
Efficient Design of Petri-Net Supervisors with Disjunctive
Specifications

Marian V. Iordache, Po Wu, Feng Zhu, and Panos J. Antsaklis

Abstract—The supervision based on place invariants is an
efficient method for the supervision of Petri nets in which each
inequality constraint is implemented by one monitor place.
However, this method assumes specifications that describe
convex legal sets. Non-convex legal sets can be described by
disjunctions of inequality constraints. Specifications consisting
of disjunctions of inequality constraints are called here dis-
junctive specifications. Previous work has shown that under
certain boundedness assumptions it is possible to implement
supervisors enforcing disjunctive specifications with conven-
tional Petri nets. However, in the worst case, the number of
places of the least-restrictive supervisors was exponentially
related to the size of the specification. This paper introduces
an enhanced approach that generates supervisors in which
the number of places is linearly related to the size of the
specification. The generated supervisors are least restrictive
and are implemented with conventional Petri nets.

I. INTRODUCTION

Modern engineering systems increasingly exhibit a com-
plex interaction of multiple subsystems that should operate
together seamlessly in order to achieve the desired function-
ality. Supervisory control methods provide a way to design
the coordination algorithms of concurrent subsystems that
are represented in the discrete event paradigm. In the
context of concurrency, of special interest is the Petri net
(PN) representation of systems and the supervisory control
methods that are based on PNs. Indeed, note that PNs
were created specifically for concurrent systems and thus
they tend to offer considerably smaller representations than
automata. Furthermore, by using PN representations it is
possible to use both PN methods and automata methods,
since PNs can be converted to automata. Note that PN meth-
ods are especially interesting when they avoid the “state
space explosion” problem encountered when concurrent
systems are represented as automata. This paper considers
the extension of a class of very efficient PN methods
to a larger class of specifications involving disjunction
operations.
The supervision based on place invariants provides a

very efficient way of enforcing specifications consisting of
inequality constraints. This method was proposed first for
generalized mutual exclusion constraints [3] of the form

Lµ ≤ b (1)

M. V. Iordache is with the Department of Engineering, LeTourneau
University, Longview, TX 75607, USA
P. Wu, F. Zhu, and P. J. Antsaklis are with the Department of Electrical

Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
The authors gratefully acknowledge the support of the National Science

Foundation (NSF CNS-0834057).

where L is an integer matrix and b an integer vector.
Specifications (1) restrict the operation of a PN to the
markings µ satisfying (1). They are enforced by adding
places to the PN, one place for each row of L, and by
connecting them to the existing transitions of the PN so as
to create certain place invariants. As shown in subsequent
work, the supervision based on place invariants can be easily
extended to inequalities involving not only the marking, but
also the firing vector and the Parikh vector [5]. Inequalities
involving the marking µ and the firing vector q have the
form

Lµ + Hq ≤ b (2)

where H is an integer matrix. Note that the firing vector
q indicates the transition or transitions fired at a firing
instance.
The constraints (1) have been applied to AGV coordi-

nation problems [7], batch chemical processes [10], the
representation of liveness constraints [5], and others. The
constraints (2) have been applied to pipe/valve networks in
chemical process control [11] and railway networks in [4].
Though a wide variety of problems can be described in
terms of specifications (1) or (2), there are also interesting
problems involving specifications that cannot be represented
by convex legal sets. Generalizing the supervision based
on place invariants to non-convex legal sets is somewhat
difficult if the supervision should be described in terms of
conventional PNs. A solution to this problem is presented in
this paper. We consider specifications consisting of logic ex-
pressions involving arbitrary conjunctions and disjunctions
of predicates of the form lµ + hq ≤ c, where l and h are
integer vectors and c is an integer. For this type of spec-
ifications, the paper presents an algorithm that produces a
least restrictive PN supervisor. The algorithm applies under
certain boundedness assumptions. In this paper we only deal
with the fully controllable and observable PNs. We suggest
dealing with partial controllability and partial observability
according to the structural framework presented in [5].
Related work includes the following. The reference [8]

shows how to obtain the least restrictive supervisor en-
forcing the union of two legal sets, based on two least
restrictive supervisors, each enforcing one of the two legal
sets. The reference [9] provides a method to calculate the
maximal controlled invariant set for disjunctive constraints
under certain assumptions on the PN structure.
This paper enhances the method of [6]. Building on the

approach for disjunctive constraints of [5], the reference
[6] presents a least restrictive method for the enforcement

