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Abstract�—This paper presents a practical alternative for the 
implementation of Model-Based Networked Control Systems 
(MB-NCS) with intermittent feedback. Our approach does not 
require continuous communication over a limited bandwidth 
channel during the closed-loop time intervals; instead, we 
propose a communication format that implements a fast rate 
for updating the state of the model. During the closed-loop 
interval the sensor transmits measurements at a fast rate but 
without assuming continuous communication. We consider 
uncertain continuous-time systems and study the state feedback 
and output feedback cases. For both cases, we provide 
necessary and sufficient conditions for stability as a function of 
the update periods.  

I. INTRODUCTION 
ODERN control applications make use of different 
communication channels with limited access to 

interconnect elements in a control system instead of 
traditional point-to-point connections that can transmit 
signals continuously. Challenges concerning the use of 
common-bus communication media are well documented in 
the literature [1]-[3]. Reduction of network bandwidth has 
been an important research topic. This problem relates to the   
feedback information needed in order to stabilize a control 
system while using network resources efficiently. Different 
approaches include minimum bit rate stabilization [4]-[5], 
packet-based control [6]-[7], and model-based control [8]-
[15]. 

Estrada and Antsaklis [16]-[18] presented a model-based 
approach for stabilization using intermittent feedback. This 
work combined the Model-Based Networked Control 
Systems (MB-NCS) framework and the intermittent 
feedback notion resulting in a Networked Control System 
(NCS) that operates using two modes: open-loop and closed-
loop modes. The open-loop mode provides reduction on the 
number of measurements transmitted from the sensor node 
to the controller node while the closed-loop mode requires 
continuous feedback in order to improve the control action 
and the performance of the system that is typically degraded 
during the previous open-loop time interval due to lack of 
feedback measurements. The results presented in those 
references provided stabilizing conditions that depend on the 
appropriate selections of the open-loop and the closed-loop 
time intervals. Continuous-time and discrete-time systems 
were considered. 
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The stability conditions in [16]-[18] require that 
continuous feedback measurements are transmitted during 
the closed-loop intervals. These measurements are 
transmitted over a limited bandwidth communication 
network. While this assumption may not be a strong 
condition when dealing with discrete-time systems, it is 
clearly not possible to transmit a continuous-time signal over 
a digital network for a finite period of time. Therefore, in 
this paper, we relax the closed-loop assumption for 
continuous-time systems and we propose a practical 
implementation of MB-NCS with intermittent feedback 
relaxing the constraint that during the closed-loop mode the 
sensor needs to transmit its current measurements 
continuously over a digital channel. 

In this paper we consider continuous-time linear time-
invariant systems with model uncertainties. We use the MB-
NCS framework introduced in [8]-[9]. Lehmann and Lunze 
[10]-[12] also consider the same approach than [8]-[9], the 
main difference is that in the work presented in [10]-[12] it 
is assumed that the model and system are represented by 
exactly the same parameters, no model uncertainty is 
considered, and the system is perturbed by an unknown 
external disturbance while the model operates without the 
perturbation. The authors of [13] also use the model-based 
approach in human learning and human operations. Analysis 
and simulations are presented in the presence of 
measurement noise. 

The remainder of the paper is organized as follows: 
Section II describes the MB-NCS framework. Section III 
considers intermittent feedback in the form of slow and fast 
update rates. Stability conditions are given for the state 
feedback case. Section IV extends the approach to the output 
feedback case. Section V provides examples and Section VI 
concludes the paper. 

II. MODEL-BASED FRAMEWORK 

MB-NCS were introduced in [8]-[9]; this configuration 
makes use of an explicit model of the plant which is added 
to the actuator/controller node to compute the control input 
based on the state of the model rather than on the plant state. 
In [8]-[9] the state of the model is updated when the 
controller receives the measured state of the plant that is sent 
from the sensor node every h time units. Fig. 1 shows the 
interconnection of several NCSs. The labeled small blocks 
correspond to each system�’s actuator and sensor nodes. The 
actuator/controller node in MB-NCS can be represented as 
in Fig. 2. We assume that the systems are decoupled, i.e. the 
dynamics of each system in Fig. 1 depend only on its own 
state. Without loss of generality we will focus on a particular 
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system/model pair. The dynamics of the plant and the model 
can be described respectively by: 

x Ax Bu                                   (1) 
  �ˆ �ˆ�ˆ �ˆx Ax Bu                                  (2) 

where  and the matrices  represent the 
available model of the system matrices A,B. The control 
input is given by: 

�ˆ, nx x �ˆ �ˆ,A B

�ˆu Kx .                                    (3) 

 

 
Fig. 1.  Networked Control Systems. 

 

 

 
Fig. 2. Model-Based Networked Control System actuator/controller node.  

