ARTIFICIAL INTELLIGENCE PLANNING PROBLEMS IN A PETRI NET FRAMEWORK

K.M. Passino and P.J. Antsaklis
Department of Electrical and Computer Engineering
University of Notre Dame, Notre Dame IN 46556

ABSTRACT

Artificial Intelligence planning systems determine a sequence of actions to be taken to solve a problem. This is accomplished by generating and evaluating alternative courses of action. A special type of Petri net is first defined and then used to model a class of Artificial Intelligence planning problems. A planning strategy is developed using results from the theory of heuristic search. In particular, the A* algorithm is utilized. From the Petri net framework it is shown how to develop an admissible and consistent A* algorithm. As an illustration of the results three Artificial Intelligence planning problems are modeled and solved.

1.0 INTRODUCTION

Given a goal to achieve, an Artificial Intelligence (AI) planning system reasons from the state of its problem domain to determine the sequence of actions that will move the current state into the final goal state. Planning systems are used, for example, in the intelligent control of robots. A planner employs intelligent problem solving techniques that are fundamental to many intelligent control systems. Although many of the basic issues in planning systems are well understood empirically, they have not been adequately quantified in a mathematical framework. Formal mathematical analysis will lead to quantitative and qualitative results and it will produce modeling, analysis, and design techniques for planning systems.

In this paper an appropriate Petri net framework is introduced to quantitatively model, analyze, and design AI planning systems. Based on this Petri net framework, a planner which uses heuristic search techniques, the A* algorithm, is developed. For AI planning problems that are modeled by the Petri net it is shown that an admissible and consistent A* algorithm can be implemented. This is done by defining metric spaces associated with the Petri net and using the metric in the A* algorithm (See Section 2.3). The theoretical results are discussed in Section 2.4. To illustrate the theory, the three AI planning problems given in Section 3.0 are modeled with the Petri net, metrics are specified, and the A* algorithm is used to develop solutions. The concluding remarks given in Section 4 consist of a discussion of the examples.

In the following, some of the fundamental concepts in AI planning theory are outlined, characteristics of the Petri nets used to model the problem domain are discussed, and it is explained how heuristic search is used to implement planning strategies. Then an overview of relevant research is given.

General information on the theory of AI planning is given in [1], [2], and [14]. A very brief overview is given here to establish the terminology. An AI planning system consists of the planner, the problem domain, their interconnections, and the exogenous inputs. The outputs of the planner are the inputs to the problem domain. They are the control actions taken on the domain. The outputs of the problem domain are inputs to the planner. They are measured by the planner and used to determine the progress in the problem solving process. The measured exogenous input to the planner is the goal. It is the task of the planner to examine the problem domain outputs, compare them to the goal, and determine what actions to take so that the goal is met. The problem domain is the domain (environment) that the planner reasons about and takes actions on. One develops a model of the real problem domain to study planning systems called the problem representation. The functional components of a typical AI planner are as follows [1]: Plan generation is the process of synthesizing a set of candidate plans to achieve the current goal. This can be done for the initial plan or for replanning if there is a plan failure. In plan generation, the system projects (simulates, with a model of the problem domain) into the future, to determine if a developed plan will succeed. The system then uses heuristic plan decision rules based on resource utilization, probability of success, etc., to choose which plan to execute. The plan executor translates the chosen plan into physical actions to be taken on the problem domain. The planners considered here are domain independent since they are applicable to a variety of problem domains.

A Petri net model, defined in Section 2.1, is used for the problem representation. The definition is similar to the definition given in [12] but it also allows for control inputs to the Petri net and outputs. In [7] a "Controlled Petri Net" was defined in a somewhat different manner. The definition in Section 2 includes the so called "inhibitor arc", and equation (2.2) was created to describe its effect on the operation of the Petri net described via state equations. The Petri net defined here also allows for the specification of a cost to fire a transition via the specification of the transition cost function in Section 2.1. Such costs could, for example, represent a measure of the resources consumed in performing the actions associated with firing a transition. Projection and plan generation are performed with the Petri net model.

The planners studied here utilize heuristic search to solve problems. The results from the theory of heuristic search using the A* algorithm outlined in Section 2.2 mainly come from [5, 6, 3, 13]. Other information can be found in [10, 11]. Under certain conditions the A* algorithm can, from an initial node of a graph, find a least cost path to some goal node. When used for planning problems the algorithm can be used for the plan decisions discussed above, to determine which plan will achieve some goal with least cost in terms of, for instance, resource consumption. Once the appropriate plan is found A* gives it to the plan executor so that the actions can be taken on the problem domain.