Jaehyun
Marian Iordache, Po Wu, Feng Zhu, Panos Antsaklis, “Efficient Design of Petri Net Supervisors with Disjunctive Constraints,” 9th IEEE International Conference on Automation Science and Engineering (CASE 2013), Madison, WI, August 17-21, 2013.

of disjunction specifications of the form

l1µ+h1q ≤ c1 ∨ l2µ+h2q ≤ c2 ∨ . . . lnµ+hnq ≤ cn (3)

where for all i = 1, 2, . . . , n, li and hi are integer vectors
and ci is an integer. The main limitation of the method
of [6] is that it expects specifications that are conjunctions
of expressions of the form (3). This is a problem because
converting a logic expression to its conjunctive normal form
may result in an exponential increase in the number of
terms. For instance, denoting by Si the predicate liµ+hiq ≤
ci, the conjunctive normal form of (S1 ∧S2)∨ (S3 ∧S4)∨
. . .∨(S2n−1∧S2n) is the conjunction of the 2n terms of the
form (Si1 ∨ Si2 ∨ . . . ∨ Sin

), with i1 ∈ {1, 2}, i2 ∈ {3, 4},
and so on.
The main contribution of this paper is that it enhances

the method of [6] so as to eliminate the need to convert the
specification to the conjunctive normal form. The generated
supervisor is a PN in which the number of places depends
linearly on the number of terms of the specification. Since
the supervisor consists of the parallel composition of a
number of supervisor components, the number of transitions
of the supervisor could be, in the worst case, exponentially
related to the number of supervisor components. How-
ever, this is not an issue in implementations in which the
supervisor components operate independently and are not
composed into a single supervisor.
The paper is organized as follows. Notation and prelim-

inary results are described in section II. The supervisor
components are introduced in section III. The synthesis
algorithm is given in section IV. An example is given
in section V. Performance considerations are included in
section VI. The reader is referred to [5] for an introduction
to PNs and their supervision.

II. PRELIMINARIES
A PN will be denoted by N = (P, T, D−, D+), where P

is the set of places, T the set of transitions, D− the input
matrix, and D+ the output matrix. Firing events will be
represented by firing vectors q. A firing vector q is enabled
at the marking µ when D−q ≤ µ. A labeled PN will be
denoted by N = (P, T, D−, D+, ρ), where ρ : T → Σ is
a labeling function, associating events to transitions, and Σ
is the set of events. We assume the reader familiar with the
parallel composition of labeled PNs [2], [5].
Let liµ + hiq ≤ ci with li ∈ Z1×|P |, hi ∈ Z1×|T |,

and ci ∈ Z denote an inequality in terms of the marking
µ and the firing vector q. A conjunction of n inequalities
liµ + hiq ≤ ci can be written in the form (2), where L ∈
Zn×|P |, H ∈ Zn×|T |, b ∈ Zn×1, L(i, ·) = li, H(i, ·) = hi,
and b(i) = ci. The inequalities (2) are interpreted as follows.
A marking µ satisfies (2) if Lµ ≤ b. Further, a transition
t may fire at µ only if its corresponding firing vector q
satisfies Lµ + Hq ≤ b and the next reached marking µ′

(that is, µ
t

−→ µ′) satisfies Lµ′ ≤ b. As shown in [5],
the least restrictive supervisor enforcing (2) is obtained by
connecting a number of additional places to the existing

transitions of the PN according to the input and output
matrices

D+
c = max(0,−LD, H − LD) (4)

D−
c = max(0, LD, H) (5)

and the initial marking

µs = b − Lµ (6)

