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Abstract 

This note studies event-triggered control of Multi-Agent Systems (MAS) with first order integrator 

dynamics. It extends previous work on event-triggered consensus by considering limited communication 

capabilities through strict peer-to-peer non-continuous information exchange. The approach provides 

both a decentralized control law and a decentralized communication policy. Communication events 

require no global information and are based only on local state errors; agents do not require a global 

sampling period or synchronous broadcasting as in sampled-data approaches. The proposed decentralized 

event-triggered control technique guarantees that the inter-event times for each agent are strictly positive. 

Finally, the ideas in this note are used to consider the practical scenario where agents are able to exchange 

only quantized measurements of their states. 
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1. Introduction 

An increasing interest in controlling large scale dynamical systems composed of several to many 

autonomous mobile agents exists in different academic, commercial, and military areas. This thrust 

is related to the large number of applications in which a group of coordinated agents is potentially 

able to outperform a single or a number of systems operating independently (Ren, Beard, and 

Atkins 2007).  An important problem in Multi-Agent Systems (MAS) is to design and implement 

decentralized algorithms for control and communication of agents. It is well understood that each 

agent should be able to determine its own control laws independently and based only on local 

information. This has been an important research topic (Ren, Beard, and Atkins 2007; Moreau 

2004; Ji and Egerstedt 2007; Tanner, Jadbabaie and Pappas 2003).  These papers consider agents 

with continuous-time dynamics and it is assumed that agents can have continuous access to the 

states of their neighbors. In many applications the agents transmit their relevant variables such as 
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position, velocity, heading, etc. to a subset of the agents not continuously but at discrete points in 

time. It is important to discern how frequently the agents should establish communication in order 

to preserve properties of similar control algorithms that assume continuous information exchange. 

The sample-data approach is commonly used to estimate the sampling periods (Can and Ren 2009; 

Can and Ren 2010; Hayakawa, Matsuzawa, and Hara 2006; Liu, Xie, and Wang 2010; Qin and Gao 

2012). An important drawback of periodic transmission is that it requires synchronization between 

the agents, that is, all agents need to transmit their information at the same time instants and, in 

some cases, it requires a conservative sampling period for worst case situations. 

In event-triggered broadcasting (Astrom and Bernhardson 2002; Astrom 2008; Tabuada 2007; 

Wang and Lemon 2008; Wang and Lemon 2011; Donkers and Heemels 2010; Garcia and Antsaklis 

2013; Anta and Tabuada 2010) a subsystem sends its local state to the network only when it is 

necessary, that is, only when a measure of the local subsystem state error is above a specified 

threshold. Event-triggered control schemes offer a new point of view, with respect to conventional 

time-driven strategies, on how information could be sampled for control purposes. The seminal 

work (Astrom and Bernhardson 2002) provided an interesting comparison between conventional 

time driven sampling and the new event-driven sampling, emphasizing the practical advantages of 

the latter. Tabuada (2007) presented a triggering condition based on norms of the state and the state 

error , that is, the last measured state minus the current state of the system, where the 

measurement received at the controller node is held constant until a new measurement arrives. 

When this happens, the error is set equal to zero and starts growing until it triggers a new 

measurement update.  

( ) ( )ke x t x t

The use of event-triggered control strategies in networked systems (Dimarogonas, Frazzoli, and 

Johansson 2012; Dimarogonas and Johansson 2009; Dimarogonas and Frazzoli 2009; Yu and 



Antsaklis 2012; Garcia and Antsaklis 2012; Sun and El-Farra 2011; Seyboth, Dimarogonas, and 

Johansson 2013) provides a more robust and efficient use of network bandwidth. Its implementation 

in MAS also provides a highly decentralized way to schedule transmission instants which does not 

require synchronization compared to periodic sampled-data approaches. 