Other relevant research is given in [4]. There the authors use a high level Petri net to represent both the knowledge and inference strategy in expert systems. Some analysis results are obtained. Some planning systems are implemented in the computer programming language named PROLOG. An analysis of concurrency in PROLOG via Petri nets is reported in [9]. Such results could be utilized in an analysis of concurrency in AI planning systems.

2.0 PLANNING VIA HEURISTIC SEARCH IN A PETRI NET FRAMEWORK

In this section, the Petri net appropriate for problem domain representation is defined. Some of the theory of heuristic search using the A* algorithm is outlined. The main results on how to use the Petri net model to define a metric which can be utilized to obtain an admissible and consistent A* algorithm are given and discussed.

2.1 Modelling the Problem Domain with a Petri Net

A Petri Net is used to model the problem domain. Let R denote the set of reals and R* the strictly positive reals. Let N denote the set of nonnegative integers. If
domain x,y ∈ N, x=[x1,x2, ..., xn], y=[y1,y2, ..., ym] (t indicates transpose) the statement x≥y is true iff xj≥yj, 1≤j≤n. Similarly for >, <, and ≤. For any set X let |X| denote the cardinality of X. A bag is a collection of objects over some domain D, but unlike standard definitions of a set, bags allow multiple occurrences of elements [12]. Let B be a bag, then #(x,B) represents the number of occurrences of element x in bag B. The set D* is the set all bags over a domain D. Let ∅ denote the null set.

The Petri Net structure is described by

P=(P,T,|P|,D,|D|,Nn,|Nn|,D,A,∪,∩,Y,∩) where:

(i) P={p1,p2, ..., pn} is a non-empty finite set of m elements places which are represented graphically with circles ().

(ii) T={t1,t2, ..., tm} is a non-empty finite set of m places transitions which are represented graphically by line segments or rectangles ()

Note that P∩T=∅.

(iii) P→P is a mapping from transitions to the set of all bags over P. This mapping is represented graphically by a directed arc () pointing from each input place p∈ P to tj.

(iv) P→P is a mapping from transitions to the set of all bags over P. This mapping is represented graphically by a not arc () pointing from each input place p∈ P to tj.

(v) O→P is a mapping from transitions to the set of all bags over P. This mapping is represented graphically by directed arcs () pointing from the transition tj to each output place p∈ O(tj).

For all p∈ P, there exists tj∈ T and for all tj∈ T there exists p∈ P such that #(p,|P|) + #(p,|N|) + #(p,|O|) ≥ 1. That is, every arc has a transition on one end and a place on the other, no transition and place exists without being connected to an arc.

(vi) P→T is a mapping from a control input label u∈ U to a single transition tj∈ T. This mapping is represented graphically by a labelled control arc () which connects an element u∈ U to a single transition tj∈ T.

(vii) Y→P is a mapping from a place p∈ P to an output label y∈ Y. This mapping is represented graphically by a labelled output arc () which connects an element p∈ P to a single output yj.

A complete description, which also includes the execution characteristics of the Petri Net, is given by

P=(P,S,X,S,Xp,Sm,E,Up,Yp,Φ,Z) where:

(i) P is described above.

(ii) X→Y is the marking function, a mapping from a place and a nonnegative integer k representing a time step into a nonnegative integer representing the marking of the place. The n-dimensional column vector x(k)= [Xp(p1,k), Xp(p2,k), ..., Xp(pn,k)] is used to denote the state of the Petri net. The state space of P is Nn.

(iii) X→Y is the state space of the Petri net is represented graphically by tokens () that are put inside places (e.g. if Xp(p1,k)=2 is represented as p1()).

(iv) E→E is a non-empty finite set of initial conditions for the state of the Petri Net.

(v) E→E is the enable rule, a mapping from Xp(k), x(k+1), and a nonnegative integer k representing a time step into subsets of transitions that are said to be enabled at step k. The notation tje E is used to indicate that tj is enabled at step k.

As an example, if the enable rule only depends on Xp(k), then a candidate for the enable rule is given by

E={(tje E | Xp(pj,k)≥2 #(#pi,|D|))}

and then E(tje E)=0 if πe E(tje E) for all πp E.