In the equations above the max operation is element-wise
(that is, if X, Y, and Z are matrices and Z = max(X, Y),
then Z(i, j) = max(X(i, j), Y (i, j)) for all indices i and
j). Note that a supervisor defined by (4)–(5) will enable a
firing vector q when D−

c q ≤ µs, that is, when Lµ+D−
c q ≤

b. Let Hd = D−
c . The concurrency interpretation of (2) is

as follows. A marking µ satisfies (2) if Lµ ≤ b. Further,
q may fire at µ only if it satisfies Lµ + Hdq ≤ b (which
implies Lµ′ ≤ b for µ′ such that µ

q
−→ µ′) [5].

For a disjunction of n inequalities liµ + hiq ≤ ci two
possible interpretations are possible [6]. The state-based
interpretation can be used when hi = 0 for all i. In the
state based interpretation, a marking µ satisfies (3) if there
is at least one index i for which liµ ≤ ci. Further, a
transition t may fire at µ only if the next reached marking µ′

satisfies (3). The dynamic interpretation of (3) is as follows.
A marking µ satisfies (3) if there is at least one index
i for which liµ ≤ ci. Further, a firing vector q may be
fired at µ only if there is at least one index i for which
the inequality liµ + hd,iq ≤ ci is satisfied, where hd,i is
calculated according to (5):

hd,i = max(0, liD, hi) (7)

As shown in [6], the state-based interpretation and the
dynamic interpretation of (3) are not equivalent.

III. SUPERVISORY COMPONENTS
The supervisor enforcing the disjunctive specification is

obtained as a composition of supervisory components. This
section describes the two types of supervisory components
that are used. The manner in which supervisory components
are composed is described by means of a labeling function
ρ : T → Σ assigning a unique label to each transition of
the plant N .

A. Eliminating Firing Vector Terms
This section considers an enhancement of a PN N to a

form N ∗ so that inequalities (2) in terms of N correspond
to inequalities (1) in terms of N ∗.
Given a set of constraints liµ + hiq ≤ ci, let Ts = {t ∈

T : ∃i, liD(·, t) (= hd,i(t)}, where hd,i is defined in (7).
Let ρ be a labeling function associating a unique label to
every transition of N . Let Ng = (Pg, Tg, D

−
g , D+

g , ρg) be
a PN defined as follows.
1) For each transition t ∈ Ts define two transitions

t′, t′′ ∈ Tg such that ρg(t′) = ρ(t) and t′′ has a label
that was not assigned to any other transition.

2) For each transition t ∈ Ts define one place gt such
that D−

g (gt, t
′′) = 1 and D+

g (gt, t
′) = 1

3) The initial marking of each place gt is zero.
For example, if N is the PN of Figure 2 and Ts =
{te, tr, tw}, then Figure 4 shows Ng and Figure 6(a) the
closed-loop PN.
Let N ∗ be the parallel composition of N and Ng . Let

µ∗ be the marking of N ∗. Let l∗i ∈ Z1×|P∗| be defined by

∀p ∈ P : l∗i (p) = li(p) (8)
∀t ∈ Ts : l∗i (gt) = hd,i(t) − liD(·, t). (9)

Proposition 3.1 [6] Given is (N ∗, µ∗), the parallel compo-
sition of (N , µ) and (Ng, µg). Assume µg = 0 and that for
some t ∈ T we have that µ

t
→ µ1 and µg

t′

→ µg0
t′′

→ µg1.
Let µ∗, µ∗

0, and µ∗
1 be the closed-loop markings representing

the pairs (µ, µg), (µ1, µg0), and (µ1, µg1), respectively. Let
q denote the firing vector associated with the firing of t.
Then l∗i µ∗ = liµ, l∗i µ

∗
0 = liµ + hd,iq, and l∗i µ∗

1 = liµ1.

