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Abstract— In this paper, we introduce a model-based schedul-
ing strategy to achieve ultimate boundedness stability in the
sensor-actuator networked control systems, where the commu-
nication network between the sensor and the network controller
is subject to time-varying network induced delays and data-
packet dropouts. An estimator and a nominal model of the
plant are used explicitly at the controller node to generate
control action and schedule control action updates. The data
transmissions from the sensor to the network controller are
“self-triggered” by imposing the scheduling of the data packet
transmissions to meet a soft deadline, while the control ac-
tion updates generated by the network controller are “event-
triggered”, with a new measurement of the nominal model’s
state obtained to update control action whenever a triggering
condition is satisfied or whenever the state of the nominal
model is reset by the estimator. We also extend this proposed
scheduling strategy to the case when signal quantization of the
transmitted measurements has to be considered. The approach
presented in this paper provides us with a systematic way to
design the scheduling strategy for networked control systems
by using a model-based approach.

I. INTRODUCTION

Reducing the amount of communication between sensor
and controller nodes without compromising the stability of a
networked control system has been a popular research topic.
A way to address the reduction of communication in a control
network is by maximizing the time intervals that the nodes
need to send data to each other. Two important approaches
that aim at extending the time intervals that a networked
control system can operate in open-loop are Model-Based
Networked Control Systems (MB-NCSs) and event-triggered
control.

MB-NCSs were introduced and described in [1]. This
approach makes use of an explicit model of the plant which is
added to the actuator/controller node to compute the control
input based on the state of the model rather than the plant
state. The goal is to operate in open-loop mode (without
feedback measurements) for as long as possible by using a
state estimate provided by the model of the plant to generate
the control input. The measurement updates take place every
h seconds in periodic fashion, i.e. h is constant. Conditions
for stability provide a range for h that can be used given
the plant, the model, and the controller parameters. In an
extension, the same authors considered time-varying updates
[2]. Two stochastic cases were studied: first, the assumption
is that transmission times are identically independent dis-
tributed, and second, transmission times are driven by a finite
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Markov chain. They also considered separately the network
induced delays [3] and quantization [4]-[5] problems using
periodic updates.

In event-triggered control, sensor measurements are sent
to the controller node only when a measure of the local sub-
system state error is above a specified threshold. Compared
with time-driven control, where constant sampling period is
adopted to guarantee stability in the worst case scenario,
the possibility of reducing the number of re-computations,
and thus of transmissions, while guaranteeing desired levels
of performance makes event-based control very appealing
in networked control systems (NCSs). A comparison of
time-driven and event-driven control for stochastic systems
favoring the latter can be found in [8]; a deterministic
event-triggered control strategy is introduced in [9]; similar
results on deterministic self-triggered feedback control have
been reported in [10], [11]; output-based event-triggering
control with guaranteed L∞-gain for linear time-invariant
systems has been studied in [14]; an event-triggered real-
time scheduling approach for stabilization of passive and
output feedback passive (OFP) systems has been proposed in
[15], and extensions to more general dissipative systems with
time-varying network induced delays have been reported in
[16] and [17]; event-triggering stabilization for distributed
networked control systems has been studied in [12]; in [13],
a self-triggered coordination strategy for optimal deployment
of mobile robotics is proposed.

In [6], the authors discarded the periodicity assumption
for updating the model that has been used in MB-NCSs.
Instead, they embraced a non-periodic approach that is based
on events. The estimate of the state given by the model of
the plant is used to compare with the actual state. The sensor
then transmits the state of the plant to the network controller
if the error is above some predefined tolerance. This approach
increases the time intervals that we use to update the model
with respect to model-based networked control system with
periodic sampling by selecting the stabilizing threshold.

When communication networks are used to close the
control-loop, we have to consider the possible communi-
cation delays and packet dropouts when design the control
system. The work on MB-NCSs discussed above is focused
on reducing the data transmissions between the sensor and
the network controller so that the networked control system
can run open-loop for a longer time. The roles of the commu-
nication networks discussed in [1]-[6] could be considered
as time-delay operators, in general. However, in the presence
of time-varying network induced delays, the data packets
transmitted by the sensor could arrive at the controller node
in a wrong order, which implies that a data packet arriving



later due to long delay may not contain new information
about the plant. Moreover, packet dropouts are very likely to
occur due to long delays or data flow congestions. Hence,
how to deal with the outdated data received by the network
controller and the data-loss in the communication networks
are important issues that need be addressed in the context
of MB-NCSs. These are the main problems investigated in
the present paper. We have derived a systematic model-based
scheduling strategy to achieve ultimate boundedness stability
in the sensor-actuator networked control systems, which
could be applied to both linear and nonlinear networked
control systems.

