 6 outline conclusions and future work.

2. Symmetric systems

This section defines symmetric systems and the relationship
among symmetric systemswith different numbers of components.
Symmetry has been previously considered, such as in Cogill, Lall,
and Parrilo (2008), van der Schaft (1987), Govindan, von Schemde,
and von Stengel (2003), but it has not yet been fully exploited for
mainstream results. As a motivational example, consider a forma-
tion of large number of identical mobile robots where each robot
has a control law that attempts to control it so that it maintains a
desired distance from its neighbors. Intuitively if more of the same
type of robots with the same control law are added to the forma-
tion, or conversely if some are removed, the properties of the for-
mation as awhole should normally not drastically change. As a step
toward formalizing and determining conditions when this holds,
we must formulate definitions for systems when more agents are
added or some are removed in structuredmanner. Toward this end,
we define symmetric systems and equivalent symmetric systems.

The first step is to extend the basic system component descrip-
tion from the linear case in D’Andrea and Dullerud (2003) to the
Fig. 1. System building block in one spatial dimension.

nonlinear case. The ‘‘basic building block’’ in one spatial dimension
(more general interconnection topologies will be considered sub-
sequently) is illustrated in Fig. 1. The outputs from the component
are w−(t) and w+(t), and the inputs are u, v−(t) and v+(t). In this
paper the signals v± will represent the effects of the coupling with
the other components and u are the control inputs. If it is necessary
to distinguish between them, the v± signals will be called coupling
inputs, u will be called control inputs and collectively they will be
called the inputs. When interconnected in one spatial dimension,
a system comprised of a collection of these building blocks is as
illustrated in Fig. 2.

We wish to express component-by-component, the usual dy-
namics of a nonlinear control system expressed for the ith compo-
nent by

ẋi = fi(x) +

mi
j=1

gi,j(x)ui,j,

where x ∈ Rn, the vector fields f , gj ∈ TRn andmi is the number of
inputs for the ith component. In order to define a symmetric sys-
tem that has structure that will be useful, we will consider the fol-
lowing aspects of a system comprised of interacting components:

• the relationship between the nonlinear dynamics of a compo-
nent and its coupling inputs,

• the structure of how the components are interconnected,
• the dynamics of individual components, and,
• the individual control laws in each component.

In the most general case, the vector fields, fi and gi,j, in the
equation of motion for the ith component and the outputs w+

i and
w−

i for the component may depend on the state of the component,
xi, as well as the coupling inputs, v±

i , so the dynamics of component
i are given by

ẋi(t) = fi

xi(t), v+

i (t), v−

i (t)

+

mi
j=1

gi,j

xi(t), v+

i (t), v−

i (t)

ui,j(t)

w−

i (t) = w−

i


xi(t), v+

i (t), v−

i (t)


w+

i (t) = w+

i


xi(t), v+

i (t), v−

i (t)

.

We will consider how the system is interconnected shortly, but
for now observe that for a system of interconnected components
where the incoming signals, v±(t), are from the outgoing signals
from the component’s neighbors, since the vector fields fi and gi,j
arise from the physical dynamics of the component, if these vector
fields can depend on the outputs from the neighbors, this would
reflect a change in the physical dynamics of the system due to the
coupling between components. The class of the types of coupling
that could be represented by this formulation is very broad and
could include, for example, when there is a physical joining of
agents, as with reconfigurable, modular robots.

For a very large class of problems, including formation control
for mobile robots, there normally is no physical contact between
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Fig. 2. System interconnected in one spatial dimension.
the robots and hence the nature of the coupling between the robots
is simplified. In particular, it is only through the control inputs that
the output from the other components affects the dynamics of an
agent, which is expressed by

ẋi(t) = fi

xi(t)


+

mi
j=1

gi,j

xi(t)


ui,j (t)

w−

i (t) = w−

i (xi(t))

w+

i (t) = w+

i (xi(t)) .

(1)

For the rest of this paper, we will restrict our attention to systems
of this type.

Now we consider the nature of the interconnections in the sys-
tem. For a systemwith N components, a subset of the components
has periodic interconnections in one dimension if the inputs and out-
puts of adjacent components are related by

w+

i (t) = v+

i+1(t), w−

i (t) = v−

i−1(t),

v+

i (t) = w+

i−1(t), v−

i (t) = w−

i+1(t),
(2)

for all i in some subset I ⊂ {1, . . . ,N}. A set of components that
have periodic interconnections is called an orbit of periodically in-
terconnected components. Of course, a system may have multiple
orbits of periodically interconnected components, and in such a
case there will be multiple orbit index sets.