B. The Predicate Net
This section considers expressions l∗i µ

∗ ≤ ci and de-
scribes the construction of a supervisor component involv-
ing a place of marking δi that equals the truth value of the
proposition l∗i µ∗ ≤ ci. Note that l∗i µ

∗ ≤ ci is viewed here
as a predicate in the variable µ∗. Moreover, we denote by
[l∗i µ∗ ≤ ci] the truth value of the proposition l∗i µ∗ ≤ ci for
a given marking µ∗. The truth value is 0 if the constraint
is not satisfied and 1 if the constraint is satisfied.
Assume that µ∗ in l∗i µ∗ ≤ ci is the marking of a

PN N ∗ = (P ∗, T ∗, D∗−, D∗+, ρ∗), where ρ∗ associates
a unique label to each transition. The predicate net of
l∗i µ∗ ≤ ci is a PN Ni = (Pi, Ti, D

−
i , D+

i , ρi) in which
Pi consists of a single place di and Ti, D−

i , D+
i , and ρi

are defined as follows.
1) For each transition tk such that l∗i D

∗(·, tk) (= 0,
define two transitions fk and xk in Ti having the
labels ρi(fk) = ρi(xk) = ρ∗(tk).

2) If l∗i D∗(·, tk) > 0, set D−
i (di, xk) = 1.

3) If l∗i D∗(·, tk) < 0, set D+
i (di, xk) = 1.

4) Denoting by µ∗
0 the initial marking of N ∗, the initial

marking of di is 1 if l∗i µ
∗
0 ≤ ci and 0 otherwise.

Let δi denote the marking of the place di. Assume that l∗i µ∗

has for all reachable markings a finite lower bound mi and
a finite upper bound Mi. Then, in order to ensure that δi =
[l∗i µ∗ ≤ ci], the following constraints have to be enforced
on the parallel composition of N ∗ and the predicate net Ni:

l∗i µ∗ + (Mi − ci)δi ≤ Mi, (10)
l∗i µ∗ + (ci + 1 − mi)δi ≥ ci + 1. (11)

Due to the constraints (10)–(11), Ni will fire fk when N ∗

fires tk without changing the truth value of the proposition
l∗i µ∗ ≤ ci. Moreover, Ni will fire xk when N ∗ fires tk and
the truth value of l∗i µ∗ ≤ ci is changed.

∧

∨

S1 S2 S3 S6

S7

S4 S5

∨

∧

Fig. 1. Tree representing the expression E = (S1 ∧ S2) ∨ (S3 ∧ (S4 ∨
S5) ∧ S6) ∨ S7.

As an example, the PN of transitions f2
r , x2

r , f ′′2
r , and

x′′2
r in Figure 6(b) shows the predicate net of µ∗

gr

≤ 0 with
respect to the PN of Figure 6(a).

IV. ENFORCING DISJUNCTIVE SPECIFICATIONS
This section presents the algorithm for the enforcement

of disjunctive specifications. Let Si denote a predicate of
the form liµ ≤ ci or liµ+hiq ≤ ci. Consider a specification
described by a logic expressions E consisting of arbitrary
conjunctions and disjunctions of predicates Si. Thus, E is a
compound predicate consisting of predicates Si connected
by ∨ operators (logic OR), ∧ operators (logic AND),
and parentheses that indicate precedence. For example, a
possible expression could be E = (S1 ∨ S2) ∧ (S3 ∨
(S4 ∧ S5) ∨ S6) ∧ S7. Note that any such expression can
be represented by a tree (Figure 1) in which each node
represents an operation (∨ or ∧) and each leaf a predicate.
The following algorithm shows how to obtain the closed-

loop PN based on a plant PN and a disjunctive specification.
The goal of the supervision is to ensure that for all reachable
states of the system, a truth value of 1 is obtained when
substituting the marking and firing vector of the plant in
the logic expression describing the specification.
Without loss of generality, it is assumed that in the

tree representation of the specification the logic operations
alternate on any path from the root to a leaf. That is, the
predecessor of a ∨ node is a ∧ node and vice-versa.
1) Consider the tree representation of the specification
and all leaves connected to the root by a path that
includes a ∨ node, where the root node itself may
be the ∨ node. Let S denote the set of predicates Si

associated with these leaves.
2) In the case of the dynamic interpretation, the set Ts

of section III-A will be defined with respect to all
constraints of S: Ts = {t ∈ T : ∃Si ∈ S, liD(·, t) (=
hd,i(t)}.