The rest of this paper is organized as follows: we introduce
some notations and some basic assumptions that have been
used in Section II; our main results are presented in Section
III and extensions to signal quantization have been discussed
in Section IV; numerical examples are provided in Section
V; concluding remarks are made in Section VI.

II. NOTATIONS AND BASIC ASSUMPTIONS

A. Notations

We shall use the notation ‖x‖2 to denote the 2-norm
of a vector x ∈ Rn. A function f : Rn → Rm is said
to be locally Lipschitz continuous on a compact set S if
there exists a constant L > 0 such that ‖f(x) − f(y)‖2 ≤
L‖x − y‖2 for every x, y ∈ S. A continuous function
α : [0, a) → R+

0 , is said to be of class K if it is strictly
increasing and α(0) = 0. The symbol Ωr is used to denote
the set Ωr := {x ∈ Rn : V (x) ≤ r} where V is a
scalar positive definite, continuous differentiable function
and V (0) = 0. The notation t0 indicates the initial time
instant. The set {tk ≥ 0} and {t̂s ≥ 0} denote two sequences
of asynchronous time instants such that the interval between
two consecutive time instants is not necessary fixed.

B. System Description

Consider control systems described by the following state-
space model:

ẋ(t) = f(x(t), u(t), ω(t)), (1)

where x(t) ∈ Rn denotes the vector of state variables, u(t) ∈
Rm denotes the vector of control input, ω(t) ∈ Rw denotes
the vector of disturbance. f is a locally Lipschitiz vector
function on Rn×Rm×Rw in a compact set S containing the
origin and f(0, 0, 0) = 0. The disturbance vector is bounded,
that is, ω(t) ∈ W where:

W := {ω ∈ Rw : ‖ω‖2 ≤ θ, θ > 0}, (2)

with θ being a known positive real number. The vector of
uncertain variable, ω(t), is introduced into the model in order
to account for the occurrence of uncertainty in the values of
the model’s parameters and the influence of disturbances.

C. Lyapunov-Based Control

We assume that there exists a feedback control law u(t) =
h(x(t)) for all x inside a given stability region that renders
the origin of the nominal closed-loop system asymptotically
stable. Specifically, we assume there exist functions αi(·),
i = 1, 2, 3, 4 of class K and a continuously differentiable
Lyapunov function V (x) for the nominal closed-loop system,
that satisfy the following inequalities

α1(‖x‖2) ≤ V (x) ≤ α2(‖x‖2) (3)

∂V (x)
∂x

f(x, h(x), 0) ≤ −α3(‖x‖2) (4)

∥∥∥∂V (x)
∂x

∥∥∥
2
≤ α4(‖x‖2) (5)

∥∥f(x, u, ω)− f(x′, u, 0)
∥∥

2
≤ Lω‖ω‖2 + Lx‖x− x′‖2 (6)

∥∥∥∂V (x)
∂x

f(x, u, 0)− ∂V (x′)
∂x

f(x′, u, 0)
∥∥∥

2
≤ Lx′‖x− x′‖2

(7)
for all x ∈ Ωρ ⊆ S ⊆ Rn, where Ωρ and S are compact
sets containing the origin, and we denote Ωρ as the stability
region of the nominal closed-loop system under the control
u = h(x).

III. MAIN RESULTS

A. Proposed Set-up

In this section, we introduce our proposed set-up for
data transmission scheduling of sensor-actuator networked
control systems by using a model-based approach. Generally
speaking, in our proposed set-up, one could consider the
control action updates generated by the network controller
as “event-triggered” while the data transmissions from the
sensor to the network controller are “self-triggered”. We
explain this idea in details in the following sections. The
configuration of our proposed set-up is shown in Fig.1.

In Fig.1, the plant dynamics is described in Section II-B,
and we assume that there exists a Lyapunov-based control
h(x) and a Lyapunov function V (x) which satisfy conditions
(3)-(7) in Section II-C. The nominal “Model ” of the plant
is described by

˙̂x(t) = f(x̂(t), u(t), 0), (8)

and the state-space representation of the “Estimator” is given
by

˙̃x(t) = f(x̃(t), u(t), 0). (9)

The estimator is used to estimate the current state of the
plant based on the information received from the communi-
cation network. The “Scheduler” at the plant side is used
to schedule the data transmission from the sensor to the
network controller. The “Event-Detector” is used to monitor
the state of the model and update the control actions based on
the model’s state whenever some event triggering conditions
are satisfied, where t̂s is the corresponding “event-time”.
tk represents the time instant of the kth data transmission
from the sensor to the network controller and dk represents
the network induced delay associated with the kth data



Fig. 1. Proposed Set-up

transmission. We assume that all the network induced delays
are upper bounded by a positive constant dmax, i.e., 0 ≤
dk ≤ dmax, ∀k. This is a reasonable assumption since
if the networked control system is running open-loop too
long, it will eventually become unstable unless we have a
perfect model of the plant at the controller side to estimate
the current state of the plant (i.e., the uncertainty variable
ω(t) = 0). “ZOH” represents the zero-order hold and “ACK”
is short for acknowledgement.