The system illustrated in Fig. 2 is of this type for I = {2, 3}. It is
possible for the entire system to have periodic interconnections in
onedimension if Eq. (2) holds for all i ∈ {1, . . . ,N} and formod(N),
or if the system has an infinite number of components on a one-
dimensional integer lattice. For the system in Fig. 2, if component
4 is connected to component 1 in the same manner that the other
components are connected; namely v+

1 = w+

4 , and v−

4 = w−

1 then
the whole system has periodic interconnections.

For the set of components with periodic interconnections if the
dynamics of the system are further restricted in that the control
law for a component is defined by feedback in terms of that com-
ponent’s state and the outputs from the neighbors, then the control
inputs for component i in Eq. (1) can be written as

ui,j(t) = ui,j

xi(t), w+

i−1(xi−1(t)), w−

i+1(xi+1(t))

. (3)

Now we consider the case when the components in an orbit of
periodically interconnected components are the same so they have
identical dynamics. An orbit of symmetric components is an orbit of
periodically interconnected components in one dimension if

fi(x) = fk(x), gi,j(x) = gk,j(x),
w−

i (x) = w−

k (x), w+

i (x) = w+

k (x)

and mi = mk = m for x ∈ Rn, for all i, k ∈ I and for each j =

1, . . . ,m. Finally, when the components in an orbit of symmetric
components have identical control laws, we have a symmetry orbit
which requires

ui,j(x1, w+

i−1(x2), w
−

i+1(x3)) = uk,j(x1, w+

k−1(x2), w
−

k+1(x3))

for (x1, x2, x3) ∈ Rn
× Rn

× Rn, for all i, k ∈ I and for each
j = 1, . . . ,m.
Fig. 3. Periodic interconnections in two dimensions.

The idea behind a symmetry orbit is that the agents in the
orbit are identical, have identical control laws and furthermore are
identically interconnected. We observe that, in general, it is only
necessary for the dynamics of each system to be ‘‘identical’’ in the
sense that they are diffeomorphically related, inwhich case under a
coordinate transformation they are identical. In this paper we will
restrict our attention to systems with components with identical
dynamics with the recognition that the results apply to a broader
set of problems.

Of course, systems may be spatially interconnected in dimen-
sions greater than one or with a different type of periodicity, as is
illustrated in Figs. 3 and 4, respectively. With respect to the latter
notion, interconnections are not necessarily limited to connections
with only two neighbors in each dimension, as is illustrated Fig. 4.
For clarity of presentation, in both figures the control input is not il-
lustrated. Additionally, in Fig. 4 the two directed edges connecting
each component are represented by one arrow, i.e., all four signals
are represented by one edge.

In order to handle these more general cases, we consider the
nature of the groups generated by the manner in which compo-
nents are interconnected. Systems considered in this paper will
have components that are members of groups. Recall that a group
is nonempty set, Gwith
1. a binary associative operation, σ : G × G → G,
2. an identity element e such that σ(e, g) = σ(g, e) = g for all

g ∈ G, and
3. for every g ∈ G there exists an element g−1

∈ G such that
σ(g, g−1) = σ(g−1, g) = e.

We use the notation |G| to denote the number of elements in a
set G. The rest of this paper considers systems defined on groups
for which the one-dimensional case already developed is a special
case.

A subgroup is a subset of a group that is itself a group. Of particu-
lar importance in this paper are elements of a group that generate
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Fig. 4. System topology for Example 2.

a subgroup. If X is a subset of a group G, then the smallest sub-
group of G containing X is called the subgroup generated by X . For
simplicity, for the rest of this paper we will assume that if s ∈ X ,
then s−1

∈ X as well. The idea is that the (sub)group generated
by X can be ‘‘built up’’ from the elements of X operating on each
other until the set is closed. We will typically use a ‘‘multiplica-
tion’’ notation instead of σ for the operation, i.e., g1g2 = σ(g1, g2).
Constraints among the generators are given by relations of the form
s1s2 . . . sm = e for s1, . . . , sm ∈ X . Finally, we will represent sys-
tems by a Cayley graph, which is a directed graphwith vertices that
are the elements of a group, G, generated by the subset X , with a
directed edge from g1 to g2 only if g2 = sg1 for some s ∈ X . A di-
rected edge from node g1 to g2 represents that a coupling input to
g2 is equal to an output from g1. In general, the edges are directed;
an edge from g1 to g2 does not necessarily imply that an edge is
directed from g2 to g1. However, because we assumed that if s ∈ X
then s−1

∈ X , it will be the case that if an edge is directed from g1
to g2, an edge is also directed from g2 to g1. See Rotman (1995) for
a more extensive exposition.