A transition can fire whenever it is enabled. Tokens are redistributed in the Petri net when a transition fires. The next state function below describes token movement. First, the input to the Petri net which controls the firing of the transitions is defined.

(v) U→∪ is an input label u∈ U and a nonnegative integer k representing a time step to 0, indicating that the transition tje E cannot fire, or to 1 indicating that a transition tje E can fire (tje E).

The vector u=(u1, u2, ..., un) of the input u is defined if and only if uπp E(tje E) for all πp E.

For example, if k=0, then Uu=(0 0 0) and Uu=1 is the jth position.

(vi) Y→∪ is the output label y∈ Y and a nonnegative integer k representing a time step to Yp(k) such that yπp E. The n-dimensional column vector y(k)= [Yp(y1,k), Yp(y2,k), ..., Yp(yn,k)] is the output of the Petri net and yp(k)∈ Nk for all k.

(vii) O→P is the next state function, a mapping from the current state Xp(k), a control input vector u(k) at a transition tj∈ E, and a nonnegative integer k representing a time step, into the next state Xp(k+1). The next state function is defined iff for a control input u(k)∈ U the associated transition tj∈ T is enabled at step k.

(viii) Z→∪ is the transition cost function, a mapping from a transition tj∈ E, Xp(k) and x(k+1), and a nonnegative real number into a strictly positive real number that represents the cost of firing tj. Since the firing of a transition often represents some computation or action performed Z is a measure of the cost to process the state Xp(k) into Xp(k+1) by firing tj. The transition cost function is defined iff the transition tj∈ T is enabled at step k. Furthermore, Z is chosen so that for all re R∪{0} Z(tj,x(k),x(k+1),r)>r. The significance of the value of r will be discussed in the next section.

As an example of a next state function, consider one that depends only on the current state and transition fired. Let

Φ=[φ1, φ2, ..., φm]. Let A'=a1, where a1=#(p1,|D|) and A'+=[a1], where a1=#(p1,|O|). Let A=A' - A. Let
B=[b_{ij}] where b_{ij}=0 if \(i \notin I_k(p_i) \) and b_{ij}=1 if \(i \in I_k(p_i) \). Let \(a_j \) and \(b_j \) refer to the jth columns of A and B respectively. Then the example enable rule (2.1) can be stated as
\[
E_{r}(x_{p}(k))=\{ l \mid x_{p}(k) \geq a_j \text{ and } x_{p}(k) \cap b_j=0 \}
\]
(2.2)
If \(u_{k}(k) \) is chosen so that \(u \in E_{r} \) is fired, where \(E_{r} \) is given by (2.2), then
\[
\phi_{i}=x_{p}(p_{i},k+1)=x_{p}(p_{i},k) - \#(p_{i},I_{k}(p_{i})) + \#(p_{i},O_{p}(p_{i})) \text{ for all } i, 1 \leq i \leq n
\]
(2.3)
and,
\[
x_{p}(k+1)=x_{p}(k) + Au_{k}(k)
\]
(2.4)
which are the state equations describing the Petri net [12].

Next the some of the results from the theory of heuristic search using the A* algorithm are outlined. These results will be combined with the Petri net model to obtain the results in Section 2.3.

2.2 Heuristic Search: The A* Algorithm

Some results from the theory of a heuristic search, in particular the A* algorithm, are outlined below [5, 6, 3, 13].

The problem space is represented explicitly by a δ-Graph where:

(i) \(X=\{x_1, x_2, x_3, \ldots \} \) is the non-empty possibly infinite set of nodes.
(ii) \(E=\{c_{ij}\} \), where \(c_{ij} \in X \) is the non-empty possibly infinite set of directed arcs pointing from \(x_i \) to \(x_j \).
(iii) \(C=\{c_{ij}:c_{ij} \in E \} \) is the non-empty possibly infinite set of costs associated with each arc. Also, for all \(c_{ij} \in C \), \(c_{ij} \geq 0 \).

An implicit representation of the δ-Graph G is given by a set of source nodes and a successor operator \(\Gamma:X \rightarrow 2 \times X \times C \).

When G is applied to a node \(x \) it is expanded. The δ-Graph is generated by repeated application of the successor operator \(\Gamma \) to nodes that are generated in expanding nodes.