B. Model-based Scheduling

Based on the proposed set-up shown in Section III-A, we
first explain the control action update strategy implemented
in the controller node by using a model-based approach. The
proposed strategy is stated as follows:
Step 1: When a new measurement x(tk) is available to the
estimator at time tk + dk(assuming that the information of
the time instant tk is contained in the kth data packet),
the estimator checks whether this measurement provides
new information about the plant. Let x(tl) denote the last
measurement accepted by the estimator, if tk > tl, then go
to Step 2. Otherwise, x(tk) does not contain new information
of the plant and is discarded, jump to Step 4.
Step 2: An “ACK” is transmitted back to the scheduler at
the plant side (see Fig.1) without delay and the estimator
uses the information x(tk) to estimate the current state of
the plant (i.e., x(tk + dk), where dk denotes the delay): at
the time t = tk + dk, the estimator resets its state value at
the time tk to be x̃(tk) = x(tk), then it estimates x(tk +dk)
based on x̃(tk) and the control input trajectory u(τp), for
τp ∈ [tk, tk + dk]. Denote the estimate of x(tk + dk) by
x̃(tk + dk). We assume that the computation time for the

estimator to get x̃(tk + dk) is negligible and the “ACK” is
implemented with a high priority identifier so that it can be
transmitted and be received with negligible delay.
Step 3: At tk + dk, the state of the model is reset to x̂(tk +
dk) = x̃(tk+dk), an event-time t̂s = tk+dk is generated, an
updated control action h(x̂(t̂s)) = h(x̂(tk+dk)) is calculated
and is applied to the plant.
Step 4: The event-detector keeps monitoring the state of
the model and transmitting the measurements of the model
to the controller for control action updates based on a
triggering condition(which will be provided later) until a new
measurement sent from the plant is received.
Step 5: When a new measurement is received, go to Step 1.

The following two propositions will be used to obtain the
stability results under the model-based scheduling strategy
proposed in this section.

Proposition 3.1: Consider the systems described in Sec-
tion II-B

ẋ1(t) = f(x1(t), u(t), ω(t))
ẋ2(t) = f(x2(t), u(t), 0),

(10)

where there exists Lyapunov-based control actions such
that conditions (3)-(7) are satisfied. With initial condition
x1(t0) = x2(t0) ∈ Ωρ, then we have
∥∥x1(t)−x2(t)

∥∥
2
≤ δx(t− t0) =

Lwθ

Lx

[
eLx(t−t0)−1

]
(11)

as long as x1(t), x2(t) ∈ Ωρ, for all t ≥ t0.
Proof: Denote the error vector as e(t) = x1(t)−x2(t),

then we can get

ė(t) = ẋ1(t)−ẋ2(t) = f(x1(t), u(t), ω(t))−f(x2(t), u(t), 0),
(12)

in view of (6) we can further get
d

dt

∥∥e(t)
∥∥

2
≤

∥∥ė(t)
∥∥

2
≤ Lwθ + Lx

∥∥e(t)
∥∥

2
, (13)

for all x1(t), x2(t) ∈ Ωρ. Integrating
∥∥e(t)

∥∥
2
with initial

condition e(t0) = 0, the following bound on the norm of
the error vector is obtained

∥∥e(t)
∥∥

2
≤ Lwθ

Lx

[
eLx(t−t0) − 1

]
, ∀t ≥ t0, (14)

which completes the proof.
Proposition 3.2: [7] Consider the Lyapunov function de-

scribed in Section II-C, there exists a quadratic function fv(·)
such that:

V (x) ≤ V (x′) + fv

(∥∥x− x′
∥∥

2

)
(15)

for all x, x′ ∈ Ωρ, where

fv(s) = α4(α−1
1 (ρ))s + Mvs2, (16)

with Mv > 0.
Proof: Because the Lyapunov function V (x) is contin-

uous and bounded in compact set Ωρ, we can find a positive
constant Mv such that a Taylor series expansion of V around
x′ yields

V (x) ≤ V (x′)+
∂V

∂x

∥∥x−x′
∥∥

2
+Mv

∥∥x−x′
∥∥2

2
, ∀x, x′ ∈ Ωρ.

