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Abstract— In this paper, we analyze the stochastic pas- is zero state detectable [8] and the parallel and negative
sivity properties of discrete-time Markovian jump nonlinear  feedback interconnections of two passive systems remain
systems. We define the notions of general stochastic dis- passive

basshiy for these sysiems. Based on these deftions, the _ 1Ne notion of stochastic dissipativity/passivity has ap-
discrete-time stochastic KYP lemma is derived, which gives Peared in alarge amount of work that consider continuous-
a necessary and sufficient condition for such a Markovian time systems. These include the problems of stochas-
jump nonlinear system to be stochastic QSR dissipative. tic stabilization [9]-[11], passivity-based control [12]
Based on the stochastic KYP lemma, we prove that a stochasticH» control [13], stochasticH.. like con-

Markovian jump nonlinear system is locally stochastic feed . .
back passive if and only if its zero dynamics are locally trol [14], [15], stochastic ergodic control [16], and robus

stochastic passive. These results can be directly extended Simultaneous stabilization of a set of deterministic syste
to the case when we have interconnected Markovian jump with uncertain parameters [17]. Much fewer work ([5],
nonlinear systems. Furthermore, given such interconnecte  [18], [19]) can be found in the literature on the stochastic
Markovian jump nonlinear subsystems that are stochastic dissipativity/passivity of discrete-time stochastic fioear

feedback passive, we analyze the stochastic stability of éh . . -
entire system. We design a feedback control law and obtain systems and their definitions do not seem to be unified.

the conditions on the weighted Laplacian matrix between all In this paper, we propose the notions of stochastic
the subsystems to stabilize the entire system in the stochims  dissipativity, stochastic QSR dissipativity and stocttast
sense. passivity as a special case in the discrete-time setting. Th

Index Terms— Stochastic (Feedback) Passivity; Marko-

. : : y counterparts in the deterministic continuous-time segttin
vian Jump Systems; Discrete-Time Nonlinear Systems P 8

can be found in [7], [20], [21]. The closest definitions
to our presentation in the stochastic setting are in [19]
where a nonlinear discrete-time system described by a
Markovian jump systems are stochastic systemstochastic difference equations with Markovian switching
whose dynamics are subject to random changes due i®,considered. However, the paper studies the robust si-
for example, changing subsystem interconnections, cormultaneous stabilization problem and proposes the notion
ponent failures or repairs, sudden environmental distupf exponential dissipativity instead. Based on our pro-
bances, and abrupt variations of the operating point [1posed definitions, we obtain the stochastic KYP lemma
[2]. Such a system consists of multiple operating mode&hich provides a necessary and sufficient condition for a
and the switching between these modes is governed Bjarkovian jump nonlinear system to be stochastic QSR
a time varying parameter taking values on a finite statdissipative. However, since the stochastic KYP lemma re-
Markovian chain. There is rich literature on the stabilitylies on the existence of some real functions that satisfy the
observability, controllability#/, and? ., norm of Marko- stochastic KYP property, the lemma itself does not provide
vian jump systems and, especially Markovian jump linea@ direct method to determine if a given Markovian jump
systems [3]-[5]. However, in this paper, we are interestegonlinear system is stochastic QSR dissipative/passive or
in the passivity properties of the more general class dfot. Inspired by the authors’ work in [22] which discusses
Markovian jump nonlinear systems in the discrete-timéghe generalized passivity of discrete-time switched non-
setting. linear systems, we introduce the definition of stochastic
A dynamical system is said to be dissipative if itfeedback passivity and investigate the zero dynamics [6] of
satisfies the dissipativity inequality, i.e., its incredse the system. By extending the stochastic KYP lemma, we
storage function is bounded by the energy supplied to thgrove that a Markovian jump nonlinear system is locally
system [6], [7]. Passivity is one of the most useful formstochastic feedback passive if and only if its zero dynam-
of dissipativity and it is a desirable system property irics are locally stochastic passive. These results can be
addition to stability. This is because a passive system c&xtended taV interconnected Markovian jump nonlinear
achieve asymptotic stability using feedback given that gystems. If these systems are stochastic feedback passive,
we can design a feedback control law for each subsystem
*Department of Mechanical Engineering, Clemson Universityor ~ and derive the conditions on the interconnection matrix
DaT”ie' Building, Clemson, S.C. 29634. E-maihe6@I emson. edu.  of these subsystems, i.e., the weighted Laplacian matrix,
Department of Electrical Engineering, University of Notre . . . .
Dame, 275 Fitzpatrick Hall, Notre Dame, IN 46556, E-mai: SUCH that the entire system achieves stochastic stability.
{vgupt a2, ant sakl i s. 1}@d. edu. The rest of the paper is organized as follows. Section
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Il introduces the system model and definitions. Sectioweighted graph Laplacian where
[l provides the main results of the paper. Section IlI-A N o
presents the stochastic KYP property and lemma. Section lij = { ZJ:L i i J =0