The subgraph \(G_{x} \) from any \(x \in X \) is the graph defined implicitly by a single source node \(x \) and some \(\Gamma \) defined on \(X \). Each node in \(G_{x} \) is accessible from \(x \). A path from \(x_1 \) to \(x_k \) is an ordered set of nodes \(x_1, x_2, \ldots, x_k \) such that \(x_{k+1} \in \Gamma(x_k) \) for all \(1 \leq k \leq n \). There exists a path from \(x_1 \) to \(x_j \) iff \(x_j \) is accessible from \(x_i \). Every path has a cost which is obtained by adding the costs of each arc \(c_{ij} \in C \). An optimal path from \(x_i \) to \(x_j \) is a path having the smallest cost over the set of all paths from \(x_i \) to \(x_j \), call this cost \(h(x_i,x_j) \). Denote an estimate of this cost by \(\hat{h}(x_i,x_j) \). The concern is with the subgraph \(G_{x_0} \) from a single specified start node \(x_0 \in X \). Define the non-empty set \(X_{G_{x_0}} \) of nodes in \(G_{x_0} \) as goal nodes. For any node \(x \) in \(G_{x_0} \) an element \(x_{G_{x_0}} \in X_{G_{x_0}} \) is a preferred goal node of \(x \) iff the cost of the optimal path from \(x \) to \(x_{G_{x_0}} \) does not exceed the cost of any other path from \(x \) to any other member \(x_{G_{x_0}} \).

The object is to find the optimal path from the start node to preferred goal node. To help guide the search an evaluation function \(v:X \rightarrow \mathbb{R}^+ \cup \{0\} \) is used to rank how promising it is that a node is on an optimal path. The evaluation function is defined so that the node with the smallest value of \(v(x) \) is chosen for expansion. One algorithm that performs heuristic search is the A* algorithm which is now defined:

Let \(L_c \) be the set of information about ("closed") nodes which have been expanded, and \(L_o \), the set of information about ("open") nodes which are candidates for expansion. The elements of \(L_c \) and \(L_o \) are triples \((x,v(x),x) \) where \(x \in \Gamma(x) \) and \(x \) represents a pointer from \(x \) to \(x \). The notation \(x \in L_c \) and \(x \in L_o \) is used to reference element \((x,v(x),x) \).

The A* Algorithm:

Set \(L_c=\emptyset \) and \(L_o=\{x_0\} \), the start node.

While \(L_o \neq \emptyset \) do

Choose \(x \in L_o \) so that \(x \) has the lowest value of \(v(x) \) (Resolve ties arbitrarily).

If \(x \in X_g \), then Exit with success and the solution path is found by tracing back through the pointers, else Place \(x \) in \(L_c \).

For each \(x \in L_o \) do

Calculate \(v(x) \).

(i) If \(x \in L_c \) and \(x \in L_o \) then place \((x',v(x'),x) \) in \(L_o \).

(ii) If \(x \in L_o \) then denote this \(x \) with \((x',v(x'),x_1) \), where \(v(x') \) was the value of the evaluation function, and \(x_1 \) was the parent of \(x \), computed in a previous step. If \(v(x')<v(x) \) then replace \((x',v(x'),x_1) \) with \((x',v(x'),x) \) in \(L_o \).

(iii) If \(x \in L_o \) then denote this \(x \) with \((x',v(x'),x_1) \), where \(v(x') \) was the value of the evaluation function, and \(x_1 \) was the parent node of \(x \), computed in a previous step. If \(v(x')<v(x) \) then remove \((x',v(x'),x_1) \) from \(L_c \) and place \((x,v(x),x) \) in \(L_o \).

end

Exit with failure.

The evaluation function \(v(x) \) must be chosen. Let \(f(x) \) be the actual cost of an optimal path constrained to go through \(x \) from the start node \(x_0 \) to a preferred goal node \(x_g \in X_g \). Let \(f(x)=g(x)+h(x) \) where \(g(x) \) is the actual cost of an optimal path from \(x_0 \) to \(x \) and \(h(x) \) is the cost of an optimal path from \(x \) to a preferred goal node \(x_g \), i.e., \(h(x)=\min h(x,x_g) \). Since \(f(x) \), \(g(x) \), and \(h(x) \) are not known apriori, the estimates \(\hat{h}(x), \hat{g}(x), \) and \(\hat{f}(x) \) are used. Therefore, choose \(v(x)=\hat{f}(x)=\hat{g}(x)+\hat{h}(x) \). The function \(\hat{f}(x) \), called the heuristic component of the evaluation function, is used to capture information from the problem domain to guide the search. If \(\hat{f}(x) \) satisfies certain properties then the A* algorithm performs well.