3) In the case of the dynamic interpretation, let N ∗ be
the PN obtained as in section III-A. Further, for each
predicate Si ∈ S, let S∗

i be the predicate l∗i µ
∗ ≤

ci with l∗ defined as in (8)–(9). Moreover, for each
predicate Si (∈ S, let S∗

i = Si.

4) In the case of the state-based interpretation, let N ∗ =
N and S∗

i = Si.
5) Let S∗ be the set of predicates S∗

i such that Si ∈ S.
6) Let L be a set of constraints initialized to the inequal-
ities of the predicates S∗

i (∈ S∗.
7) Let N c = N ∗.
8) Associate recursively a predicate with each node of
the tree, starting from the bottom and moving up
towards the root. The predicate is obtained as follows.
a) Let S∗

i1, . . . , S∗
ik be the predicates of the suc-

cessor nodes or leaves.
b) If the node is the root and the root is a ∧ node,
then add to L the inequalities of S∗

i1, . . . , S∗
ik

and go to step 9.
c) Let N ∗

i1, . . . , N ∗
ik be the predicate nets (sec-

tion III-B) of S∗
i1, . . . , S∗

ik, where the N ∗
i1, . . . ,

N ∗
ik are defined with respect to N c.

d) UpdateN c to equal its parallel composition with
N ∗

i1, . . . , N ∗
ik .

e) Add to L the inequalities (10)–(11) associated
with S∗

i1, . . . , S∗
ik.

f) Let di1, . . . , dik be the places of N ∗
i1, . . . , N ∗

ik.
g) If the node is a ∧ node, the predicate of the node
will be

∑k
j=1

µ∗(dij) ≥ k. Note that the upper
and lower bounds of

∑k
j=1

µ∗(dij) are k and 0,
respectively.

h) If the node is a ∨ node, the predicate of the node
will be

∑k
j=1

µ∗(dij) ≥ 1. Note that the upper
and lower bounds of

∑k
j=1

µ∗(dij) are k and 0,
respectively.

i) If the node is the root and the root is a ∨ node,
then add to L the inequality

∑k
j=1 µ∗(dij) ≥ 1

and go to step 9.
9) Let Lµc + Hq ≤ b denote the constraints of L.
10) Let N t denote the closed-loop of N c and the super-

visor (4)–(5) enforcing Lµc + Hq ≤ b on N c.
11) The initial marking of N t is determined in terms of

µ0, the initial marking of N , as follows.
a) µt

0(p) = µ0(p) ∀p ∈ P .
b) µt

0(gt) = 0 ∀t ∈ Ts.
c) For every predicate net N ∗

i , the initial marking
of the place di equals the truth value of S∗

i at
the initial marking.

d) The initial marking of the places added at
step 10 is calculated according to (6).

In the algorithm above note that (N t, µt
0) represents the

closed-loop PN of the plant (N , µ0) and the supervisor
enforcing the disjunctive specification.

V. EXAMPLE
Consider the reader/writer example of [6]. In this com-

puter science example a number of reader processes (RPs)
and writer processes (WPs) may access a shared region of
memory. A process is said to be in the critical section (CS)
when accessing the shared region of memory. Any number

tw

pw

tr

te

pc

td

Fig. 2. Model of the reader/writer system.