(17)



Note that the term Mv

∥∥x−x′
∥∥2

2
bounds the high-order terms

of the Taylor series of V (x) for all x, x′ ∈ Ωρ. Taking into
account assumptions (3) and (5), the following bound for
V (x) is obtained:

V (x) ≤ V (x′)+α4

(
α−1

1 (ρ)
)∥∥x−x′

∥∥
2
+Mv

∥∥x−x′
∥∥2

2
, (18)

∀x, x′ ∈ Ωρ, which completes the proof.
In Theorem 3.3 below, we provide sufficient conditions under
which our proposed model-based scheduling strategy can
guarantee that the state of the closed-loop system (1) is
ultimately bounded in a region that contains the origin. To
simplify the presentation, we will denote tk + dk as the last
time instant when a new measurement is accepted by the
estimator (where tk is the time instant at which the packet
is transmitted and dk is the network induced delay). Thus,
tk + dk is also the last time instant when the scheduler in
the plant node receives an ACK from the controller node.

Theorem 3.3: Consider the networked control system
shown in Fig.1, where the plant is described in Section II-B,
the control law h(x) satisfies the condition (3)-(7) provided
in Section II-C. The state measurements of the plant are
transmitted to the network controller at asynchronous time
instants {tk}. The control actions are updated according to
the strategy stated in Step 1-Step 5, where the event-time
{t̂s} of updating control actions in the controller node is
determined by the time at which

Lx′
∥∥x̂(t)− x̂(t̂s)

∥∥
2
− α3(α−1

2 (ρs)) > −ε (19)

for some ε > 0 and ρs > 0, or whenever the estimator resets
the model’s state. If a packet containing new information of
the plant is accepted by the estimator between

[
tk +dk, tk +

dk + τ
]
, where τ satisfies

ετ ≥ fv

(
δx(dk)

)
+ fv

(Lwθ

Lx

(
eLxτ − 1

)
+ δx(dk)eLxτ

)
,

(20)
δx(·) and fv(·) are given in Proposition 3.1 and Proposition
3.2, then with d0 = 0 and the initial condition of the plant
x(t0) satisfying

V (x(t0)) + fv

(
δx(dmax)

) ≤ ρ, where ρ > ρs > 0, (21)

the state of the plant x(t) and the state of the model x̂(t)
are ultimately bounded in Ωρ.

Proof: For t ∈ [
t̂s, t̂s+1

]
, s = 0, 1, 2, . . ., in view of

(7), we have

V̇ (x̂(t)) =
∂V (x̂(t))

∂x̂
f
(
x̂(t), h(x̂(t̂s)), 0

)

=
∂V (x̂(t))

∂x̂
f
(
x̂(t), h(x̂(t̂s)), 0

)

− ∂V (x̂(t̂s))
∂x̂

f
(
x̂(t̂s), h(x̂(t̂s)), 0

)

+
∂V (x̂(t̂s))

∂x̂
f
(
x̂(t̂s), h(x̂(t̂s)), 0

)

≤ L
′
x

∥∥x̂(t)− x̂(t̂s)
∥∥

2
− α3

(∥∥x̂(t̂s)
∥∥

2

)

≤ L
′
x

∥∥x̂(t)− x̂(t̂s)
∥∥

2
− α3

(
α−1(ρs)

)

(22)

for all x̂(t̂s) ∈ Ωρ/Ωρs
. So if

Lx′
∥∥x̂(t)− x̂(t̂s)

∥∥
2
−α3(α−1

2 (ρs)) ≤ −ε, for some ε > 0,
(23)

then

V̇ (x̂(t)) ≤ −ε, for t ∈ [
t̂s, t̂s+1

)
, (24)

which further yields

V (x̂(t)) ≤ V (x̂(t̂s)) and V (x̂(t)) ≤ V (x̂(t̂s))−ε(t− t̂s),
(25)

for t ∈ [
t̂s, t̂s+1

)
. Note that the triggering condition (19)

guarantees that (23) is satisfied.
In our case, the event-time for control action updates

is determined by the time when the triggering condition
(19) in the controller node is satisfied, or whenever a new
measurement is accepted by the estimator to obtain a new
estimate of the plant. Assume that at t = tk + dk, a
measurement x(tk) is received, and the estimator detects that
this measurement provides new information about the plant.
Hence at tk + dk, the estimator resets its state at tk to be
x̃(tk) = x(tk), and estimates the current state of the plant
based on the control trajectory u(τp) applied to the plant, for
τp ∈ [tk, tk + dk]. One can verify that:

‖x̃(tk + dk)− x(tk + dk)‖2 ≤ Lwθ

Lx

(
eLxdk − 1

)
= δx(dk),

(26)
where x̃(tk+dk) is the estimate of x(tk+dk) obtained by the
estimator. Since at the same time, x̂(t) is reset to x̃(tk +dk),
we can get

‖x̂(tk + dk)− x(tk + dk)‖2 ≤ Lwθ

Lx

(
eLxdk − 1

)
= δx(dk).