lI-B analyzes the zero dynamics of a given Markovian g JF

jump nonlinear system and studies the stochastic feeB: Stochastic Dissipativity

back passivity based on zero dynamics. Section IlI-C

investigates the problem of stochastic stabilization for In this section, we formally introduce the notion of

interconnected Markovian jump nonlinear systems that Affissipativity/passivity in the stochastic settings whk in-

stochastic feedback passive. A simulation example of @n 1o be consistent with their deterministic counterpért
Markovian-type wireless sensor network with six Sensofg), 7], [21]).

nodes that switch between three different topologies ac-

cording to a Markovian chain is provided in Section Iv.Definition 11.1.  ([17]-[19]) Consider a functioniV" :
Section V concludes the paper. R™ x RP x Zt — R associated with a System of the

form (1). This function is called thgupply rateif for any
u € U C R™ the system with arbitrary initial condition

Il. PROBLEM FORMULATION xo has the following property
T
A. System Model E Z |W(u(l€),y(/€),7’(/€))|1 <oo, T=0,1,---.
Consider a discrete-time Markovian jump nonlinear Lk=0
system that is affine in control Definition 11.2. A system of the form (1) with supply
B rate W(u,y,r) is said to belocally dissipative in the
x(k +1) = f(x(k), r(k)) + g(x(k), r(k))u(k) stochastic sensi there exists a nonnegative continuous
y(k) = h(x(k),r(k)) + J (x(k),r(k))u(k) (1) functionV(x,r) : X x Z+ — RT, called thestorage

wherex € X C R" is the state vector with an initial function such that for allk = 0,

conditionxg, u € U C R™ is the control inputy € R? E[Vix(k+1).r(k+1 ‘ ). ()] — Vi (k). r(k
e ot Xou s Fon e Somgr P B [V Gclh o 1O 1) () ()] = V() ()
X x ZT = R™, J : X x Z* — R™ ™ are time-varying < E [W(u(k),y(/g), r(k))‘x(k),r(k)} ,

smooth nonlinear mappings. The finite state Markovia

chain r(k) takes value in the sef1,2,---,M}. The e X,VueU. 3)
transition probability of the Markovian chairfk) is given  Definition 11.3. Suppose that a system of the form (1)
as is locally stochastic dissipative with storage function

POk +1) = (k) = m) V(x(k),r(k)). Let the supply rate be
= i, myl=1,--- M. ) W (u(k), y(k),r(k)) = y" (k)Q(r(k))y(k)
T T
According to the law of total probability, we have +2y (k) S(r(k))ulk) + w (k) R(r(k)Ju(k)  (4)

Zé\il gmi = 1. All considerations are restricted to anwhere () € RP*?P, S € RP*™ R € R™*™ are constant
open setX x U which is a neighbourhood of the origin matrices for each givem(k) with Q = QT,R = R'
x* = 0,u* = 0. We assume that the origifx*,u*) = symmetric. Then the system is said to lbeally QSR
(0,0) is an isolated equilibrium and that(0,7(k)) = dissipative in the stochastic sensee., the following
0,9(0,7(k)) = 0,h(0,r(k)) = 0, and J(0,r(k)) = 0. inequality holds
The system is assumed to have local relative degree
zero [23] and.J is invertible in a neighborhood of the E {V(X(/“F 1),r(k+ 1))"“(/4)’7’(’4)] = V(x(k),r(k))
origin”. o < E[T0QU )y (k) + 2y (k)S(r(k))ulk)+

Now let us considerN interconnected Markovian -
jump nonlinear systems of the form (1). lGt= (V,£, 4) U (k)R(T(k))“(k)‘x(k)vT(k)} xeX,vueU. (5)
be a weighted/directed graph with the set of notles
{v1,v2,--- ,un} corresponding to each Markovian jump
nonlinear subsystem, set of edgés  V x V connecting
each subsystem, and a weighted adjacency matrize  Definition 11.4. A system of the form (1) is said to be
[ai;] [24]. If there is a link between nodeand j, we locally passive in the stochastic sengeit is locally
assume that the off-diagonal termiig > 0. The diagonal stochastic dissipative with supply rat&’ (u,y) = u'y,
term is assumed to be;; = 0. We denoteL as the i.e, the following inequality holds

E [V x(k -+ 1), 7k + 1) [x(), 7(k)| =V (x(k), (k)
1This assumption is reasonable because it is shown in [23] gha

discrete-time deterministic nonlinear system can be rendpassive if < R [uT(k)y(k)’x(k) T(k):| Vx € X.Vu € U. (6)
and only if it has relative degree zero and passive zero digsam - ’ ’ ’

We now consider a special class of dissipative systems
with supply rateW (u,y,r) = u'y.