The plant may be unstable i.e. not all eigenvalues of A 
have negative real parts. The aim using this configuration is 
to operate in open-loop mode for as long as possible and 
using the estimated state provided by the model to generate 
the control input u. The work presented in [16]-[18] 
considered the use of intermittent feedback. In this case the 
networked system operates using two modes: open-loop and 
closed-loop modes. During the open-loop period no 
measurement updates are sent from the sensor to the 
controller. During the closed-loop period it is assumed that 
the controller receives continuous measurements from the 
sensor.  

The main contribution in this paper is to relax the 
assumption that during the closed-loop mode of operation it 
is possible to obtain continuous measurements of the state. 
In this paper we propose a more practical implementation of 
intermittent feedback over networks and using the model-

based approach. In the present paper we do not assume 
continuous communication over a network for finite periods 
of time; instead, we consider a fast update rate during the 
closed-loop period and we provide conditions for stability 
for two cases: the state feedback and the output feedback 
cases.  

III. STATE FEEDBACK CONTROL WITH INTERMITTENT 
FEEDBACK 

When considering continuous time systems we are not 
really capable of implementing a closed-loop mode of 
operation since it requires continuous feedback from the 
sensor to the controller using a limited-bandwidth network 
as a communication medium.  

A more realistic way of implementing intermittent 
feedback for continuous time systems is to consider fast and 
slow update rates. During the closed-loop time interval the 
sensor sends measurements at discrete points of time in a 
periodic fashion and during the open-loop mode the sensor 
never attempts to establish communication. 

Open-loop. No measurements are received. 
Closed-loop. Updates are received at a high rate but no 

continuous feedback is assumed. 
There are several parameters that are used for the analysis 

of this type of intermittent feedback MB-NCS.  

h: represents the duration of the entire cycle. 
: represents the interval of time when the controller is 

receiving updates at higher frequency, this interval 
corresponds to the closed-loop duration of the 
cycle. 

f: is the time interval between successive fast updates. 

f f
: represents the number of fast updates during 

the closed-loop duration of the cycle and it is 
assumed to be an integer.  

Fig. 3 presents a general illustration of the time-related 
parameters (h, , f) described above. The dark arrows 
represent the update instants. 

 

 
Fig. 3. Representation of parameters involved in the model based approach 

with intermittent feedback. 
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Consider the plant, model, and control input (1)-(3). 
Define the state error  

�ˆe x x                                    (4) 

and the error matrices   �ˆ ,A A A �ˆ.B B B
The response of the MB-NCS with fast and slow update 

rates is given in the following proposition. 
Proposition 1. The system described by (1)-(2) and input 

(3) with initial conditions , has the 

following response: 
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we have that the dynamics of the system and model can be 
represented by 
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Rewriting in terms of x and e, that is, of the vector z, we 
have the following: 
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When any of the update measurements are received at the 
controller node the following update takes place 

�ˆ( ) (k kx t if x t if                            (8) 

for i=0,... f . This means that the error part of the 
augmented state vector resets to zero:  

( ) ( )
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e t if
              (9) 

We consider the major update times k , k=0,1,... They 
represent the beginning of a new cycle, that is, they 
represent the first time instant that updates are received after 
an open-loop period, see Fig. 3. Let  represent, in 
general, the augmented state after the first update takes 
place. The time  is not necessarily equal to zero, that is, we 
do not require the system to start in the closed-loop interval 
but at any time of the cycle. It follows that: 

t

( kz t )

0t

( )( ) ( )kt t
kz t e z t ,   .             (10) [ , )k kt t t f

Equation (10) corresponds to the behaviour between 
updates in which the model state is used to compute the 
control input and the system follows the dynamics (7). 

In particular, at time  we have kt f ( )kz t f  

 because of the second update. The response 

of the augmented system during the following period can be 
expressed in a similar way. 
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. The response of the system at every 

update is of similar form including the last update of the 
cycle which takes place at time 
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The second part of the cycle corresponds to the open loop 
mode when no update is transmitted for the time interval 

1[ ,k kt t t ; the response of the augmented system can 
be represented by:  

( ( ))( ) ( )kt t
kz t e z t , 1[ ,k kt t t ) .       (13) 

At time 1kt  we begin a new cycle and the first update of 
that cycle takes place at that same instant. The response of 
the system, including the first update, in terms of can 
be written as follows: 
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Due to the periodicity of the open loop and closed loop as 
defined in this section and the periodic fast updates during 
the closed loop periods, the response of the augmented 

system to initial conditions  is given by: 0
0 0
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The last expression provides the state of the system at 
time instants , k=0,1,... The response at any time kt

1( , )k kt t t  can be obtained simply by pre-multiplying the 
corresponding partial response.  

A necessary and sufficient condition for stability of the 
networked system with fast-slow update rates is presented in 
the following theorem.  

Theorem 2. The system described by (1)-(2) with input 
(3) and with fast-slow intermittent update rates is globally 

exponentially stable around the solution 
0
0

x
z

e
 if 

and only if the eigenvalues of 
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are within the unit circle of the complex plane.  