Example 1. Consider the ring of components illustrated in Fig. 4.
Each vertex has edges connecting to four other vertices and hence
the system is generated by four elements. Let g denote a vertex, i.e.,

g ∈ {−2, −1, 0, 1, . . . ,N − 3} = G.

Consider the subset of generators X = {−2, −1, 1, 2}, the group
operation to be addition and the relation sN = e = 0. This relation
makes the group operation of addition to be modN , and hence
the group is the quotient of the set of integers Z where elements
of Z that differ by an integer multiple of N are equivalent. The
Cayley graph is illustrated in Fig. 4. A vertex is only adjacent to four
neighbors because the set of generators has four elements.

For the system illustrated in Fig. 3, let G = Z × Z and for
g = (n1, n2) ∈ G, define the group operation by component-
wise addition, i.e., for g1 = (n1, n2) and g2 = (m1,m2), g1g2 =

(n1 + m1, n2 + m2). For the set of generators s1,0 = (1, 0) , s−1,0 =

(−1, 0), s0,1 = (0, 1) and s0,−1 = (0, −1) the Cayley graph is il-
lustrated in Fig. 3. With no relation on the generators, the group
would be an infinite integer lattice. �

For a system on the group G with the set of generators X =
s1, s2, . . . , s|X |


, denote the state variable corresponding to g ∈

G by xg , the set of neighbors of component g ∈ G by Xg =
s1g, s2g, . . . , s|X |g


, the states of the neighbors by xXg and the

states of the neighbors by xXXg . For component g , denote the set of

outputs to be

w

s1
g , w

s2
g , . . . , w

s|X |

g


and similarly the set of inputs

v
s1
g , v

s2
g , . . . , v

s|X |

g


. We will consider systems that have the same
number of coupling inputs and outputs. Subsequently when we
define periodic interconnections, wewill impose the structure that
ws

g is the output from g that is taken as an input to component sg .
The dynamics of a component, g ∈ G, are represented by2

ẋg(t) = fg

xg(t)


+

mg
j=1

gg,j

xg(t)


× ug,j


xg(t), vs1

g (t), . . . , v
s|X |

g (t)


(4)

ws
g(t) = ws

g


xg(t)


,

for all s ∈ X . Periodic interconnections and a symmetry orbit are
defined in a manner similar to the case of one spatial dimension,
leading to the following definition.

Definition 1. Let G be a groupwith a set of generators, X . A system
with components g ∈ I ⊂ G with dynamics given by Eq. (5) has
periodic interconnections on I if

vs
g (t) = ws

s−1g


xs−1g(t)


, (5)

for all g ∈ I and s ∈ X . Furthermore, if

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x),
ws

g1(x) = ws
g2(x), mg1 = mg2 = m

(6)

for all s ∈ X , g1, g2 ∈ I, x ∈ Rn and j ∈ {1, . . . ,m}, then I forms
an orbit of symmetric components. Finally, if the control laws also
satisfy

ug1,j


x1, w

s1
s−1
1 g1

(x2), . . . , w
s|X |

s−1
|X |

g1
(x|X |+1)


= ug2,j


x1, w

s1
s−1
1 g2

(x2), . . . , w
s|X |

s−1
|X |

g2
(x|X |+1)


(7)

for all (x1, . . . , x|X |+1) ∈ Rn
× Rn

× · · · × Rn, g1, g2 ∈ I, j ∈

{1, . . . ,m} and s ∈ X , then the elements of I form a symmetry
orbit. Such a system with a symmetry orbit is called a symmetric
system on I. If I = G it is called a symmetric system on G. ◃

In general the control inputs for different components, e.g., ug1
and ug2 , are functions on different domains. Specifically, the do-
main for ug1 contains


xg1 , xXg1


and correspondingly the domain

for ug2 contains

xg2 , xXg2


. However, an important aspect of the

following results is that Eq. (8) requires that ug1 and ug2 be equal
as functions. In other words, for a symmetric system all the control
inputs are functions from Rn

× · · · × Rn (1 + |X | copies) to R, and
these are equal if, when evaluated at the same point in the domain,
give the same value in the range. Of course, in the control system,
different inputs take values in different domains corresponding to
different components and neighbors; however, if we are able to
make statements about the behavior of one of the function on a
given domain, if the domains of the other functions are restricted
to have the same range of values, then the same statements hold
for other functions that are equal.