Remark. It can be shown from Definition 1.3 that the
locally stochastic QSR dissipativity includes the locally
stochastic passivity as special cases. When- 0,5 =
% and R = 0, the locally stochastic QSR dissipativity

corresponds to locally stochastic passivity. °
II.

A. Discrete-Time Stochastic KYP Lemma

We now investigate the stochastic KYP lemma which
gives a necessary and sufficient condition for a Makovian
jump nonlinear system of the form (1) to be stochastically

M AIN RESULTS

xg(x(k),m)u(k)} =V (x(k),m). (8)

In the following proof, we suppress the arguments in the
above functions for the sake of simplicity. According to
Equations (7), the right hand side of Equation (8) equals
to

RTQh — p"p+2hTQJu + 2h"Su — 2pTeu
+u'JTQJu+2u"JTSu+u'Ru—u'e’eu

=(h+Ju) Q(h+ Ju)+2(h+Ju)' Su
+u'(k)Ru — (p+en)"(p + en)

QSR dissipative. The deterministic KYP lemma can be =y'Qy +2y'Su+u'Ru— (p+ eu)'(p + eu)
found in the literature [7]. Before this, let us consider the <E [W(u,y,r)’x, m} _

stochastic KYP property.

Definition IIl.1. A system of the form (1) is said to have

stochastic KYP propertyf there exist a nonegativé?

storage functionV (x(k),r(k)) : X x ZT — R* with

V(0,r(k)) = 0, the supply rateW (u(k),y(k),r(k))

given by Equation (4), and real functionp$x(k), r(k)) :

X x ZT = Rt e(x(k),r(k)) : X x ZT — R* such that
givenr(k) = m, it follows that

M

Z gV (f(x(k),m),1) — V(X(k)7 m) =

=1

WY (x(k), m)Q(m)h(x(k),m) — pT(x(k),m)p(x(k), m),
> g =

T (x(k), m)Q(m)J (x(k),m) + h'(x(k),m)S (m)

—p' (x(k), m)e(x(k),m),

0%V (2,1)
2 qmlgT(x(k%m)T z:f(x(k),m)g(X(k)7m)
= JT(x(k), m)Q(m)J (x(k),m) + 2" (x(k), m)S(m)
+R(m) — €T (x(k), m)e(x(k), m). @)

Theorem 1ll.1. A necessary and sufficient condition for

Hence, the system of the form (1) is locally QSR dissipa-
tive in the stochastic sense according to Definition I1.3.

(necessity) If a system of the form (1) is locally
stochastic QSR dissipative withC& storage function, then
the inequality (3) holds for anwu(k) € U. Define

H(x(k), u(k))
= E [Vix(k+ 1), 7(k + D) x(k), r(k)| = V(x(k), r(k))
—E [W (u(k), y(k))[x(k), (k)] <.

BecauséV is C2, we have

M
oV (z,l
s = > au{Vir) + 2| g
m=1 -
1 1 10%V(z,1)
+2u g 5.2 Z:fgu Vi(x,m)

~(¥"Qy +2y"Su+u'Ru) <0. (9
Therefore,H (x(k),u(k)) is negative and quadratic i.
We set

H(x,u) = —(p(x,m) + e(x, m)u)T

X (p(x,m) + e(x,m)u). (10)

a system of the form (1) to be locally stochastic QSKompare the coefficients of Equations (9) and (10), we
dissipative is that the system has local stochastic KY8btain the stochastic KYP property (7).

property for allx € X, u € U.