(27)
One can further conclude that

∥∥x̂(t)− x(t)
∥∥

2
≤ Lwθ

Lx

[
eLx(t−tk−dk) − 1

]

+ δx(dk)eLx(t−tk−dk),

(28)

for t ∈ [
tk+dk, tk+j +dk+j

)
, where j is an unknown integer

such that tk+j + dk+j is the next time instant at which a
new measurement is accepted by the estimator (i.e., all the
measurements received between (tk+dk, tk+j+dk+j) do not
provide new information about the plant and are discarded).
However, the inductions shown in (22)-(28) are all obtained
under the assumptions that x(t), x̂(t) ∈ Ωρ, ∀t ≥ t0, which
will be proved as follows:

Assume that x(t), x̂(t) ∈ Ωρ, ∀t ≥ t0, for t ∈ [
tk +

dk, tk+j + dk+j

)
, based on Proposition 2 and in view of

(28), we can get

V (x(t)) ≤ V (x̂(t)) + fv

(∥∥x(t)− x̂(t)
∥∥

2

)
≤ V (x̂(t))

+ fv

(Lwθ

Lx

[
eLx(t−tk−dk) − 1

]
+ δx(dk)eLx(t−tk−dk)

)
,

(29)



let τ = t− tk − dk and in view of (25), we can rewrite (29)
as

V (x(t)) ≤ V (x̂(t)) + fv

(Lwθ

Lx

(
eLxτ − 1

)
+ δx(dk)eLxτ

)

≤ V (x̂(tk + dk))− ετ

+ fv

(Lwθ

Lx
(eLxτ − 1) + δx(dk)eLxτ

)
.

(30)
Since

V (x̂(tk + dk)) ≤ V (x(tk + dk))

+ fv

(∥∥x̂(tk + dk)− x(tk + dk)
∥∥

2

)

≤ V (x(tk + dk)) + fv

(
δx(dk)

)
,

(31)

replace (31) into (30), we can get

V (x(t)) ≤ V (x(tk + dk))− ετ + fv

(
δx(dk)

)

+ fv

(Lwθ

Lx

(
eLxτ − 1

)
+ δx(dk)eLxτ

)

≤ V (x(tk + dk))− ετ + fv

(
δx(dk)

)

+ fv

(Lwθ

Lx

(
eLxτ − 1

)
+ δx(dk)eLxτ

)

(32)

Let f1(τ) = ετ and f2(τ) = fv

(
δx(dk)

)
+ fv

(
Lwθ
Lx

(
eLxτ −

1
)
+ δx(dk)eLxτ

)
, with both f1(τ) and f2(τ) being strictly

increasing function of τ , if there exists a non-empty set τ̂
such that f1(τ) ≥ f2(τ), ∀τ ∈ τ̂ , then we can get

V (x(t)) ≤ V (x(tk + dk)), for t ∈ [tk + dk, tk+j + dk+j),
(33)

with tk+j +dk+j = tk +dk +τ , τ ∈ τ̂ . This further indicates
that if a measurement containing new information of the
plant is received by the estimator between [tk + dk, tk +
dk +τ ], where τ ∈ [min{τ̂},max{τ̂}], then (33) holds. The
typical look of the functions f1(τ) and f2(τ) is shown in
Fig.2.

Fig. 2. functions f1(τ) and f2(τ)

By using (33) recursively, we can get

V (x(t)) ≤ V (x(t0 + d0)). (34)

With d0 = 0 (which implies that the initial measurement of
the plant is transmitted to the controller node without delay),
we have

V (x(t)) ≤ V (x(t0)), (35)

which further yields x(t) ∈ Ωρ, ∀t ≥ 0. Next, we need to
show that x̂(t) ∈ Ωρ, ∀t ≥ t0. Since at t = tk+j + dk+j , we
have

V (x̂(tk+j + dk+j)) ≤ V (x(tk+j) + dk+j) + fv

(
δx(dk+j)

)

≤ V (x(t0)) + fv

(
δx(dk+j)

)
,∀k, j

(36)
with

V (x(t0))+fv

(
δx(dk+j)

)
≤ V (x(t0))+fv

(
δx(dmax)

)
≤ ρ

(in view of (44)), we can conclude that

V (x̂(tk+j + dk+j)) ≤ ρ, ∀k, j. (37)

Moreover, during the time interval [tk + dk, tk+j + dk+j),
the triggering condition (19) guarantees that V̇ (x̂(t)) ≤ −ε,
which indicates that V (x̂(t)) is decreasing for t ∈ [tk +
dk, tk+j + dk+j), together with (37), we can conclude that
V (x̂(t)) ≤ ρ, for all t ≥ t0. Hence, both x(t) and x̂(t) ∈
Ωρ,∀t ≥ t0, which completes the proof.