Example 2. A recurring example in this paper is a system of N + 1
planar agents and is a variation of that in Olfati-Saber and Murray
(2002). We will first show that this specific example fits within
the general framework that we are developing. Each robot has a

2 The symbol g will be used in two ways, both as the vector field in ẋ = f (x) +

g(x)u and also in the sense of g ∈ G, where the distinction should always be clear
from the context.
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position and velocity in R2
× R2, with equations of motion for the

ith robot given by

d
dt

xi
ẋi
yi
ẏi

 =

ẋi
0
ẏi
0

+

0
1
0
0

 ui,1 +

0
0
0
1

 ui,2. (8)

All computations are mod (N + 1). The goal formation is a regular
(N + 1)-polygon centered at the origin, hence the desired forma-
tion distance between components i and j is

dij =


1, |i − j| = 1

sin
 2π
N+1


sin


π
N+1

 , |i − j| = 2

and the desired distance of robot i to the origin is

ri =
1

2 sin π
N+1

.

As is common in formation control problems, note that there are an
infinite number of configurations which satisfy the conditions for
‘‘the desired formation’’ because ‘‘the’’ formation may be rotated
about the origin. Take the control law to be


ui,1
ui,2


= −


j




(xi − xj)2 + (yi − yj)2 − dij




(xi − xj)2 + (yi − yj)2

xi − xj




(xi − xj)2 + (yi − yj)2 − dij



(xi − xj)2 + (yi − yj)2


yi − yj





− kd


ẋi
ẏi


−


ko


x2i + y2i − ri

x2i + y2i
xi

ko


x2i + y2i − ri

x2i + y2i
yi

 (9)

where j ∈ {i − 2, i − 1, i + 1, i + 2} and kd and ko are positive con-
stant gains.

To show that this system has a symmetry orbit where the or-
bit contains all the robots in the system, we need to show that it
satisfies all the elements of Definition 1. First, observe that this
system can be represented by the graph illustrated in Fig. 4 with
G = {−2, −1, 0, 1, 2, . . . ,N − 3}, the group operation to be addi-
tion, let X = {−2, −1, 1, 2} and the relation sN = 0, N ≥ 5. With
these definitions, the Cayley graph for the system is as illustrated
in Fig. 4. Also, observe from the control law in Eq. (10), the control
for robot i depends on its own state as well as the states for robots
i− 2, i− 1, i+ 1 and i+ 2, which are equivalent to the four gener-
ators. Hence, define each of the outputs for robot i to be the vector
of the robot’s position, i.e.,

ws
i =


xi
yi


(10)

where s ∈ X = {−2, −1, 1, 2, }.
Define the inputs to component i to be

vs
i =


xi−s
yi−s


, s ∈ {−2, −1, 1, 2} ,

which satisfies Eq. (6). The dynamics as given in Eq. (9) satisfy
Eq. (7). Finally, the feedback law given in Eq. (10) satisfies Eq. (8).
Because these hold for all i ∈ {−2, −1, 0, . . . ,N − 3} the system
has an orbit of symmetric components which contains all the com-
ponents in the system. �
The utility of the definition of a symmetric system is that it is
possible to ‘‘build up’’ an equivalent system by adding components
to it and requiring that they be interconnected in a manner
equivalent to the original system.Wewill define two systems to be
equivalent if they have symmetry orbitswith identical components
which are interconnected in the same manner, but they possibly
have a different number of components in the symmetry orbit. The
means by which this can be done is to have the systems have the
same generators, but possibly different relations which can result
in a different group.