S∗
4

∨

S∗
1 ∧ ∧

S∗
3S∗

2 S∗
2

Fig. 3. Tree representing the expression S∗

1
∨ (S∗

2
∧ S∗

3
) ∨ (S∗

2
∧ S∗

4
).

of RPs may be in the CS at the same time. However, when
a WP is in the CS, no other process may be in the CS.
Moreover, the WPs have higher precedence than the RPs.
This means that no RP may enter the CS when a WP waits
to enter the CS.
A PN model is shown in Figure 2. The marking of pc

represents the number of processes in the CS. The transition
te is fired when a process exits the CS, tr when a RP enters
the CS, and tw when a WP enters the CS. The marking of
pw represents the number of WPs waiting to enter the CS.
A WP enters the pw state by firing td.
The specification is expressed by the predicate S1∨(S2∧

S3)∨ (S2 ∧ S4), where S1, . . . , S4 denote µw ≤ 0, qr ≤ 0,
qw ≤ 0, and µc ≤ 0, respectively. (For a place pi and a
transition tj , µi stands for µ(pi) and qj for q(tj).)
In this example, S = {S1, . . . , S4} and Ts = {te, tr, tw}.

The net N ∗ is shown in Figure 6(a). It is the composition of
N (Figure 2) and Ng (Figure 4). S∗

1 , . . . , S∗
4 denote µ∗

w +
µ∗

gw

≤ 0, µ∗
gr

≤ 0, µ∗
gw

≤ 0, and µ∗
c +µ∗

ge

≤ 0, respectively.
The tree representing the specification is shown in Figure 3.
In the first iteration of step 8, the predicate nets N ∗

2 ,
N ∗

3 , and N ∗
4 are built (Figure 6(b)). These correspond to

the predicates S∗
2 , S∗

3 , and S∗
4 . The PN N c is updated

to equal the parallel composition N c‖N ∗
2 ‖N

∗
3 ‖N

∗
4 . Fur-

ther, the expressions S∗
2 ∧ S∗

3 and S∗
2 ∧ S∗

4 are replaced
by the predicates S∗

5 and S∗
6 , where S∗

5 and S∗
6 denote

−µ∗(d2) − µ∗(d3) ≤ −2 and −µ∗(d2) − µ∗(d4) ≤ −2,
respectively. In view of step 8g, the upper and lower bounds

t′et′wt′r

t′′r t′′w t′′e

gegwgr

Fig. 4. The Ng supervisory component.

∨

S∗
1 S∗

5 S∗
6

Fig. 5. The expression shown in Figure 3 is reduced to S∗

1
∨ S∗

5
∨ S∗

6

after the first iteration.

of −µ∗(d2) − µ∗(d3) and −µ∗(d2) − µ∗(d4) are M5 =
M6 = 0 and m5 = m6 = −2. At the end of the first
iteration, L contains the inequalities (10)–(11) associated
with S∗

2 , S∗
3 , and S∗

4 . The bounds in (10)–(11) are as
follows. Assuming that multiple transitions are not fired at
the same time and that the supervisor fires t′′r , t′′e , and t′′w as
soon as enabled, the maximum value of either of µ∗

gr

, µ∗
ge

,
and µ∗

gw

is 1. Then, M2 ≥ 1 and M3 ≥ 1. If no more than
ten RPs can ever be in the CS at the same time, M4 ≥ 10.
Using m2 = m3 = m4 = 0, M2 = M3 = 1, and M4 = 10,
the inequalities (10)–(11) are:

µ∗
gr

+ µ∗(d2) ≤ 1 (12)
µ∗

gr

+ µ∗(d2) ≥ 1 (13)
µ∗

gw

+ µ∗(d3) ≤ 1 (14)
µ∗

gw

+ µ∗(d3) ≥ 1 (15)
µ∗

c + µ∗
ge

+ 10µ∗(d4) ≤ 10 (16)
µ∗

c + µ∗
ge

+ µ∗(d4) ≥ 1 (17)

At the end of the first iteration of step 8 the specification
tree of Figure 3 is reduced to the tree shown in Figure 5.
In the second iteration the predicate nets N ∗

1 , N ∗
5 ,

and N ∗
6 are built (Figure 6(c)). These correspond to the

predicates S∗
1 , S∗

5 , and S∗
6 . The PN N c is updated to equal

the parallel composition N c‖N ∗
1 ‖N

∗
5 ‖N

∗
6 . The predicate

of the root node is

µ∗(d1) + µ∗(d5) + µ∗(d6) ≥ 1 (18)