Remark 3.4: In our proposed scheduling strategy, dk can
be estimated at the plant node if the scheduler remembers the
time instant associated with the kth data packet transmission
and compares it with the time instant at which the ACK
associated with the kth data packet is received.

Remark 3.5: Let us consider the worst case scenario and
see how to design the scheduling strategy in order to avoid
zeno transmission time from the sensor to the controller node
(i.e., to guarantee that there exists a positive constant ζ such
that tk+1−tk ≥ ζ, ∀k). Assume that the (k+1)th data packet
has to be accepted by the estimator after the kth data packet
is accepted (we consider the case when j = 1 in Theorem
3.3). Then, we need

τ = tk+1 + dk+1 − tk − dk = (tk+1 − tk) + (dk+1 − dk)
≥ ζ + (dk+1 − dk).

(38)
In the worst case scenario, we can assume maxk(dk+1 −
dk) = dmax. Hence, if there exists a τ satisfying (20) and
τ ≥ ζ + dmax, then we can achieve non-zeno transmission
time. This would require that

ε(ζ + dmax) ≥ fv

(
δx(dk)

)

+ fv

(Lwθ

Lx

(
eLx(ζ+dmax) − 1

)
+ δx(dk)eLx(ζ+dmax)

)
,

(39)
and in the worst case scenario (dk = dmax, ∀k), we need

ε(ζ + dmax) ≥ fv

(
δx(dmax)

)

+ fv

(Lwθ

Lx

(
eLx(ζ+dmax) − 1

)
+ δx(dmax)eLx(ζ+dmax)

)
.

(40)
However, whether there exist non-trivial ζ and dmax such
that the inequality (40) holds depends on the dynamics of



the plant, the dynamics of the stabilizing controllers and the
size of the model uncertainty.

Remark 3.6: Let us consider the ideal case when there
is no model uncertainties (i.e., θ = 0), then inequality (40)
will be reduced to ε(ζ + dmax) ≥ 0, which holds for any
positive ζ and dmax. This is true because if we have a
perfect model of the plant in the controller node and the
external disturbance to the plant can be neglected, then there
is no need to transmit the plant measurements to the network
controller through the communication network for control
action update as long as the network controller has a good
estimate on the initial condition of the plant. In this case,
it is sufficient to stabilize the networked control system by
applying the control action generated based on the state of
the model under the triggering condition (19).

Remark 3.7: One can consider the data transmissions
from the sensor to the network controller as “self-triggered”
since the scheduling of the data-packet transmissions has
to meet a soft deadline implicitly determined by condition
(20). The control action updates generated by the network
controller could be considered as “event-triggered” , since
the control action update is triggered whenever the triggering
condition (19) is satisfied or whenever the state of the model
is reset by the estimator.

IV. EXTENSION TO SIGNAL QUANTIZATION

It was assumed in the previous section that the sensor is
able to measure the state of the plant with infinite precision.
The sensor uses that measurement to send it through the
network and the estimator uses it to estimate the current state
of the plant. In reality, however, the measured variables have
to be quantized in order to be represented by a finite number
of bits, then to be used in processor operations and be carried
over a digital communication network. It becomes necessary
to study the effects of quantization error in our proposed
model-based scheduling strategy.

The proposed set-up is shown in Fig.3, which is very
similar to the set-up shown in Fig.1, but the measurement
x(tk) has to be quantized first then it can be transmitted
through the communication network. We assume that the
quantizer implemented at the plant side is with bounded
quantization error, such that

∥∥x(tk)− q(x(tk))
∥∥

2
≤ δq, (41)

where δq denotes the quantization error. This assumption
applies to most quantizer used in practice.

When considering signal quantization of the transmitted
measurements at the plant side, the control action update
strategy will be very similar to the strategy without con-
sidering signal quantization as stated in Section III-B, with
some minor difference briefly described as follows: assume
that at t = tk + dk, a measurement q(x(tk)) is received, the
estimator needs to decide whether this measurement provides
new information about the plant; if the estimator detects that
new information is received, then at t = tk+dk, the estimator
resets its state at tk to be x̃(tk) = q(x(tk)), and estimates
the current state of the plant based on the control trajectory

Fig. 3. Proposed Set-up with Signal Quantization

u(τp) applied to the plant, for τp ∈ [tk, tk + dk]. By using
the same techniques shown in Proposition 3.1, one can verify
that∥∥x̃(tk + dk)− x(tk + dk)

∥∥
2

≤ Lωθ

Lx

(
eLxdk − 1

)
+

∥∥x(tk)− q(x(tk))
∥∥

2
eLxdk

=
Lωθ

Lx

(
eLxdk − 1

)
+ δqe

Lxdk = δ̃x(dk),

(42)

as long as x̃(t), x(t) ∈ Ωρ, ∀t.
The techniques to derive the stability results under the

model-based scheduling strategy are similar to the previous
discussed results in Theorem 3.3. Note that in this case, the
function δx(dk) in (20) should be replaced by δ̃x(dk) in (42),
and the function δx(dmax) in (44) should be replaced by
δ̃x(dmax), where

δ̃x(dmax) =
Lωθ

Lx

(
eLxdmax − 1

)
+ δqe

Lxdmax .

