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INTRODUCTION

The static or constant linear state feedback (elsf) control law is well

understood in both state—space and differential operator (polynomial) system
repregentations. The dynamic linear state feedback (dlsf) control law is
not as well studied. 1Its representation and properties in the differential
operator framework are discussed here apparently for the first time. Given
a controllable system, it is shown that the denominator of the dlsf transfer
matrix F can be almost arbitrarily chosen to guarantee controllability of the
compensated system, while the numerator can be used to arbitrarily assign the
closed loop eigenvalues. The question of characterizing right coprime proper

and stable factorizations of the plant via dlsf i1s also studled, thus extend-

ing previous work involving clsf.

DYNAMIC STATE FEEDBACK
The dynamic linear state feedback (dlsf) control law is defined in the
state space framework as follows:
Consider
x(t) = Ax(t) + Bu(t) (1)

where A ¢ RO*0 B ¢ RAXM, The control input u(t) is generated by:

xe(t)

u(t)

Apexe(t) + Bex(t)

Cexe(t) + Ecx(t) + Lr(t) (2)
where A, € R1%4, r(t) is an external input, |L| # O and the rest of the

matrices are of appropriate dimensions. In the transform domain the dlsf is



P. J. Antsaklis, "On Dynamic Linear State Feedback," Control Systems Technical Report #55, Dept. of
Electrical and Computer Engineering, University of Notre Dame, August 1987.

u(s) = Fg(s)x(s) + Lr(s) (3)
with
Fg(s): = Co(sI-Ac)"1B. + Ee
a proper rational matrix.
Any dlsf control law is equivalent to a constant linear state feedback (clsf)

applied to an extended system. To see this, combine (1) and (2) to obtain

Xe(t) = Agxa(t) + Bou(t) (4a)
u(t) = Fagxe(t) + Lr(t) {4b)
where
- x(t) T A 0 B
Xa(t): = ’ Ag: = , Be: =
_ Xe(t) _ _Be Ac _ _0_

and Feg: = [Eq,Cc]. It is clear that (4b) is a clsf control law applied to
the extended system (4a).
We shall now define the dlsf in a differential operator system description
framework. This can be done in terms of general polynomial matrix descrip-
tions. It is desirable however to be able to conveniently shift, whenever
necessary, to an equivalent state space representation as in the case of clsf
(see [1], Structure Theorem). 1In this way, further insight is gained. For
this, we shall assume controllability of the system and the controller.,
Consider the system description (A: = d/dt)
D(M)z(t) = u(t) (5)
(5) is controllable. Assume that (A,B) in (1) is also controllable and that
(AI-4)S(A) = BD(A) with x(t) = S(A)z(t).
Note that this is satisfied for (A,B) in controllable companion form, D(A)
column proper with column degrees di; and S(A): = diag[l,s...,s i]T [11].

Define the dlsf law by

Dc(A)zc(t)

u(t)

S5(x)z(e)

Ne(X)ze(t) + Lr(c).

(6)

il

2
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Assuming that (2) is controllable from x(t), let its relation to (6) be:

(AI~Ac)Sc(A) = BeDe(A) with xc(t) = Se(A)ze(t) and Ng(A) = EcDo(A) + CoScels).

In the transform domain, the dlsf is
u(s) = F(s)z(t) + Lr(t) (7)
where
F(s) = Nc(s)Dc(s);IS(s) = Fg(8)S(s)
thus establishing the relation with (3).

Combining (5) and (6):

I
De(A)za(t) = ul(t) (82)
u(t) = Fe(A)za(t) + Lr(t) {8b)
where
Tz “p 0
Zal = , Dg: = , Fao: = [ 0 Ng ].
— Ze _ -5 D¢ _

(8b) indeed describes a well defined clsf control law. To see this, notice

that

s 0

De

Fezg = Neze = [ Ec,Cc ) ze = [ E¢,Ce |

_ 5S¢ _ _ Sc ) I_ 2¢ _

and that Fg(A) = [ EcS{A),CaSc(A) ] has column degrees strictly less than the
corresponding column degrees of De(A) [1]. This concludes the definition of

the dlsf control law in both state-space and differential operator framework.
Notice that the given system is described by (1) or (5), the dlsf control law
by (2) or (6), also by (3) or (7), and the equivalent clsf 1s given by (4) or

(8).
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Controllability, Observability and Eigenvalue Assignment

To arbitrarily assign all closed loop eigenvalues using dlsf, the

extended system (4a) must be controllable. This is true i{f and only if

T syI-A 0 B
rank =n+gq, for all sy ("
-B.  syI-A; 0 _

It can be easily seen that (A,B) and (A.,B.) controllable are necessary con-
ditions. For sufficiency, additional conditions dependent on the relatiom
between A, B and A,, B, are needed. They can perhaps be easier seen by
considering (8a) where controllability of the plant and the controllier has
already been assumed. Here, (8a) is controllable if and only if

D(sy) 0 1
rank =m+n, for all sy (10)
_ =S(sg) Delsy) 0 _

or 1f and only 1f S(s), D.(s) are left prime i.e if and only if (6) 1s control-
lable from z(t).
Given (A,B) controllable, a controllable pair (A;,B:) can be easily found so
that the extended system is fully controllable; actually almost any such pair
will suffice. Then the clsf Feg = [ E.,Cc | In (4) can be chosen to afbitrar—
ily assign the (q+m)} closed loop eigenvalues. In the transform domain, this
translates into the fact that the denominator D.(s) of Fg(s) in (3) (or F(s)
in (7)) can be almost arbitrarily chosen (as long as S(s), Dco(s) are left
prime); then the numérator No.(8) can always be appropriately selected for
arbitrary eigenvalue assignment, for instance. In the cases when (Aq,Be)
(or Dc(s)) are given and the extended system is not fully controllable, only
the controllable eigenvalues can be arbitrarily assigned; the remaining uncon-

trollable eigenvalues are fixed and they can be found from (9) and (10) above.