Proof. Sufficiency. Taking the norm 
described as in 1 we have the following:
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Now let�’s analyze the first term on the right hand si
(16). It is clear that this term will be bounded if and only if 

the eigenvalues of  lie inside 
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with 1 1, 0K .  
Since k is a function of time we can bound the r
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 We can conclude from (16) and using (18) that: 
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eigenvalue outside the unit circle. Since the system is stable, 

other w dic sample of the 

sample at times kt . We can express the solution kt  as: 

0( ) k
kz t M z .                                   (20) 

We also know that M has at least one eigenvalue outside 
the unit circle. This means that ( )kz t  will in g neral 

ith k. In other words we cannot ensure ( )kz t  will converge 
to zero for general initial conditio  0z . 
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this clearly means the system cannot 
have a contradiction.   
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IV. OUTPUT FEEDBACK CON ROL 
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ntinuous access to the output of the system since it is 
implemented at the sensor node. In order for the observer to 
obtain access to the system�’s input, a copy of the model is 
also implemented at the sensor node and the state of that 
model is updated at the same updated instants as the model 
in the controller node.  

The state of the model is now updated using the observer 
state. Define the observer-model state error 
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Theorem 4. The system described by (22)-(24) with input 
(3) and with fast-slow intermittent update rates is globally 

exponentially stable around the solution 
0
0
0

x
z x

e
 if 

and only if the eigenvalues of 

 ( )

0 0 0 0
0 0 0 0
0 0 0 0 0 0

f

o o

t

h

I I
I e I e f           (27) 

are within the unit circle of the complex plane.  

V. EXAMPLE 
Example 1. Consider the following open-loop unstable 
continuous-time system: 

0.76 2.23 1.14
,

1.87 2.56 0
A B .                (28) 

The nominal model dynamics are given by: 

1 2 1�ˆ �ˆ,
2 3 0

A B .                         (29) 

The control gain is obtained based on the available model 
parameters:    

5.4621 11.1658 .K                     (30) 

Suppose that the closed loop time , when updates are 
received at a faster rate, and the update period f are given  

0.4sec
0.1sec.f

 

We want to find the range of values for h that result in 
stability. Fig. 4 shows the eigenvalue of matrix (15) with 
maximum magnitude for different values of h . The plot 
shows that stability is obtained for choices of h greater than 
0.4 seconds to about 1.83 seconds.  

The response of the system for different choices of h is 
presented in Fig. 5 �– Fig. 7. In Fig. 5, h=1 second was 
chosen and the system is stable as expected. In Fig. 6 the 
selected period is h= 1.83 seconds and the system is stable 
with large oscillations. The eigenvalue with maximum 
magnitude is very close to one in this case. Fig. 7, in 
contrast, shows the response of an unstable system since 
h=1.84 seconds is used and the eigenvalue of (15) with 
maximum magnitude is 1.006.     

 
Fig. 4. Maximum eigenvalue of matrix (15) for different 

values of h. 

 
Fig. 5. System response with h=1 sec. 

 
Fig. 6. System response with h=1.83 sec. Maximum eigenvalue 

equal to 0.985. 

Example 2. The results in this paper offer necessary and 
sufficient conditions for stability in terms of different 
parameters including the parameters of the system which are 
unknown. In this example we use the results in Theorem 2 to 
estimate the admissible uncertainties for given model 
parameters, i.e. those uncertainties that result in a stable 
model-based control system.  
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Fig. 7. System response with h=1.84 sec. Maximum 

eigenvalue=1.006. 
 

The example considers a first order system for simplicity 
but the same type of search can be followed for systems of 
higher order by searching over an increased number of scalar 
parameters corresponding to the elements of the real system 
matrices. Let the model parameters be given by: �ˆ �ˆ1, 1A B  
and let us fixed the network parameters: h=2 sec, =0.5 sec, 
f=0.1 sec. Fig. 8 shows the eigenvalue of (15) with 
maximum magnitude for different values of A and B, the real 
parameters. The figure shows which combinations of plant 
parameters result in a stable control system for the given 
selection of model and network parameters.  
 

 

 
Fig. 8. Maximum eigenvalue of matrix (15) for different values of A and B. 

 

VI. CONCLUSION 
Necessary and sufficient conditions for stability of MB-

NCS with intermittent feedback have been presented in this 
paper. In contrast to previous work we do not require 
continuous network communication during finite periods of 

time. The approach in this paper is based on the 
implementation of different communication periods that are 
used to update the state of the model. This work preserves 
the advantages of the open-loop and closed-loop modes of 
operation concerning the efficient use of network bandwidth 
while providing a simple and practical approach for 
transmission of measurements during the closed-loop 
periods. In this paper we considered model uncertainties and 
the absence of feedback measurements for possibly long 
periods of time. Future work will consider other important 
aspects of network communication such as network induced 
delays.  
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