The work in the present paper is similar to (Dimarogonas, Frazzoli, and Johansson 2012; 

Dimarogonas and Johansson 2009; Dimarogonas and Frazzoli 2009) where the consensus problem 

with single integrator dynamics, event-based communication, and connected and undirected graphs 

was considered. The main advantage of our approach compared to these papers is that we consider 

both the reduction of actuation and communication updates while they only focus on reduction of 

update instants, i.e. they still assume that continuous communication exists among agents in order to 

calculate the error thresholds. Since continuous access to the states of neighbors is typically not 

possible we extend the work in (Dimarogonas, Frazzoli, and Johansson 2012) to consider the 

exchange of information among agents at discrete time instants which are, in general, non-periodic 

and based on local events. The present paper also provides an important extension to consider the 

case where the agents are able to transmit only a quantized version of its measured state. Similar 

work (Seyboth, Dimarogonas, and Johansson 2013) uses a different threshold that does not require 

continuous access to the states of neighbors. The approach in this note preserves the decentralized 

nature of the event computations compared to (Seyboth, Dimarogonas, and Johansson 2013) where 

an estimate of the second eigenvalue of the Laplacian matrix (L) is used to trigger communication 

events. The communication policy described in the present paper is decentralized in the sense that 

each agent computes its transmission instants based on local information. We provide asymptotic 

convergence to the initial average using the new threshold that considers only the last received 

states of the neighbors. The policy ensures strictly positive inter-event times. For the case when 



quantized measurements are used we are able to show convergence to a bounded region around the 

initial average; this bound is proportional to the quantization parameter. An extended scheme is also 

proposed in order to guarantee strictly positive inter-event times in the presence of quantization.    

The remainder of this document is organized as follows: Section 2 addresses the event-triggered 

control strategy that considers limited knowledge of states of neighbors. Section 3 presents similar 

results using quantized measurements. Section 4 provides illustrative examples and conclusions are 

given in Section 5. 

2. Decentralized Consensus 

We consider a set of n agents that are modeled as a single integrator: 

, 1... .i ix u i n                                                          (1) 

where  is the state and  is the control input associated to agent i. Since continuous 

measurements from neighbors are not available to each agent, then the control input is obtained 

using the last measurements received from each neighbor 

ix iu

ij N  as follows: 

( ) ( , ) ( ( ) ( )), 1...
i j i j

i
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u t u t t x t x t i n                                 (2) 

where ( )
ii kx t  represents the last measurement transmitted by agent i at its update time  and  is 

the set of neighbors of agent i. Similarly, 

ikt iN

(
jj k )x t  represents the last measurements received from 

neighbor j at the corresponding time . In general, the update intervals are nonperiodic and the 

update instants for each agent are different from those of other agents, i.e.  and  are not 

necessarily equal.  

jkt

ikt jkt

The events are also computed based only on local information, that is, events are designed based 

on information that is available to each agent. We propose the following threshold: 
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where  represents the novel information with respect to the last transmitted 

measurement, 

( ) ( ) ( )
ii i k ie t x t x t

0 (1/ ) 0 iia N , 1, iN  is the cardinality of , and iN

( , ) ( ( ) ( )).
i j i j

i

i k k i k j k
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In this paper we use the notation ( ,  to represents piecewise constant variables that are updated 

at times , when the local agent transmits an update, and also at all times  for 

)
i jk kt t

ikt jkt ij N , when the 

agent receives an update from any of its neighbors.  

At each node the updates of the piecewise constant versions of the states ( )
ii kx t  and (

jj k )x t  are as 

follows. When an event is triggered at time 
ikt t  the local agent updates its local piecewise 

constant version of its state using the current measurement ( )ix t , i.e. ( )
ii k ( )ix t x t  and transmits 

this measurement to its neighbors. 

On the other hand, when the local agent receives an update from any of its neighbors ij N  at 

corresponding times containing a current measurement 
jkt t ( )jx t

j

, the local agent uses this 

measurement to update its piecewise constant version of the state x , that is, ( )
jj k ( )jx t x t . Note 

that (2) and (4) are functions of ( )
ii kx t  and all neighbors states (

jj k )x t  for ij N , therefore, they 

are updated at all corresponding time instants  and t .  
ikt k j

Eq. (3) is similar to the threshold in [18]; however, the threshold in (Dimarogonas, Frazzoli, and 

Johansson 2012) is based on the continuous variable ( )iz t  which is given by: 

( ) ( ( ) ( )).
i

i i
j N

z t x t x tj

  
                                                    (5) 



It is clear that ( )iz t  is a function of the continuous measurements of local agent ( )ix t , and it is also 

a function of the continuous measurements of all neighbors ( )jx t . It is evident that the local agent is 

not able to design this threshold since continuous measurements from neighbors are not available. 