Definition 2. Two symmetric systems on the finite groups G1 and
G2 are equivalent if G1 and G2 are generated by the same set of
generators, X ,

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x),
ws

s−1g1
(x) = ws

s−1g2
(x) (11)

and

ug1,j


x1(t), w

s1
s−1
1 g1

(x2(t)), . . . , w
s|X |

s−1
|X |

g1
(x|X |+1(t))


= ug2,j


x1(t), w

s1
s−1
1 g2

(x2(t)), . . . , w
s|X |

s−1
|X |

g2
(x|X |+1(t))


(12)

for all

x1, x2, . . . , x|X |+1


∈ Rn

× Rn
× · · · × Rn, x ∈ Rn, g1 ∈ G1,

g2 ∈ G2, s ∈ X , and j ∈ {1, . . . ,m} where m = mg1 = mg2 . ◃

Example 3. Returning to Example 2, consider two systems with
components that satisfy Eq. (9) and components belonging to two
groups:

G1 = {−2, −1, 0, 1, 2, . . . ,N − 3}
G2 = {−2, −1, 0, 1, 2, . . . ,M − 3}

whereM > N . These systems are equivalent because the dynamics
of all the components are identical and the feedback definitions are
identical. Both groups are generated by X = {−2, −1, 1, 2}. The
only difference is the relation for G1 is sN = 0 and the relation for
G2 is sM = 0. �

For notational convenience, we will concatenate all the states
and vector fields fromeach component into one systemdescription
of the form, ẋG = fG(xG) + gG(xG)u(t) where

xG =


xg1
xg2
...

xg|G|

 , fG(xG) =


fg1(xg1)
fg2(xg2)

...
fg|G|

(xg|G|
)

 ,

etc. and xgi ∈ Rn are the states of the gith component in the
symmetry orbit.

3. Stability of symmetric systems

This section presents the compositionality stability results. The
results are directed toward being able to infer stability of a whole
equivalence class of systems based on the stability of one of the
members of the class. The results are Lyapunov-based and the first
result Proposition 1 concerns negative (semi)definiteness of the
derivative of a Lyapunov function for each member of an equiv-
alence class of symmetric systems. Then Proposition 2 builds on it
for Lyapunov stability results as does Proposition 3 for ‘‘stability’’
in the context of LaSalle’s invariance principle.

Proposition 1. Given a symmetric system on a finite group G with
generators X, assume that there is a function VG : DG → R that is
smooth on some open domain DG ⊂ Rn

× · · · × Rn (|G| times) such
that
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1. VG may be expressed as the sum of terms corresponding to each
component where

Vg : Rn
× · · · × Rn  
1+|X |times

→ R

VG(xG) =


g∈G

Vg

xg , xXg


=


g∈G

Vg


xg , w

s1
s−1
1 g

(xs−1
1 g), . . . , w

s|X |

s−1
|X |

g
(xs−1

|X |
g)


, (13)

for all x ∈ DG,
2. the individual functions corresponding to each component in G are

equal as functions, i.e.,

Vg1 = Vg2 = V (14)

for all g1, g2 ∈ G, and
3. for any one of g ∈ G,

∂VG

∂xg
(xG)


fg(xg) +

m
j=1

gg,j(xg)ug,j

xg , xXg


≤ 0 (15)

for all xG ∈ DG.

Then

1. V̇G(x) ≤ 0 for all x ∈ DG and
2. for any equivalent symmetric system on Ĝ, there is VĜ such that

V̇Ĝ ≤ 0 on some open domain, DĜ.

We discuss a few important points related to this proposition
before presenting the proof.

• The utility of this proposition is that the behavior of V̇G with
respect to the dynamics of only one component, g , needs to be
checked.

• Eq. (14) requires that the Lyapunov function corresponding to
component g only depends on the states of g , xg and the states
of its neighbors, xXg .

• One may naively hope that we could simply say that because
V̇G ≤ 0, then V̇g ≤ 0 for any of the components. This is, in fact,
not the case. Subsequently we present some examples and, as
can be seen in Fig. 8, which plots the individual Lyapunov func-
tions for a five-robot system, it is not the case that each Lya-
punov function is negative (semi)definite. This is in contrast to
the overall Lyapunov function, which is the sum of the individ-
ual Lyapunov functions, which is negative semidefinite, as is il-
lustrated in Fig. 7. Hence, the test for stability is not based on
each individual V̇i, but rather is given by Eq. (16),which depends
on the entire VG but only computations based on the states of an
individual component, xg .

Now we prove Proposition 1.

Proof. First we show that V̇G ≤ 0 and then we will show that any
equivalent system on Ĝ is such that V̇Ĝ ≤ 0.