Proof: (sufficiency) If a system of the form (1) has

local stochastic KYP property, there exist<Ca storage

B. Stochastic Feedback PassiviyZero Dynamics

The stochastic KYP lemma states that if there exist
real functiong(x, m) ande(x, m) such that the stochastic

function such tha_t Equations (7) are satisfied Iocall_ykyp property holds then a system of the form (1) is QSR
Therefore, according to the second order Taylor serig§ssipative in the stochastic sense. However, it does not

expansion at the origin, it follows that
E [V (x(k + 1), r(k + 1) |x(k), r(k) = m]
—V(x(k),r(k) =m)
M
= am {V(f(x(k),m),1)
=1

oV (z,1)

+3z

Z:f(x(k),m)g(x(k)’ m)u(k)

faut (19" (el ) TV 2D

z=f(x(k),m)

provide a straightforward tool to determine if such real
functions exist or not, i.e., if the system is stochastic QSR
dissipative/passive or not. In addition, stochastic QSR di
sipativity or stochastic passivity is a relatively consteal
definition because it requires that the stochastic QSR
dissipativity inequality (5) or the passivity inequalitg)(

to be hold for anyx € X andu € U. This might not hold
true in most cases. Therefore, in this section, we introduce
the notion of stochastic feedback passivity. That is to aay,
given system of the form (1) may not be stochastic passive,
but it can be made passive in the stochastic sense by a



suitably designed state feedback control law. Furthermore < E [WT(k)y(k)’X(k), r(k)] Vx e X, vw € U. (17)

based on the stochastic KYP lemma, we prove that the

necessary and sufficient condition for a system of the foriheorem 111.2. Suppose there exists a nonnegatit/e

(1) to be locally stochastic feedback passive is that its zestorage functiort” with V(x,r) = 0 if and only ifx = 0

dynamics are locally stochastic passive. andV(f+gu(k),r) quadratic inu. Then a system of the
To this end, let us first obtain the zero dynamics oform (1) has a locally feedback passive dynamics in the

System (1). Because the system has relative degree z&fgchastic sense if and only if its zero dynamics (13) are

and.J is locally invertible, choose the following feedbacklocally stochastic passive.

control law Proof: (necessity) Because System (1) is locally
u(k) = —J L (x(k), m)h(x(k),m) stochastic feedback passive, the inequality (17) holds. Th
I (), m)v (k) (11) zero dynamics enforceg(k) = 0. Hence, the inequality
’ ’ (17) is converted to the inequality (14). That is, the zero
The transformed dynamics of System (1) are dynamics (13) are locally stochastic passive.
. . (sufficiency) We now prove that if the zero dynamics
x(k+1) = f*(x(k),m) + g"(x(k), m)v(k) (13) are locally stochastic passive, System (1) is feedback
yv(k) =v(k) (12) passive in the stochastic sense according to Definitio® I11.

and the stochastic feedback passivity inequality (17)$old

* £ —1 * —1
where e havef - f=gJ= h and_g gJ~". The zero According to Theorem IlI.1, this is equivalent to prove
dynamics are the internal dynamics of the system that a’i{i

. . . at the transformed system (16) satisfies the stochastic
consistent with constraining the system output to zero a . I .
given by the following equation P property (7) with@ = 0,5 = 3 and & = 0 given
that its zero dynamics are locally stochastic passive. More
x(k+1) = f*(x(k),m) specifically, we need to prove that
y(k)=0. (13) M

. .« e . m * k) * I B ) 7l
According to Definition 11.4, the zero dynamics (13) are ;q VF7Gesm) + g7 (x, m)h(x, m), 1)

passive, or equivalently, stable in the stochastic sense if “V(x,m)
the following equality holds ’

E [V x(k + 1), 7k + 1) x(k), r(k)|

m) + e(x,
X (p(x,m) + e(x,m)
-V (x(k),r(k)) <O0. (14) 1
2

- (p(X, m)
( (x (X,m)), (18)

M ~
oV (3,1
3 g 220

Now consider a new control input for the trans- — 0z lz=f*(x,m)+g*(x,m)h(x,m)
formed dynamics (12), xg* (x, m) J(x, m)
y(k) = v(k) = h(x(k),m) + J(x(k), m)w(k), _ %BT %, m) — (p(x, m) + e(x, m)h(x, m))T
where.J is assumed to be symmetric and we(x, m)J(x,m), (19)
, 1,102V (z1) AN M _
J(x(k),m) = (59 92 Ezf*g qul [g*(x,m)J(x,m)]T
_ T =1
h(x(k),m) = —J (‘Wa(f’l) \ g*) (15) XM
< = 0z2 Z=f*(x,m)+g* (x,m)h(x,m)
The new system dynamics are given by xg*(x,m)J(x,m)
x(k +1) = *(x(k),m) + 9" (x(k), m)h(x(k), m) = J0xm) + " (x,m) )
+g* (x(k), m)J (x(k), m)w(k) —2J7(x, m)e' (x, m)e(x, m).J (x,m). (20)
y(k) = h(x(k),m) + J(x(k), m)w(k). (16) For the sake of simplicity, we suppress the arguments of