In this work we try to reduce both the actuation updates and the communication updates, while the 

authors of (Dimarogonas, Frazzoli, and Johansson 2012) only considered the reduction of actuation 

updates assuming that the agents can have access to the continuous states of their neighbors. 

Therefore the threshold in (Dimarogonas, Frazzoli, and Johansson 2012) cannot be used in the 

present paper.   

 When an event is triggered by agent i we have ( ) ( ) ( ) ( ) ( ) 0
i i i ii k i k i i k i ke t x t x t x t x t  because 

 is an event time for agent i. We also have that 
ikt t
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holds for any value of ( , )
i ji k kz t t

1 11[ ( ) ...
n kx t

. Note that the triggering condition (3) guarantees that (6) is 

satisfied. Let  represent the vector containing the latest broadcasted 

updates by each agent in the network, that is, this vector is a function of all update times  for  

i=1�…n. Assume that input and communication delays are negligible. The next result shows 

convergence for a group of agents using the new threshold (3) under control (2). 

( ... ) ( )]T
k k n kx t t x t

n

i

ikt

Theorem 1. Consider a group of agents ix u  for i=1�…n, with control inputs given by (2) and 

with event-based updates given by (3). Assume that the communication graph is connected and 

undirected. Then all agents asymptotically stabilize to their initial average. 

Proof. Consider the ISS Lyapunov function . We have that (1/ 2) TV x Lx
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where 1( ) [ ( ) ... ( )]T
nx t x t x t  and . By using the inequality 1( ) [ ( ) ... ( )]T
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2 2
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for a>0, we have:    
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By symmetry of the undirected communication graph and using (6), we have: 
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which implies  for 0V 0 (1/ ia N )  and 0 1i .  

Because ,  implies that V has a finite limit and  as . We have: 0V 0V 0V t

  20 lim 1 1 ( , ) 0.
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i
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Since 1 1 0i ia N  and  then 2 ( , ) 0
i ji k kz t t 21 1 ( , ) 0

i ji i i k ka N z t t  for i=1�…n. 

Thus, from (9), we have ( ,i kz t ) 0
i jkt  as  for i=1�…n. In view of (6) and (2), when 

 then all errors  reset and remain equal to zero, that is, since 

t

)( , ) 0
i ji k kz t t (ie t ( , ) 0

i ji k kz t t  as 

 for i=1�…n, then we have that t lim ( ) 0it
e t  for i=1�…n. We can also write  
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Similarly, 
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Because  for i=1�…n, it follows from (10) and (11) that lim ( ) 0it
e t
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that is l  for i=1�…n. Recall the definition of  in (5), we have 

 for i=1�…n which can be written in vector form as  

im ( ) 0it
z t

( ) ( )) 0i jx t x t
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lim (
i

t
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                                                          (13) 

When the interaction graph is connected the Laplacian L has a simple zero eigenvalue with the 

associated eigenvector 1 . Therefore n

  lim ( ) lim ( ), , 1... .i jt t
x t x t i j n                                            (14) 

For undirected graphs it can be shown that the initial average remains constant. Define the average 

1( ) ( )i
i

N
x t x t , we have the following:  

1 1 1( ) ( ) ( ( ) ( )) ( ( ) ( )) 0
i i

i i j i
i i j N i j N

N N N
x t x t x t x t e t e tj                 (15) 

and 1( ) (0) (0)i
i

N
x t x x , then the initial average remains constant.  

The authors of (Dimarogonas, Frazzoli, and Johansson 2012) were able to show that at any given 

time there exists at least one agent in the network for which its inter-event time is strictly positive. 

In this note we show that the inter-event times, not for at least one, but for all agents, are always 

strictly positive.  

Corollary 2. Consider a group of agents i ix u , i=1�…n, with control inputs given by (2) and 

with updates (3). Assume that the communication graph is connected. Then the inter-event times for 

each agent i=1�…n, are strictly positive. 