The inequality (18) is added to L in the step 8i. Addi-
tionally, the inequalities (10)–(11) associated with S∗

1 , S∗
5 ,

and S∗
6 are also added to L. Assuming no more than 3

WPs, we can take m1 = 0 and M1 = 3. Since m5 = −2,
M5 = 0, m6 = −2, and M6 = 0, the inequalities (10)–(11)
associated with S∗

1 , S∗
5 , and S∗

6 are as follows:

µ∗
w + µ∗

gw

+ 3µ∗(d1) ≤ 3 (19)
µ∗

w + µ∗
gw

+ µ∗(d1) ≥ 1 (20)
−µ∗(d2) − µ∗(d3) + 2µ∗(d5) ≤ 0 (21)
−µ∗(d2) − µ∗(d3) + µ∗(d5) ≥ −1 (22)

−µ∗(d2) − µ∗(d4) + 2µ∗(d6) ≤ 0 (23)
−µ∗(d2) − µ∗(d4) + µ∗(d6) ≥ −1 (24)

The second iteration is the final iteration of this example.
At the end of this iteration L contains the inequalities (12)–
(24). After the last step of the algorithm the supervisor will
involve the places gr, ge, gw, d1, . . . , d6, and the 13 monitor
places enforcing the 13 constraints (12)–(24).

VI. PERFORMANCE
Section IV has presented an algorithm for enforcing con-

straints described by arbitrary combinations of disjunctions
and conjunctions of linear inequalities. The algorithm as-
sumes that for all predicates liµ ≤ ci, the term liµ has finite
upper and lower bounds and that such bounds are known.
This assumptions was made in the context of inequalities
(10)–(11). By construction, the algorithm guarantees that
the specification is enforced. However, two assumptions are
needed in order to guarantee least restrictive supervision:

• no concurrency (two or more plant transitions may not
fire at the same time);

• immediate firing of supervisor transitions (the supervi-
sor transitions that are not synchronized with the plant
are fired as soon as they are enabled).

The supervisor transitions that are not synchronized with
the plant belong to the supervisor component described in
section III-A. Specifically, using the notation of section III-
A, the output transitions t′′ of the places gt are not syn-
chronized with any plant transitions. Since equations (8)–
(9) ensure that by firing t′′ the term l∗µ∗ is not increased,
the supervisor will never be prevented from emptying the
places gt when they get marked.

Theorem 6.1 Consider the closed-loop PN (N t, µt
0) con-

structed with the algorithm of section IV. If the specification
is satisfied at the initial marking, it is satisfied also for all
reachable markings. Moreover, assuming that all supervisor
transitions are fired as soon as enabled and that the plant
does not fire multiple transitions at the same time, the
supervision is least restrictive.

The proof of the theorem is similar to the proof of
Theorem 4.1 of [6].
The size of the supervisor is as follows. Let N be the

total number of nodes and leaves of the tree representing
the specification. Note that the total number of inequality
constraints enforced by the algorithm is less than 2N .
Indeed, for each node or leaf at most two inequalities
are enforced (the inequalities (10)–(11)) and the root node
has at most one inequality. Each of the 2N inequalities
contributes one monitor place. Additionally, each predicate
net contributes one place and there is one predicate net for
each pair (10)–(11). Moreover, since the number of places
gt generated by the algorithm of section III-A is upper
bounded by the number of transitions of the plant, we can
conclude that the number of places of the supervisor will
not exceed 3N + |T |. The upper bound is only 3N in the

(c)

(b)

(a)

f1
d

t′′w

t′′e

ge

gwgr

tw

pw

te

pc

td

tr

f ′′5
r f ′′5

w f ′′6
r f ′′6

e

f ′′3
wf ′′2

r f ′′4
ex′′2

r x′′3
w x′′4

e

x′′1
w x′′5

r x′′5
w x′′6

r x′′6
e

d1 d5 d6

d4d3d2

f ′′1
w

t′′r

x1
d f5

r x5
r x5

w f5
w f6

r x6
r x6

w f6
w

f4
wx4

wx4
rf4

rx3
wf3

wx2
rf2

r

Fig. 6. (a) N c before the first iteration; (b) from left to right, N ∗

2
, N ∗

3
, and N ∗

4
; (c) from left to right, N ∗

1
, N ∗

5
, and N ∗

6
.