. _— . the functions in the following proof.
We now give the definition of locally feedback passive BecauselV’(f + gu,r) is quadratic inu, the Taylor

in the stochastic sense. series expansion fov' (f* + g*h,l) can be expressed as
Definition 1Il.2. A system of the form (1) is said to befollows:

locally feedback passive in the stochastic seifishere oV _

exists a nonnegative continuous storage function X x V(©+g"h D) = V(1) + 0z Ezf*g*h
7+ — R*, such that for allk > 0, 1 .10V - '
—(g*h)' — “h. 21
t50h) 5= ol (21)

E|V(x(k+1),r(k+ 1))‘){(/{), r(k)} —V(x(k),r(k))
Use Equation (15) to Equation (21), sindéés symmetric,



we have

V(f*+g"h1)

V() =R (T R
+RT T Y =V (1),

Since the zero dynamics (13) are locally stochastic pas-

sive, it follows that

M
> @iV +g7h,1) = V(x,m)
=1

M
= qulV(f*,l) —Vi(x,m)
— B[V )x.m] - V(x.m) <0.
Again sinceV (f* + g*h, 1) is quadratic inh, we set

> @iV (T +g"h1) = V(x,m)
=1

=— (p+ei_z)T (p+eh) <0.
Hence, Equation (18) holds.

Next we expand®[V (f* + g*h,1)|x,m] —
using the Taylor series expansion

[ (f* + g7, D)lx,m]

V(x,m)

Vi(x,m)

qulv f*+g*h,1) — V(x,m)

1. 1 9*V(3,])
*h *hl ——212
gty 2 7] 072

M

= - (p—i—eﬁ)T (p+eh) —l—qul X
=1

g*h]

*h
iy

*_+1|:
,f*g 3

T 82V(2,l)’
072

L@

Take the first order derivative of Equation (22) withSubsystem, i =1, -

respect toh and right multiply by.J, we have
M av(E
> e
y4
=1
l oV (1)

= (k) e+ g [ &

=1

Tl .
]

*

9
i=f*+gh

<

0%V (z,1)

7T/ %
thi(9") —5

Use Equation (15), it follows that
% OV (z,1)
qml EE
=1

M
—2 (p + ei_L)Tej—i- qulﬁ.
=1

*J

- -9
Z=f*+g*h

Because at time steg:, h(x(k),m) is a constant,
S M. gmih = h and hence Equation (19) holds.

Similarly, we take the second order derivative of
Equation (22) with respect th, left multiply by J' and
right multiply by J, we have

T 3V ) =
mi 97T 9
Zq ! g ? Z=f*+g*h
_ _ — 1 0%V (z,1) -
_ T T * T2 *
=-2Jeel+ Zle(g J) 932 Z—f J

=1

M
— 27T+ g (7 + )
=1
=-2J"eTeJ+J" + J.

The second equation follows by using Equation (15)
and the third equation holds becausé (x(k),m) +
J(x(k),m) is a constant at time stép Therefore, Equa-
tion (19) is satisfied. This completes the proof.

C. Stochastic Stabilization for Interconnected Systems

The above passivity results hold true for intercon-
nected Markovian jump nonlinear systems, where each
subsystem is of the form (1). In this section, we consider
the stochastic stability ofV interconnected Markovian
jump nonlinear systems given that each subsysteim=
1,---, N, is stochastic feedback passive according to
Definition IIl.2. We design feedback control law and
obtain the conditions on the interconnections between
these subsystems, or equivalently, the weighted Laplacian
matrix L, to guarantee the stochastic stability of the entire
system.

Theorem 1l1.3. Consider N interconnected Markovian
jump nonlinear systems of the form (1). Assume that each
, IV, is stochastic feedback passive.
Choose the external feedback control as

w(k) = —ky (1+ kL(r(k)I (X (k), (k) "

< L(r(k))h(X (k), (k) (23)
wherer(k) is the Markovian chain = [x],--- ,xL],
W:[WL"" ]*J_dlag( )*h_[h-{v" vB-JI;Z]T*

L(r(k)) = I,xn ® L(r(k)) is the augmented weighted
Laplacian matrix, ands, > 0 is some constant gain. The
entire system is locally stochastic stableLifr(k)) > 0.