Proof. Consider the evolution of the term  over the interval 2 ( )ie t 1[ , )
i ik kt t t  when  is 

continuous: 
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and consider the differential equation: 
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with initial condition . Then, we have: 2( ) ( ) 0
i ii k i kt e t

2 ( ) 2
1
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A lower bound for the inter-event times of agent i is obtained by finding the minimum time t such 

as , where 2( ) ( , )
i ji i i kt z t tk

(1 ) 0i
a a Ni i

Ni
.  

We analyze two cases here, the first case is when ( , ) 0
i ji k kz t t  at the last update instant . In 

this case, from (18), 

ikt

( )i t  takes a finite time t>0 to grow from zero to  since 

. The second case is when 

2 ( ,
i ji i k kz t t )

2 ( , ) 0
i ji k kz t t ( , )

i ji k kz t t 0 . In this case ( ) 0i t  for , [ , )
i jk kt t t

i jk kt t  

and we have that (6) holds, therefore agent i does not generate any event during that time interval. 

When agent i receives an update from its neighbors then ( ,
i ji k kz t t ) 0  and the first case holds, i.e. 

the error takes a finite time t>0 to grow from zero to .    2 ( , )
i ji i k kz t t

Remark 1. The selection of threshold (3) is intuitive because it really is a function of local 

information and it is also related to how fast the error will grow at any given time and trigger the 

next event. In fact, (2), (3), and (18) tell us a clear picture of the communication pattern. Because 

 is used in (2), it determines how fast the corresponding agent moves with respect to its ( )i kz t

previous transmitted value and a proportional threshold is used for the same agent as seen in (3). If 



( , ) 0
i ji k kz t t  for some agent i at some update instant 

ikt  then ( ) ( ) ( , ) 0
i ji i i k ke t x t z t t , this 

e agent will not move, the error remains equal to zemeans that th ro, and the current ( )ix t  remains 

equal to the last update ( )i ki
x t . It is clear that there is no need to send additional updates if the 

current information has not changed and no events should be triggered. This is the main reason that 

the error is compared using �‘strictly greater than�’ in (3) instead of �‘equal�’ as in (Dimarogonas, 

Frazzoli, and Johansson 2012). The main benefit is that we are able to lower bound the inter-event 

times, not for at least one agent, but for all of them.       

Recent work (Seyboth, Dimarogonas, and Johansson 201

ble t

3) p d that 

Decentralized Consensus with Quantization 

s a o m  with 

roposes a different threshol

easure the state of the system

do

3. 

in

es not require continuous access to the states of neighbors. The threshold is a function of time and 

other tuning parameters. The approach in this note preserves the decentralized nature of the solution 

compared to (Seyboth, Dimarogonas, and Johansson 2013) since one of the tuning parameters 

depends on global information, i.e. on the second eigenvalue of L. Algorithms for estimation of the 

second eigenvalue of the Laplacian have been presented in (Aragues, et.al. 2012), (Franceschelli, 

et.al. 2009), and (Yang, et.al. 2010). The algorithm in (Aragues et.al. 2012) is especially practical 

for implementation in the event-based approach in (Seyboth, Dimarogonas, and Johansson 2013) 

since the estimate of the second eigenvalue always remains smaller than the true second eigenvalue 

of L. This is a condition on the tuning parameter stated in (Seyboth, Dimarogonas, and Johansson 

2013) for convergence of the consensus algorithm. 

It was assumed in the last section that the sensor i

finite precision. In reality, however, the measured variables have to be quantized in order to be 

represented by a finite number of bits to be used in processor operations and to be transmitted over 



a digital communication channel. In this section we study the effects of signal quantization on the 

convergence of the event-triggered control approach previously described in this paper.  

We define a uniform quantizer as a function : Vq  such that: 

2 2
f ( )

( )

i i i

q
                                        (19) 

where  represents the quantization step and {... 2 , ,0, ,2 ,...}Vi

2

( ) i ), (q

. The above quantizer 

ors for each 

ag

represents an infinite rate, uniform, passive qu n error.  