case of the state based interpretation of the specification,
since the algorithm of section III-A is not used in this case.
Now, the parallel composition of PNs can increase dra-

matically the number of transitions. Assume the notation of
section IV. By firing a transition t of N ∗, the terms l∗µ∗ of
the predicates l∗µ∗ ≤ c may be changed. If for n predicate
nets the terms l∗µ∗ are affected by t, then t will appear
in the form of 2n transitions in the closed-loop PN. This
is due to the fact that t may affect each of the n predicate
nets in two ways: it will either change the truth value of the
proposition l∗µ∗ ≤ c, or it will leave it unchanged. Since
there are two possible outcomes for each predicate net, there
will be 2n possibilities for the n predicate nets and thus 2n

transitions, one for each possibility. This problem is due
to the parallel composition of the supervisor components.
A practical implementation of the supervisor would not
require a parallel composition of the components. Rather,
the components could run independently and synchronize
their transitions online. However, the parallel composition
of the components could be required if further synthesis or
verification methods are to be applied to the closed-loop PN.
Finally, note that a software implementation of the ap-

proach of this paper may be downloaded from the supervi-
sory control folder of the ACTS software [1].

VII. CONCLUSION
The paper presents an efficient method for enforcing

specifications described by non-convex legal sets. The
closed-loop is represented by conventional PNs. The struc-
ture of the closed-loop PN is independent of the initial

marking of the plant. Naturally, the initial marking of the
supervisor is calculated based on the initial marking of the
plant. The supervision method is least restrictive if the plant
does not attempt to fire multiple transitions at the same time.
The method assumes that finite upper and lower bounds are
known for all linear marking expressions appearing in the
inequalities of the specification.

REFERENCES
[1] A Concurrency Tool Suite.

http://www.letu.edu/people/marianiordache/acts.
[2] A. Giua and F. DiCesare. Supervisory design using Petri nets. In

Proc. 30th IEEE Conf. Decision Contr., pp. 92–97, 1991.
[3] A. Giua, F. DiCesare, and M. Silva. Generalized mutual exclusion

constraints on nets with uncontrollable transitions. In Proc. IEEE
Internat. Conf. Syst., Man, Cybern., pp. 974–979, 1992.

[4] A. Giua and C. Seatzu. Supervisory control of railway networks with
Petri nets. In Proc. 40th IEEE Conf. Decision Contr., pp. 5004–5009,
2001.

[5] M. V. Iordache and P. J. Antsaklis. Supervisory Control of Concurrent
Systems: A Petri Net Structural Approach. Birkhäuser, 2006.

[6] M. V. Iordache and P. J. Antsaklis. Petri net supervisors for
disjunctive constraints. In Proc. Amer. Contr. Conf., pp. 4951–4956,
2007.

[7] B.H. Krogh and L.E. Holloway. Synthesis of feedback control logic
for manufacturing systems. Automatica, 27(4):641–651, 1991.

[8] G. Stremersch and R. K. Boel. Decomposition of the supervisory
control problem for Petri nets under preservation of maximal per-
missiveness. IEEE Trans. Automat. Contr., 46(9):1490–1496, 2001.

[9] G. Stremersch and R. K. Boel. Structuring acyclic Petri nets for
reachability analysis and control. Discrete Event Dynamic Systems,
12(1):7–41, 2002.

[10] M. Tittus and B. Egardt. Hierarchical supervisory control for batch
processes. IEEE Trans. Contr. Syst. Technol., 7(5):542–554, 1999.

[11] E. Yamalidou and J. Kantor. Modeling and optimal control of
discrete-event chemical processes using Petri nets. Computers and
Chemical Engineering, 15(7):503–519, 1991.