The result is briefly summarized in Theorem 4.1.
Theorem 4.1: Consider the modified set-up shown in

Fig.3. The event-time {t̂s} of updating control actions in
the controller node is determined by the same conditions
as provide in Theorem 3.3. If a packet containing new
information of the plant is accepted by the estimator between[
tk + dk, tk + dk + τ

]
, where τ satisfies

ετ ≥ fv

(
δ̃x(dk)

)
+ fv

(Lwθ

Lx

(
eLxτ − 1

)
+ δ̃x(dk)eLxτ

)
,

(43)
then with d0 = 0 and the initial condition of the plant x(t0)
satisfying

V (x(t0)) + fv

(
δ̃x(dmax)

) ≤ ρ, where ρ > ρs > 0, (44)



the state of the plant x(t) and the state of the model x̂(t)
are ultimately bounded in Ωρ.

V. EXAMPLE

Example 5.1: We now illustrate our results provided in
Section III by an example which has also been examined in
[9]. Consider the linear control system

[
ẋ1

ẋ2

]
=

[
0 1
−2 3

] [
x1

x2

]
+

[
0
1

]
u +

[
0.1 0
0 0.1

]
ω, (45)

where the external disturbance ‖ω‖2 ≤ 0.1. The model of
the plant is given by

[ ˙̂x1

˙̂x2

]
=

[
0 1
−2 3

] [
x̂1

x̂2

]
+

[
0
1

]
u, (46)

and it is stabilized by the linear feedback control u = x̂1 −
4x̂2. Using V = x̂T Px̂ as a Lyapunov function, we obtain
∂V
∂x̂ (Ax̂ + BKx̂) = −x̂T Qx̂ with P and Q defined by

P =
[
1 1

4
1
4 1

]
, Q =

[
1
2

1
4

1
4

3
2

]
. (47)

Hence, we can get

α1

(‖x̂‖2
)

= λmin

(
P

)∥∥x̂
∥∥2

2
= 0.75

∥∥x̂
∥∥2

2
, (48)

α2

(‖x̂‖2
)

= λmax

(
P

)∥∥x̂
∥∥2

2
= 1.25

∥∥x̂
∥∥2

2
, (49)

α3

(‖x̂‖2
)

= λmin

(
Q

)∥∥x̂
∥∥2

2
= 0.441

∥∥x̂
∥∥2

2
, (50)

∥∥∥∥∥
∂V (x̂)

∂x̂

∥∥∥∥∥
2

=

∥∥∥∥∥
[
2 1

2
1
2 2

] ∥∥∥∥∥
2

∥∥∥∥∥
[
x̂1

x̂2

] ∥∥∥∥∥
2

≤ 2.5
∥∥x

∥∥
2

⇒ α4

(∥∥x̂
∥∥

2

)
= 2.5

∥∥x̂
∥∥

2
,

(51)

Lw = 0.1, Lx = 3.7025, L
′
x = 2.5, Mv = λmax

(
P

)
= 1.25,

θ = 0.1. With ρ = 100, we can get fv(s) = α4(α−1
1 (ρ))s +

Mvs2 = 28.8675s + 1.25s2. Assume that the maximum
network induced delay is dmax = 0.05s, and the external
disturbance is given by ω(t) = 0.1sin(t). The plot of the
functions f1(τ) and f2(τ) with ε = 2 is shown in Fig.4, and
one can find that min{τ̂} = 0.03s and max{τ̂} = 0.76s,
which indicates that as long as a packet containing new
information of the plant is received by the estimator between
[tk+dk, tk+dk+τ ](τ ∈ [0.03s, 0.76s]) after the kth packet is
accepted by the estimator, the state of the plant is ultimately
bounded. In our simulation, we randomly choose τ between
[0.5s, 0.7s] for a new packet to be accepted by the estimator.
The initial state of the plant is given by x1(t0) = −5 and
x2(t0) = 8, which satisfies V (x(t0)) + fv

(
δx(dmax)

) ≤ ρ
and x(t0) ∈ Ωρ. The simulation results are shown in Fig.5-
Fig.7.

Fig.5 shows the time-instant at which the estimator resets
the sate of the model. Fig.6 shows the evolution of the state
of the plant, and Fig.7 shows the evolution of the state of
the model. One can see that both the state of the plant x(t)
and the state of the model x̂(t) are ultimately bounded, and
x(t), x̂(t) ∈ Ωρ, for all t ≥ 0.