The only variables that are available to compute the control inputs and the state err

antizer with bounded quantizatio

ent are the quantized states of the agents. The control inputs are now given by: 

( ) ( ( )) ( ( )) , 1... .i i k j ku t q x t q x t i n
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and the quantized state error is d

( ( )), 1... .iq x t i n                                          (21) 

Theorem 3. Consider a group of agents 

efined as follows:  
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i

q
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i ix u  for i=1�…n, and each agent transmits it quantized 

ou
i i

tput ( ( ))i kq x t  to its neighbors at some tim tants kt . The control inputs are given by (20) and 

the event-based updates are triggered when  
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is satisfied, where 0 , 1ia , ( , ) ( ( )) ( ( ))
i j i ji k k i k j kM t t q x t q x t . Assume that the 

communication graph is connected asymptotically stabilize to a 

2
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and undirected. Then all agents 

bounded region around their initial average given by: 

lim ( ) (0) , 1... .it
x t x i n                                               (23) 



and the average remains constant, i.e. 1 1( ) ( ) (0)i
i i

N N
x t x t xi

Proof. Consider the candidate Lyapunov function 
i

. 

iV V  where 
0

( )
ix

iV q d  with 

i i i i iV i

   

( ( )) ( ) ( ( )) ( )q x t x t q x t u t , for i=1,�…,n. Note that V he series i n of a 

emoryless function is los (Khalil 2002). We have 

0  since t

ss 

nterconnectio

single integrator and a passive m sle

( ) ( ( )) ( ( )) ( ( )) ( ( )) ( )
i j i

i

q
i i i k j k i k i

i i j N

V u t q x t q x t q x t q x t e t

2( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( )
i i j i j

i

q
i k i k j k i k j k i

i j N

q x t q x t q x t q x t q x t e t

r the following relation: 

             (24) 
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Then we have: 
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where the in

2

2

1 1
2 2 2

(1 ) 1
2 2

( , ) ( ( )) ( , )

( , ) ( ( ))

i j i j

i

i j

q
i k k i i k k

i i j N i

q
i k k i i

i i

a
a

a
a

M t t e t M t t

M t t N e t

equality 2 21
2 2
a

a
xy x y , for a>0, has been used to obtain the second line in (26). By 

using the threshold (2 tee that   2) we can guaran
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holds. Then we obtain        

   (1 )
2
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i
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which implies 0V  for 0 1a  and 0 1i .  
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We also have that i 1 0  and ( , ) 0
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i ji i k k

i=1�…n. From (29 see 1) ( , ) 0
i ji k kM t t) we can that ( i

i

 as t

1 ( , ) 0M t t  as t  for i=1�…

 which means that 

i ji i k k n. Since 1 0i  we have ( , ) 0
i ji k kM t t  as t  

on for i=1�…n. By definiti ( ( ))
jj kq x t

2
) ( ( ))M t t q x t , which consists of a summation of 

quadratic terms. Then we h

lim (
t

q x

(i k

ave 

,

tha

i jk

( )) lim ( ( )), , 1... .
i ji k j kt

t q x t i j n

i

i

i k
j N

   t

                                     (30) 

In view of (20), (27), and (30) all errors 

lim ( ( )), 1...it t
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therefore, it follows from 
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It can be shown that for undirected graphs, and using quantization of the states in this case, the 

initial average remains constant. Define the average 1( ) ( )iN
i

x t x t , we have the following:  
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Let lim ( ( ))it
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The last statement can be shown by contradiction. Assume that 
2

(0)q x  then, from (19), we 

have that either ( ) (0)ix t x  for i=1�…n, or ( ) (0)ix t x  for i=1�…  cases (33) does not n, and in both

hold and we have a contradiction.    

From (34) and (19) we obtain (23) and the proof is complete.  

It is important to note that inter-event times are not lower bounded when using quantization. It is 

still possible to define solutions for this type of trajectories in the sense of Krasowskii, as it is 

shown in (Ceragioli, De Persis, and Frasca 2011), by introducing ideal sliding modes for trajectories 

that contain accumulation points. On the other hand, the computations associated with the event 

triggered communication policy require continuous sensing, quantizing, and computing and 

comparing errors and time-varying thresholds. In practice, all these operations can be performed 

locally by each agent�’s processor unit frequently but not continuously. This implementation 

disassociates trajectories from ideal sliding modes and creates a chattering effect. 