Proof: Define the storage function for the system
with N interconnected Markovian jump nonlinear systems
(1) asV(X,r) = Zfil Vi(x;,7). Based on the proof of



Theorem I11.2, we have

B V(X (k+1), 70k + 1))‘2{(/@ r

N
= B Viti(k +1),
i=1

r(k+1))|x

N
Il
-

quz AV )
iz1 Li=1
AVi(3,1) 1o o7
*J i ;Jiw;
D) s b
PVi(z, ) 7
— i Jiwi | = Vi(xq,
i gzm‘%gz wi ) = Vi)

I
.MZ

[— (pi + ei}_li)T (pi + eihi) + hiw;

1=1

S 1 _
—2(pi + eihi)TeiJiWi B T(jT + Ji)w
—wiJlejeiJiw)

N

=y"w = ll(pi + eihi + eiJiwi)|?
=1
wherey = [y],- -
gives

YN
(1 + kgL(r)j(X, 7’)) w(k) = —kgL(T)l_‘l(X, r),
we have

w(k) i i
= —kgL(r(k)) (h(X(K),r(k)) + I(X(k), r(k)))w(k))
= —kyL(r(k))y (k)
Therefore,

B V(X +1),7(k + 1))‘2{(1@

N
= —koy "L(r)y = Y _ [(pi + eihi + eiJywi)||?

i=1

If the weighted Laplacian matrix is such thatr) > 0,
the above inequality becomes

E VX (k4 1),7(k + 1) |X(h), (k)|

T. Because the control law (23)

)7 (k)| = VX (k), (k)

Corollary 1ll.1. Consider N interconnected Markovian
jump nonlinear systems of the form (1). If each subsystem
has stochastic passive zero dynamics, and an external

control input
= Lij(r(k))yi(k
i=1

with L(r(k)) > 0, L(r(k)) = {l;;(r(k))}, then the entire
system is stochastically stable.

(24)

Proof: According to Theorem 111.2, if each sub-
system: has stochastic passive zero dynamics, then it
is locally stochastic feedback passive. From the proof in
Theorem 111.3, the control law (24) for systeiris the iy,
elementin the vector control law (23) fari = 1,--- , N.
According to Theorem 1.3, the system is stochastically
stable.

IV. SIMULATION

In this section, we give an example of a wireless
sensor network consisting of 6 sensors whose dynamics
are of the form (1). The network randomly switches
between 3 different topologies according to a Markovian
chainr(k). The discrete-time nonlinear dynamics of node

i, 1=1,2,---,6 are
2t (k+1) = 0.6sinxi (k) + Tai(k)
zh(k 4+ 1) = 0.8sinah (k) + Tz’ (k)
1) = 2 (8) — 2T ()l )
L) PORR S
m(rR) Lo R+ gy T )
1) = 24 (8) — 2L T (el )
Ks(r(k)) - 2 1 ul
o) T gy )
Vi (k) = (k) + u} ()
(k) = (k) + (k) (25)

wherex; = [z}, 2%, 25, 23]T are the statesy; = [y, v4]"

are the outputs, and; = [u},u3]" are the control inputs.

T is the sampling rate and chosen(akin the simulation.

The 3 different network topologies are shown in Figure 1.
According to the above graphs, the corresponding

weighted Laplacian matrix of wireless sensor network is

chosen as

—V(X(k),rk)) <0,
01 —-01 0 0 0 0
i.e., the entire system is stochastically stable accortiing 0 01 —-01 0 0 0
the inequality (14). This completes the proof. 0 0 0.1 -—0.1 0 0
Remark. This result is consistent with the classical deter- L1 = 0 0 0 01 —-01 0 ’
ministic conditions derived in [25]. ° 0 0 0 0 01 —0.1
-01 0 0 0 0 0.1



iy omUr(k)) b(r(k)) i
: oW ) o8 S = 20D (1 M) 1)
) i
7i _ m(r(k)) b(r(k)) i
63 @‘9 k) = 2= ((1 - m(r<k>>T> 7a(k)
@ 5 ® _7§(f(<:)>)>:p(xi<k>>2
Therefore, the control inputs are
T W () = —a} (k) + B (8) + T by ),
\@ W) = () + REH) + TSRy ),
e © wherew? (k), wi (k) is given by Equation (23) to stabilize

the system in the stochastic sense. We chaégse 1. Fig-

ure 2(a) checks the stochastic stability inequalky” =
EV(X(k+1),r(k+1)|X(k),rk)] -V (X(k),rk)) <

0, which is satisfied at every time step. Figures 2(b) and
2(c) show the states!, =%, x4 andx’ for all the 6 sensors.