Because the Lyapunov functions corresponding to each compo-
nent are identical, we may take

DG = D × · · · × D  
|G|times

(16)

for some subset D ⊂ Rn. Note that for h ∈ G, because only Vh and
its neighbors depend on xh,

∂VG

∂xh
(xG) =

∂

∂xh


g∈G

Vg

xg , xXg



=
∂

∂xh

 
s=e,s∈X

V (xsh, xXsh)



where e is the identity element in G. Hence,

V̇G(xG) =


g∈G


∂

∂xg

 
s=e,s∈X

V

xsg , xXsg



×


fg(xg) +

m
j=1

gg,j(xg)ug,j

xg , xXg


. (17)

By hypothesis, one of the terms in the sum is negative semidefinite,
and we will show that this implies that all of the terms in the sum
are negative semidefinite.

For a given g , the term in square brackets is a functionwith a do-
main that is the Cartesian product among the states of g , the states
of the neighbors of g and the states of the neighbors of g , which is
a set of the form D × · · · × D . We will show every term in the
series is equal to every other term as functions. Hence, because the
domains of each function are restricted to the same range of values,
then negative semidefiniteness of one of them implies the same for
all of them.

Consider any two g1, g2 ∈ G. Because of the definition of a sym-
metric system, fg1 = fg2 and gg1,j = gg2,j as vector fields (Eq. (12))
and ug1,j = ug2,j as functions (Eq. (12)). Finally, if we define the
mappings corresponding to the differentials by

DgV : D × · · · × D → Rn

DgV (xg , xXg , xXXg) =
∂

∂xg

 
s=e,s∈X

V

xsg , xXsg


,

the differentials corresponding to different components are equal
as differentials i.e., Dg1V = Dg2V . Hence, as functions, each term
in the square brackets is equal, and because the domain of each is
restricted to the same set of values, each term is negative semidef-
inite.

Now, consider any equivalent system. For any equivalent sys-
tem on Ĝ, define DĜ = D × · · · × D (

Ĝ times) and V (x) =
g∈Ĝ V


xg , xXg


for x ∈ DĜ. Then

V̇Ĝ(x) =


g∈Ĝ

V̇G

xg , xXg



=


g∈Ĝ

∂Vg

∂xg


xg , xXg

 
fg(xg) +

m
j=1

gg,j(xg)ug,j

xg , xXg



=


g∈Ĝ

∂

∂xg

 
s=e,s∈X

V (xsg , xXsg)



×


fg(xg) +

m
j=1

gg,j(xg)ug,j

xg , xXg


and each term in the sum is negative semidefinite by the same ar-
guments as for the system on G. �

This proposition gives a computationalmeans to determine sta-
bility for an entire equivalence class of systems based on a sim-
ple computation. The computation is even of lower order than the
usual computations need to determine Lyapunov stability for the
system on G itself and furthermore extends to any equivalent sym-
metric system. The utility of this proposition is that if V̇ ≤ 0 for
a symmetric system, then we can conclude that V̇ ≤ 0 for any
equivalent system. This is consistent with the intuitive notion that
we should be able to add or remove identical components as long
as they interact similarly with their neighbors. The ‘‘similar’’ in-
teraction is enforced by the requirement that the group structure
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of equivalent symmetric systems be generated by the same set of
generators.

This proposition only considers the properties of V̇ , so we must
add the necessary additional conditions to the system to be able to
infer stability. The following twopropositions complete the picture
with respect to Lyapunov stability (Proposition 2) and LaSalle’s
invariance principle (Proposition 3).

Proposition 2. Let xG = 0 ∈ DG be an equilibrium point for a sym-
metric system on G. Assume there exists VG that satisfies the hypothe-
ses of Proposition 1, and furthermore assume that each Vg in VG =

g∈G Vg satisfies Vg(0) = 0 and Vg(xg , xXg) > 0 for components of
x ∈ D − {0}. Then the origin is stable for the system on G and stable
for any equivalent system on Ĝ. Moreover, if V̇G(xG) < 0 for xG ∈

DG − {0}, then the origin is asymptotically stable for the system on G
and any equivalent system on Ĝ.

Proof. These conditions along with Proposition 1 provide the nec-
essary conditions on VG in order to infer stability or asymptotic sta-
bility, as the case may be, from standard Lyapunov theory, such as
Theorem 4.1 from Khalil (2002). By construction, VĜ is such that
VĜ(0) = 0 and VĜ(x) > 0 for x ≠ 0, and hence VĜ also has the
required properties from which to conclude stability of the origin
for the system on Ĝ. �

The utility of Proposition 2 is that if we can prove with a Lya-
punov function that the origin of a symmetric system is stable, then
it follows that the origin of any equivalent system is also stable.
Furthermore it is stable in the same sense, i.e., stable or asymptot-
ically stable.