In order to prevent the undesired chattering effect that may be present when a system transmits 

updates very frequently in the boundary of a quantization level and its associated Zeno behavior we 

introduce a minimum update interval 0.  The minimum update interval is useful not only for 

avoiding Zeno behavior but also for a practical implementation of a non-continuous sensing and 

quantizing scheme. In th ssumption that the errors need to be calculated 

continuously; instead, we introduce a sam ling time T, 0 T

*

*

e following we relax the a

p  which allows for a practical 

implementation of the event triggered a ch. Note that the sampling time T is only used to check 

the error periodically but communication between agents is still event based since at every sampling 

pproa



time each agent decides if transmission of information is needed based on the size of the current 

error. In selecting *  we want to ensure that the error ( ) ( ) ( )
ii i k ie t x t x t  remains bounded in a 

desired region ( )e ti  for the time interval *[ , ]t t t
i ik k . This means that if an update is 

triggered by the i-th agent at time 
ikt  then we have: 
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 event is triggered when: 

                               (35) 

nLet us consider in this case a fixed threshold. A

( )q
ie t p

where 

                                                             (36) 

1p  is an integer since ( )qe t varies in increments of . In general, asymi ptotic convergence 

nvergence to a bounded region around of the quantized outputs is not achieved in this case, but co

the init erage can be shown by evaluating the difference of the states of any one agent and the 

remaining agents in the network. Choose, without loss of generality, an agent and re-label it as xc 

and the remaining agents as x1�…xn-1. Let 

ial av

A  and L  represent the adjacency and the Laplacian 

matrices associated with the communication graph corresponding to the remaining agents.  

Corollary 4. Consider a group of agents i ix u  for i=1�…n, and each agent transmits its 

quantized output ( ( ))q x t  to its neighbors at some time instants t . The control inputs are 
ii k

 imple

ik given by 

(20) and the event-based updates are trigger ording to (36). Consider a sampled non-

continuous event entation. Assume that the original (before choosing an agent) 

communication graph is connected and undirected. Then all agents stabilize to a bounded region 

around their initial average and the following is satisfied: 

   

ed acc

m

11lim [ ] [ ] 1 ( { })x x p G L diag A                         (37) 
2i c c

when T is designed to satisfy  



*

1,...,
min min 1/ ,ii n

T N ,                                                  (38) 

where cA  is a row vector containing the entries, other than the ,c ca  entry, in the c-th row of the 

original adjacency matrix A and [ ]T
c L . G A

finite initial conditions and for fixed and connected topologies (such as the ones considered here) 

there always exists a finite and positive constant S such that 

Proof irst, given control inputs (20), triggering condition (36), and for any configuration with . F

ix S . Consider the behavior of the 

error ( ) ( ) ( )
ii i k ie t x t x t  as follows: 

 ( ) ( ) ( )i i i i
d

e t e t x t .S
dt

                                          (39) 

Solving (39) with initial condition (

    

) 0
ii kt  we obtain   

   * *( ) ( )
i ii k i ke t t S c*                                               (40) 

for 0<c< . Then * 0c
S

 is a lo nd on the inwer bou ter-event times that the i-th agent uses to 

broadcast its measurements. Additionally, using the minimum update interval *  estimated by (40), 

we guarantee that *)) ( ( ))
i ik i kt q x t( (iq x . Also note that the initial average using 

quantization remains constant as it was shown in Theorem 3.   

Define [ ] [ ]i ix [ ]cx e difference between the chosen agent and any 

other remaining agent at the T-discretized time instants indexed

, which represents th

 by . We have the following: 

  
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ 1] [ ]q qT e e x x

[ 1 ( [ ]) ( [ ]) [ 1]
i j

i

i i k j k c

i i j i i j j c c
j N

q x q x x] [ ]
i

i
j N

x T
       (41) 



=1�…n-1, where 
i ik kT t  and [ ] [ ] ( [ ])i i ix q x . It is clear that in this case the even

ik  take place at some of the discrete time instants  labeled as 
ik

for i t 

times t .  