It is shown that all the states approach to the equilibrium.

Fig. 1. Three different network topologies: (a), (b) and (c)

0.1 —0.1 0 0 0 0 V. CONCLUSION
0 01 —-01 0 0 0 In this paper, we study the passivity and feedback pas-
Ly — 0 0 01 -01 0 0 sivity properties in the stochastic setting for discreteet
0 0 0 01 =01 0 |’  Markovian jump nonlinear systems. We first introduce
-01 0 0 0 01 0 the notions of stochastic dissipativiy and stochastic QSR
| 01 -01 -01 -0.1 -0.1 0.5 | dissipativity. We then derive the stochastic KYP lemma
which provides a sufficient and necessary condition to
[ 02 —01 -o0.1 0 0 0 determine if a given Markovian jump nonlinear system
0 0.1 -0.1 0 0 0 is QSR dissipative. The definition of stochastic passivity
In— -01 0 0.2 —0.1 0 0 follows as a special case of stochastic QSR dissipativ-
5 0 0 0 01 —-01 0 ity. However, the stochastic KYP lemma relies on the
-01 0 0 0 01 0 existence of some real functions and does not provide a
| 01 0 0 0 0 0.1 | direct tool to check the stochastic passivity of a given
and we havel;, = 0, Ly > 0, Ls > 0. system. Therefore, we investigate the stochastic feedback

The transition probability matrix of the Markovian passivity of a Markovian jump nonlinear system and relate
chain is given as follows it with the system zero dynamics. Based on the stochastic

KYP lemma, we prove that such a Markovian jump

05 02 03 nonlinear system is locally stochastic feedback passive
P(r(k+1)=ilr(k)=j)=| 02 045 035 |, if and only if its zero dynamics are locally stochastic
03 01 06 passive. Furthermore, we consider the stochastic siabilit

wherei,j = 1,2,3. The set of elements that changingOf N interconnected Markovian jump nonlinear systems
according to the network topologies are chosen as which are stochastic feedback passive. We design the state

feedback control law and investigate the conditions on the

m=1,K;=0.1,b=10, if r(k) =1, interconnection matrix of the subsystems to guarantee the
m=1K,=020=09, if r(k) =2, stochastic stability of the entire system. An example of
m=2,K,=0.1,b= 20, if r(k) = 3. a Markovian-type wireless sensor network is provided.

Future work will focus on the extension of stochastic
Under this setting, all the sensor nodes have stochgsassivity systems to stochastic conic systems and its rela-
tic passive zero dynamics and hence are stochagonship with stochastic QSR dissipative systems. More
tic feedback passive. The storage function is chosejeneral stochastic system models than the Markovian

as Vi(xi(k),r(k)) = 3K(r(k)(zi(k) + 25(k)) + jump nonlinear systems will be considered.
tm(r(k))(z% (k) + 2% (k)). For each sensor node we
have ACKNOWLEDGEMENTS

. . m(r(k)) The support of the National Science Foundation un-

hi(k) = hy(k) = 22—, der Grant No. CNS-1035655 is gratefully acknowledged.



(2]

R
- [3]
ol
S
T [4]
_al
[5]
sl
123405678 91011121314151617 18 19 [6]
! [7]
(@
(8]
2
sl
rs. s2 9]
-1 -5
- [10]

[11]

[12]

k (23]

[14]

sl
r==s52
o8 et [25)
=0 s4
8 | 5
-1f-1 s/
1
1 [16]
2T, 4 6 8 10 12 14 16 18 20
t
1
- sl
o5k - == 52 ]
— == =s3 [17]
- 0-3 gqﬁ,vvvw 2454
s6
-05¢ g
| [18]
T4 6 8 10 12 14 16 18 2

[19]

Fig. 2. (a) Check stochastic stability inequality, (b) stat? and =3,

and (c) statesr, and . [20]

[21]
The first author would like to thank the startup funding

provided by Clemson University. The authors would als
like to thank Dr. Getachew Befekadu in the Electrica
Engineering Department at the University of Notre Dame
for his discussions on stochastic control theory, Dr. Geof23l
gios Kotsalis in the School of Electrical and Computer
Engineering at Georgia Institute of Technology for hig24]
discussions on stochastic dissipativity theory, and Mr.
Michael McCourt in the Electrical Engineering Depart-
ment at the University of Notre Dame for his discussiongs]
on classical passivity theory.

22]

REFERENCES

[1] O. L. V. do Costa, R. P. Marques, and M. D. FragoBascrete-
Time Markov Jump Linear SystemSpringer, 2005.