Combining the results of Proposition 1 and LaSalle’s invariance
principle leads to the following.

Proposition 3. Given a symmetric systemonG and a function VG that
satisfies the hypotheses of Proposition 1, assume that there exists a
positive constant c such that ΩG = {xG ∈ D|VG(xG) ≤ c} ⊂ D is
bounded. Also assume there exists xG ∈ Ω such that for the compo-
nents


xg , xXg , xXXg


of x corresponding to each g ∈ G

∂VG

∂xg
(xG)


fg(xg) +

m
j=1

gg,j(xg)ug,j

xg , xXg


= 0. (18)

Then,

1. for the system on G, any solution starting in ΩG approaches the
largest invariant set in the set of points in ΩG where V̇G = 0 as
t → ∞,

2. for any equivalent system on Ĝ, there exists ΩĜ such that as t →

∞ any solution starting inΩĜ approaches the largest invariant set
in the set of points in ΩĜ where V̇Ĝ = 0.

Proof. The first result directly follows from Proposition 1 (which
ensures V̇ ≤ 0) and Lasalle’s invariance principle. The second re-
sult also follows directly from Proposition 1 and Lasalle’s invari-
ance principle as long as there exists the set ΩĜ that is compact
that contains some points where V̇ = 0. Define DĜ and VĜ as in
the proof to Proposition 1 and let ΩĜ =


x ∈ DĜ|VĜ ≤ c


. This set

bounded because each individual component Vg , of VG =


g∈G Vg
must be bounded in order for VG to be bounded. By definition it is
also closed and hence it is compact. AlsoΩĜ contains points where
V̇Ĝ = 0 by Eq. (19). Thus, the conditions on ΩĜ necessary to apply
Lasalle’s invariance principle aremet, andwith the properties of V̇Ĝ
which follow from Proposition 1, the result follows. �

4. Example

This section will complete Example 2.
Example 4. Continuing Example 2, for a fleet of 5 agents, note that
X = {−2, −1, 0, 1, 2} is a group with the group operation of
addition and the relation s5 = 0. Define the Lyapunov function
on G = X as

VG(xG) =

5
i=1

Vi(xi, xi−2, xi−1, xi+1, xi+2)

=

5
i=1

1
2


ẋ2i + ẏ2i


+ ko


x2i + y2i − ri

2

+


j


(xi − xj)2 + (yi − yj)2 − dij

2


, (19)

where j ∈ {i − 2, i − 1, i + 1, i + 2}, dij is the desired distance be-
tween robots and ri is the desired distance of robot i from the ori-
gin, as defined previously. Note that VG is smooth everywhere, by
construction, VG is the sum of individual terms of the form Vi(xi,
xi−2, xi−1, xi+1, xi+2), and by construction, Vi = Vj as functions.

Next we show that Eq. (16) is satisfied. By abuse of notation,
let xi = (xi, ẋi, yi, ẏi), and computing (tedious) ∂VG

∂xi
(fi +


j gi,jui,j)

gives

∂VG

∂xi


fi +


j

gi,jui,j


= −kd


ẋ2i + ẏ2i


,

which is clearly negative semidefinite. Hence, by Proposition 1, V̇G
is negative semidefinite as is V̇Ĝ for any equivalent system.

Now, we show that the hypotheses of Proposition 3 are met.
Because of the first two terms in Vi, each Vi is radially unbounded.
Hence, for any finite initial conditions, there exists a constant, c ,
such that the initial conditions are in the set ΩG as defined in
Proposition 3. Any statewith all robots at rest are such that V̇G = 0.
Finally, Eq. (16) is satisfied everywhere. Hence, by Proposition 3,
the system approaches the largest invariant set such that V̇ = 0,
which is the set that contains the desired formation. The same is
true for any equivalent system.

Simulation results for a five-agent system are illustrated in
Figs. 5 and 6 with kd = 0.5 and ko = 0.01. Fig. 5 shows the tra-
jectories for the individual agents (with an x indicating the initial
position of a robot and a ◦ indicating the steady-state position) and
Fig. 6 shows the final configuration.