Equation (41) can be in a co

[ 1] [ ] ( [ ] [ ]) [ ]cQ TG e X

 written mpact form:   

q                                             (42) 

where { }n cQ I TL T diag A , [ ] ( [ 1] [ ])1c c c nX x x , 1 1[ ] [ [ ]... [ ]]Tn , 1 1[ ] [ [ ], [ ]... [ ]] ,T
c n  

1 1[ ] [ [ ], [ ]... [ ]]q q q q
c ne e e e T . The response of (42) to initial condition [0] is given by:     

1 1
[ 1])l q

l l

l Q[ ]

 of [ ]

[0 [ce l  ] ( [ 1]Q Q TG l 1].l X                           (43)

The norm  satisfies: 

11
2

[ ] [0] ( )
1

0 0

l l

l l

Q p T G Q T Q .

Since the o al communication graph is connected then agent xc has directed paths to all 

followers and 

                        (44) 

rigin

1,...,
0 min 1/ ii n

T N  then, by lemma 8.3 in (Ren and Cao 2011), Q has all its 

eigenvalues within the unit circle and lim 0Q . Additionally, from Lemma 1.26 and Lemma 1.28 

in (Ren and Cao 2011), we have that 
1

1l

0

lim ( )n
l

Q I Q  and  

   11lim [ ] 1 ( { })cp G L diag A
2

                                (45) 

which is equivalent to (37).  

Remark 2. Any agent in

according to the remaining agents�’ communication graph. The minimum of these expressions holds 

as a bound in (37). Since the initial average is constant the agents converge around the initial 

average.   

 the network can be selected as xc resulting in different expressions in (37) 



Remark 3. Threshold (36) is constant once we choose a quantization parameter. This threshold 

choice makes sense because the error (21) varies in increments of . Additionally, from (37), the 

region of convergence can be reduced by choosing a smaller , by trading off sampling-inter-event 

time. 

4. Examples 

ible sampling time for computing the error. The quantization parameter is =0.5. Simulation 

results are shown in Fig. 1. This figure shows that the non-quantized states of the agents converge to 

he initial average which is 3.875. In this example all the quantized states reach a 

co

 

Fig. 1. Quantized consensus. Left: states of eight agents. Center: Broadcasting periods agents 1-4, agent 1( ), agent 

2( ), agent 3(x), agent 4(+). Right: Broadcasting periods agents 5-8, agent 5( ), agent 6( ), agent 7(x), agent 8(+). 

Example 1. Consider eight agents exchanging quantized measurements of positions using a 

neglig

a region around t

mmon value and the bound (23) is satisfied. In addition, since the quantized states reach a 

common value, the agents do not move and no additional events are generated after approximately 

13 seconds as it can be seen in the center and right plots of Fig. 1, where the broadcasting periods 

for each agent are shown. 
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Fig. 2. Quantized consensus with strictly positive inter-event times. Left: states of eight agents. Center: Broadcasting 

periods agents 1-4, agent 1( ), agent 2( ), agent 3(x), age  4(+). Right: Broadcasting periods agents 5-8, agent 5( ), 

m or 

and right plots of Fig.2. The agents converge to a bounded region around the initial average equal to 

4.8125 and the bound (37) is satisfied. The m example is equal 17 

which is conservative since, from Fig. 2 and after transient response, the difference between any 

two agents is less than 0.7.    

5. Conclusions 

nt

agent 6( ), agent 7(x), agent 8(+). 

Example 2. We consider the same system as in Example 1 but the difference is that we introduce a 

inimum inter-event time equal to 0.3 seconds which also serves as a sampling interval f

calculating the error. We select p=1 and =0.5. Simulation results are shown in Fig. 2. 

In this case the average of the non-quantized states also remains constant over time, The 

quantized values do not reach a common value although the difference of any pair of them remains 

bounded. The agents keep sending updates when they reach this region but using event times equal 

or greater than the minimum update interval which is 0.3 seconds as it can be observed in the center 

inimum theoretical bound for this 
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Decentralized control and broadcasting laws for consensus were presented in this note. The main 

advantage of this formulation compared to similar work is that we were able to reduce both 

actuation and transmission updates; continuous monitoring of states of neighbors is no longer 

ne
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