C. E. de Souza and D. F. Coutinho, “Robust stability of assl of
uncertain markov jump nonlinear systemigEE Transactions on
Automatic Contral vol. 51, pp. 1825-1831, November 2006.

Y. Ji and H. J. Chizeck, “Controllability, stabilizaliy}, and
continuous-time markovian jump linear quadratic cortrédEEE
Transactions on Automatic Controlol. 35, pp. 777-788, July
1990.

G. Kotsalis, A. Megretski, and M. A. Dahleh, “Model redion
of discrete-time markov jump linear systemgpnerican Control
Conference pp. 454-459, June 2006.

G. Kotsalis and A. Rantzer, “Balanced truncation forcdete-time
markov jump linear systemsJEEE Transactions on Automatic
Control, vol. 55, no. 11, pp. 2606-2611, 2010.

H. K. Khalil, Nonlinear SystemsPrentice Hall, 2002.

J. Bao and P. L. LeeProcess Control: the Passive Systems
Approach Springer, 2007.

W. Lin and C. I. Byrnes, “Passivity and absolute stalaiian of
a class of discrete-time nonlinear systemAtitomatica vol. 31,
no. 2, pp. 263-267, 1995.

P. Florchinger, “A passive system approach to feedbatehis
lization of nonlinear control stochastic system&bnference on
Decision and Contrglpp. 3168-3173, December 1999.

M. Aliyu, “Dissipative analysis and stability of nonkear stochastic
state-delayed systemdYonlinear Dynamics and Systems Theory
vol. 4, no. 3, pp. 243-256, 2004.

Z. Lin, J. Liu, W. Zhang, and Y. Niu, “Stabilization of tercon-
nected nonlinear stochastic markovian jump systems visipdis
tivity approach,” Automatica vol. 47, pp. 2796-2800, 2011.

H. Shen, S. Xu, X. Song, and G. Shi, “Passivity-basedrobtfior
markovian jump systems via retareded output feedbaCkguits,
Systems and Signal Processl. 31, pp. 189-202, 2012.

U. H. Thygesen, “On dissipation in stochastic systémsnerican
Control Conferencepp. 1430-1434, June 1999.

N. Berman and U. Shaked, ‘d-like control for nonlinear stochas-
tic systems,”Systems& Control Letters vol. 55, pp. 247-257,
2006.

W. Zhang and B. S. Chen, “State feedbdck, control for a class
of nonlinear stochastic systems31AM Journal on Control and
Optimization vol. 44, pp. 1973-1991, 2006.

V. S. Borkar and S. K. MitterA Note on Stochastic Dissipativengss
vol. 286 of Lecture Notes in Control and Information Sciences
ch. Directions in Mathematical Systems Theory and Optitioza
pp. 41-49. Springer, 2003.

P. V. Pakshin, “Dissipativity of & processes with markovian
switching and problems of robust stabilizatioAUtomation and
Remote Controlvol. 68, no. 9, pp. 1502-1518, 2007.

N. Berman and U. Shaked, ‘id control for discrete-time nonlinear
stochastic systemsIEEE Transactions on Automatic Control
vol. 51, pp. 1041-1046, June 2006.

P. V. Pakshin and S. Soloviev, “Exponential dissipgtivof
discrete-time stochastic systems and robust simultanstabdiza-
tion,” World Congresspp. 14180-14185, July 2008.

S. Hirche and S. Hara, “Stabilizing interconnectioracitterization
for multi-agent systems with dissipative propertied7th IFAC
World Congressvol. 17, 2008.

M. J. McCourt and P. J. Antsaklis, “Stability of intermoected
switched systems using QSR dissipativity with multiple gyp
rates,” American Control Conferencelune 2012.

Y. Wang, V. Gupta, and P. J. Antsaklis, “Generalizedspaty in
discrete-time switched nonlinear systemEEE Conference on
Decision and ContrglDecember 2012. accepted.

E. M. Eavarro-LopezDissipativity and Passivity-Related Proper-
ties in Nonlinear Discrete-Time SystemBhD thesis, Universitat
Politecnica de Catalunya, 2002.

R. Olfati-Saber and R. M. Murray, “Consensus problems i
networks of agents with switching topology and time-delays
IEEE Transactions on Automatic Contralol. 49, pp. 1520-1533,
September 2004.

N. Chopra and M. W. SpondRassivity-Based Control of Multi-
Agent Systemsh. Advances in Robot Control, Everyday Physics
to Human-Like Movements, pp. 107-134. Berlin: Springeriag
2006.