Example 5.2: We now consider signal quantization by
examining the same system studied in Example 1, where

a uniform quantizer with quantization error δq = 0.1 is
used to quantize the transmitted measurements. Based on
the discussions in Section IV, the plot of the functions
f1(τ) and f2(τ) (note that δx(dk) should be replaced by
δ̃x(dk) in this case) with dmax = 0.01s and ε = 50 is
shown in Fig.8, and one can find that min{τ̂} = 0.2s and
max{τ̂} = 0.55s, which indicates that as long as a packet
containing new information of the plant is received by the
estimator between [tk + dk, tk + dk + τ ](τ ∈ [0.2s, 0.55s])
after the kth packet is accepted by the estimator, the state
of the plant is ultimately bounded. In our simulation, we
randomly choose τ between [0.25s, 0.5s] for a new packet
to be accepted by the estimator. The initial state of the plant
is again given by x1(t0) = −5 and x2(t0) = 8, which
satisfies V (x(t0)) + fv

(
δx(dmax)

) ≤ ρ and x(t0) ∈ Ωρ.
The simulation results are shown in Fig.9-Fig.11.

VI. CONCLUSION

In this paper, we propose a model-based scheduling
strategy for sensor-actuator networked control systems. An
estimator and a nominal model of the plant have been used
explicitly in the controller node to generate control action
and schedule data transmissions. The data transmissions from
the sensor to the network controller are “self-triggered” since
the scheduling of the data-packet transmissions has to meet
a soft deadline. The control action updates generated by
the network controller are “event-triggered”, since a new
measurement of the state of the model is sent to the network
controller for control action update whenever a triggering
condition is satisfied or whenever the state of the model
is reset by the estimator. We have derived a systematic
scheduling strategy to achieve ultimate boundedness stability
of the sensor-actuator networked control system by using
a model-based approach, where model uncertainties, time-
varying network induced delays, data-packet drop-outs and
signal quantization are considered to derive the scheduling
strategy. In our future work, we will further consider the
delays from the network controller to the actuator.
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[8] K. J. Åström and B. M. Bernhardsson, “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems (I)”, Proceedings
of the 41st IEEE Conference on Decision and Control, Volume 2, Pages
2011-2016, 2002.

[9] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks”, IEEE Transaction on Automatic Control, Volume 52, Number
9, Pages 1680-1685, September 2007.

[10] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability”, IEEE Transactions on Automatic Control,
Volume 54, Number 3 , Pages 452-467, 2009.

[11] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems”, IEEE Transactions on Automatic Con-
trol, Vol.55, No.9, pp.2030-2042, Sept. 2010.

[12] X. Wang and M. D. Lemmon, “Event-Triggering in Distributed Net-
worked Control Systems”, IEEE Transactions on Automatic Control,
vol. 56, no. 3, pp. 586-601, 2011.

[13] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic
networks for optimal deployment”, in American Control Conference,
2011, pp. 1039-1044.

[14] M.C.F. Donkers and W.P.M.H. Heemels, “Output-Based Event-
Triggered Control with Guaranteed L∞-gain and Improved Event-

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

τ

 

 

f1(τ)

f2(τ)

Fig. 8. plot of f1(τ) and f2(τ) in Example 5.2

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

tk(s)

t
k
+

1
−

t
k

Fig. 9. time-instant at which the estimator resets the sate of the
model in Example 5.2

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

t(s)

 

 
x1

x2

Fig. 10. state of the plant in Example 5.2

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

t(s)

 

 

x̂1

x̂2

Fig. 11. state of the model in Example 5.2

Triggering”, 49th IEEE Conference on Decision and Control, pp.3246
- 3251, 2010.

[15] H. Yu and P. J. Antsaklis, “Event-Triggered Real-Time Scheduling
For Stabilization of Passive/Output Feedback Passive Systems”, Pro-
ceedings of the 2011 American Control Conference, pp.1674-1679, San
Francisco, CA, June 29-July 1, 2011.

[16] H. Yu and P. J. Antsaklis, “Event-Triggered Output Feedback Control
for Networked Control Systems using Passivity: Triggering Condition
and Limitations”, Proceedings of the 50th IEEE Conference on Decision
and Control (CDC’11) and ECC’11, pp.199-204, Orlando, Florida,
December 12-15, 2011.

[17] H. Yu and P.J. Antsaklis, “Event-Triggered Output Feedback Control
for Networked Control Systems using Passivity: Time-varying Network
Induced Delays”, Proceedings of the 50th IEEE Conference on Decision
and Control (CDC’11) and ECC’11, pp.205-210, Orlando, Florida,
December 12-15, 2011.