Simulation results for a 17-agent systemare illustrated in Figs. 9
and 10 with kd = 0.5 and ko = 0.01. Fig. 9 shows the trajectories
for the individual agents, and Fig. 10 shows the final configuration,
illustrating convergence to the desired formation for the system
independent of the number of agents. Fig. 8 shows the evolution
of V1 through V5 in time, illustrating that they do not individually
satisfy V̇g ≤ 0. Fig. 7 shows the evolution of V =

5
i=1 Vi, which

does satisfy V̇ ≤ 0. �

5. Formation robustness under agent failures

The results in the previous sections may be used to formulate
some robustness results. First these results are motivated by an
example which illustrates the type of system behavior we want to
prove.

Example 5. Consider the system from Examples 2 and 4 with five
agents and assume that agent 5 fails in a manner that it has zero
velocity and is completely unresponsive to any control input. One
would intuitively presume that the rest of the formation will con-
verge to a formation that accommodates such a failure. In fact, this
does happen, as is illustrated in Figs. 11 and 12. Fig. 11 illustrates
the trajectories of the agentswhen agent five fails and remains sta-
tionary. Fig. 12 illustrates the initial and final configurations for
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Fig. 5. Trajectories for a five-vehicle system.

Fig. 6. Final formation for a five-vehicle system.

Fig. 7. Lyapunov function for a five-vehicle system.

Fig. 8. Individual Lyapunov functions.

that system. The failed agent has initial (and final) conditions near
the point (x, y) = (0, 2). �

Clearly it is not a priori necessary that solutions will remain
bounded when an agent fails. In fact, in general it would not be
expected because the system being controlled is not the same one
for which the controller was designed. Also, consistent with the
theme of this paper, we would like results to apply to an entire
Fig. 9. Trajectories for a 17-vehicle system.

Fig. 10. Final formation for a 17-vehicle system.

Fig. 11. Robust formation control for a five-agent system.

Fig. 12. Robust formation control for a five-agent system. Initial conditions are
indicated by a × and final configurations by a ◦.

equivalence class of systems as well. The following corollary to
Proposition 3 provides the desired result.

Corollary 1. If a symmetric distributed system on G satisfies the
conditions of Proposition 3, then if any number of agents fails with
zero velocity then conclusions of Proposition 3 still hold.
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Proof. This follows directly fromEq. (17). If an agent failswith zero
velocity, the term in Eq. (17) will have a value of zero, while the
other terms are still negative semidefinite. �

6. Conclusions

This paper considers stability and robust stability of symmet-
ric coordinated and distributed systems, with an application fo-
cus on coordinated control of systems of mobile robots. The goal is
to develop a framework used for spatially periodic systems ‘‘built-
up’’ from periodically interconnected components. Observing that
many of the formation control algorithms in the literature are not
limited by the number of components, but often are limited by as-
suming specific dynamics, the main contribution of this paper is to
formulate a framework in which stability of many distributed sys-
tems can be considered which relies on the symmetric nature of
many such systems.

The main contributions are a set of propositions under which
stability of an entire class of equivalent systems can be determined
from an analysis of just one member of the class. These results are
based on formalizing the intuitive notion that if a system contains
many similar components with a regular interconnection struc-
ture, then adding or removing some components should not dras-
tically change the system properties. Based on this, definitions of
symmetric systems and equivalent symmetric systems are defined,
leading to the main results. Also, while literally the results in this
paper are limited to systemswith identical components, clearly the
results are not limited to such cases because seemingly different
components may be the same under a nonlinear change of coordi-
nates. Also, while the main example was for mobile robotic forma-
tion control, the results are of general applicability.

Current and future efforts related to this work focus on deter-
mining boundedness results for symmetric nonautonomous sys-
tems. Also, determining a means to allow for slight symmetry
breaking is clearly of engineering importance, and hence efforts di-
rected toward developing results for ‘‘approximately symmetric’’
systems are under consideration. Additionally, emergent behav-
ior, such as standard bifurcations of fixed points of differential
equations (Goodwine, 2010), is also expected as system size grows
or shrinks. The current efforts can be characterized as develop-
ing conditions guaranteeing the absence of emergent behavior. The
converse problem of determining when qualitative changes in the
dynamics are guaranteed when agents are added or removed is
also an area of current focus (Deng, Sen, & Goodwine, 2009; Deng,
Valenzuela, & Goodwine, 2010).
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