Consider the output, to (4), equation:

y(t) = Cx(t) + Eu(t)

(11)

Caxe(t) + Eu(t)

4
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where C € RP*R, E ¢ RP*®@ and Co: = [ C,0 ]. It is clear that (A,,Ce) is

unobservable; all the eigenvalues of A. generate unobservable modes which

cannot be seen from the output y. Similarly in (8), if

y(t) = N(A)z(s) = Ne(M)ze(t) (12)
where Ng: = [ N,0 I (De(1),Ng(2)) is not right coprime and the zeros of
|De(X)| (=x |AI~A.]) appear as unobservable modes from y.

The closed loop internal description is

Zz

L

(13)

- -
’ ¢ r, y=[nN0]

0

S De _ Ze _ _Z¢c _

using (8); and the closed loop eigenvalues are the zeros of |D| |Dc-SD™IN.| or
of I(sI-A)Dc(s)—BNC(s)[. Clearly Fg = Nch“l can be determined by solving a

Diophantine equation; in this way the eigenvalue assignment problem can be

solved. Alternatively, (A;,B.) 1s first chosen for full controllability of
(4a) and then the clsf Fgg = [ Eq,Ce | is determined using one of the existing
methods; Fg(s) is then given by (3). In other words D.(s) is first determined
to be l.c. with S(s); this corresponds to choosing (A¢,Bc)e Fag = [ Ec,Ce ]
is then chosen and this specifies No(s) = EoDo(s) + CoSc(s). Note that the
zeros of determinant of any greatest common left divisor of S and D. will be

uncontrollable modes and will appear as closed loop eigenvalues.

Alternative Representation. Equivalence of dlsf and clsf

Given
Dz = u, y = Nz, u =Fz + Lr (14)

with F = NgDg~! dlsf, let z = Dp~lz and rewrite as

(DDp)z = u, y = (NDg)z, u = Nyz + Lr (15)
Note that NF(DDF)'1 = Fp~l = FSSD'1 1s strictly proper. This implies that the
disf can be seen as clsf of an extended system where all poles of F (in Dp)
are unobservable. This is an alternative formulation of the result we had
before, in (12). The closed loop system is, in this case,

5
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(DDg-Np)z = Lr , y = NDpz
where Ny can arbitrarily alter DDp - Np, except the highest column degree
coefficients. To determine appropriate F, one could work with Df and Np
directly. To guarantee that NFDF'l = F = Fg8 = Nch’ls with Fg proper, as
it should be for dlsf, is nontrivial in this case and the following procedure
is suggested:
Choose Dp(m>m) nonsingular so that a)S + Dpep = I [2,3] has a solution Note
that almost any Dy will suffice. Then there exist § and Dg such that §bF'1 -
Dc'ls coprime. Np is then determined from Np = N.S where N; is found using,
say, E. and C. in the state space.
Conversely, given an unobservable system and a clsf as in (13), it does not
necessarily follow that this is equivalent to a reduced system with disf as
in (14), where the unobservable modes are now the poles of F. In a state
space framework this is true when (Aq,Be,Ce) can be reduced as in (4) and (11);
note that while (A.,Ce) can always be appropriately structured, this is not so
for Bg. In differential operator terms in (15), this can be done only when
F = NFDF‘I can be written as F = FgS with Fg5 proper. This is true when
®1S + Dpepy = I has a solution and Ng = N.5 as in the procedure described
above.
These results are used in the following section where it 1s shown that not all
r.c. proper and stable factorizations can be generated using dlsf applied to

an observable realization of the plant

Relation to Proper and Stable Factorizations

Consider Dz = u, y = Nz compensated by dlsf u = Fz + Lr where
F = NpDg~l = Fg§ = NoDo™1S = Do lNcS
with Fg proper.

Then
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u D
= z (16)
-3 _ _N_
with
z = (D-F)~lLr = Dp(DDp-Ng)~lLr = (D-Fgs)~lLr
= (D-NDcls)Lz = (B.D-N.S) 1D Lr
Let _ _ _
D' D
= I, 0= (p-F)~lL a7
N' N

— — — -

P =N'D'""] is r.c. proper, stable factorization of the plant transfer matrix P
1f and only if H,I"! stable and (DA) biproper [4]. The fact that DL is
strictly proper guarantees that DI is biproper. Il stable requires that

u =Fz + Lr 1s a stabilizing dlsf, and I-! stable requires that F is stable.

Notice that (17) are actually the r to u,y maps. Therefore: Stable, stabilizing

dlsf generates r.c. proper, stable factorizationms.

Can all such factorizations be generated by dlsf on minimal realizations
of P?
Given Il which satisfies the conditions, write
(om~! = 1 - -1
F which is stable, must be dlsf transfer matrix for the system; that is, we
must be able to write F as F = FgS with Fg proper. This lmposes restriction

of N; therefore, not all r¢ factorizations can be obtained this way. The

difficulty in terms of Dp,Ngp in (16) translates into being able to arbitrarily
choose Dp. Dy must be such that oS + Dgey = I has a solution, and this
imposes restric tions. These are the restrictions encountered in the previous
section, while attempting to interpret clsf of an unobservable system as dlsf,
with poles of F the unobservable modes. This is not always possible. Note

however that all r.c. factorizations are generated via clsf on unobservable

realizations [4].
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