If some goal node is accessible from the start node and \(0<\hat{f}(x)<h(x) \) for all \(x \in X \), then A* is admissible, i.e., it is guaranteed to find an optimal path from the start node to a preferred goal node for any δ-Graph. The heuristic \(\hat{f}(x) \) is said to be consistent if \(h(x,x_j)+\hat{h}(x_j) \geq \hat{h}(x) \) for all \(x_j \in X \). The heuristic \(\hat{h}(x) \) is said to satisfy a monotone restriction if for all \(x \in X \), \(h(x,x_j) \geq \hat{h}(x) \). If \(\hat{f}(x) \) is consistent then it automatically satisfies the monotone restriction. If \(\hat{f}(x) \) satisfies the monotone restriction then (i) if \(A^* \) selects \(x \) for expansion \(\hat{g}(x)=g(x) \), and the value of \(\hat{f}(x) \) for \(x' \) on the path from \(x_0 \) to \(x \) is nondecreasing; consequently (ii) step (iii) in the A* algorithm is vacuous and can be removed. Suppose that there are two versions of the A* algorithm called A1 and A2 which use evaluation
functions $\hat{h}_i(x) = \hat{g}_i(x) + \hat{h}_i(x)$ where $0 \leq \hat{h}_i(x) \leq h(x)$ for all $x \in X$, $i = 1, 2$. The algorithm A_2 is said to be more informed than A_1 if for all nongood nodes x_i, $\hat{h}_2(x) > \hat{h}_1(x)$. The following optimality result was obtained. If $\hat{h}_2(x) > \hat{h}_1(x)$ then at the termination of their searches every node expanded by A_2 was also expanded by A_1. It follows that A_1 expands at least as many nodes as does A_2.

2.3 Heuristic Search in a Petri Net Framework

Utilizing these results on heuristic search outlined in Section 2.2 and the Petri net model defined in Section 2.1 it is shown how to develop an admissible and consistent A^* algorithm for a certain class of problems. First, a metric and a metric space is defined [8].

Let \overline{X} be an arbitrary non-empty set and let $p: \overline{X} \times \overline{X} \to \mathbb{R}$ where p has the following properties:

(i) $p(x,y) \geq 0$ for all $x,y \in \overline{X}$ and $p(x,y) = 0$ iff $x = y$, (ii) $p(x,y) = p(y,x)$ for all $x,y \in \overline{X}$, (iii) $p(x,y) \leq p(x,z) + p(z,y)$ for all $x,y,z \in \overline{X}$ (Triangle Inequality).

The function p is called a metric on \overline{X} and the mathematical system consisting of p and \overline{X}, denoted (\overline{X}, p), is called a metric space. Equivalently, p is a metric iff, (i) $p(x,x) = 0$ iff $x = y$, and (ii) $p(y,z) \leq p(x,y) + p(x,z)$ for all $x,y,z \in \overline{X}$.

The next theorem says that if the nodes of a certain δ-Graph and the heuristic function $\hat{h}(x_i,x_j)$ form a metric space, then the A^* algorithm is both admissible and consistent.

Theorem 1: Define $\eta_{ij}: \mathbb{R}^\times \cup \{0\} \to \mathbb{R}^+$ and $\eta_{ij}(x) > x$ for all $x \in \mathbb{R}^\times \cup \{0\}$. Let $G = (X, E, C)$ be a δ-Graph where for all $c_{ij} \in C$, $c_{ij} = \eta_{ij}(\hat{h}(x_i,x_j)) > 0$ with $x_i \in \Gamma(x_i)$. If $(\overline{X}, \hat{h}(x_i,x_j))$ is a metric space then A^* is both admissible and consistent.

Proof: For admissibility it must be shown that $0 \leq \hat{h}(x_i,x_g) \leq h(x_i,x_g)$ for all $x_i \in X$, $x_g \in X$. Since $h(x_i,x_g)$ is a metric $\hat{h}(x_i,x_g) \geq 0$ so that all must be shown is $\hat{h}(x_i,x_g) \leq h(x_i,x_g)$. Let x_0, x_1, \ldots, x_k be a path generated by A^*. From the triangle inequality, $\hat{h}(x_i,x_k) \leq \hat{h}(x_i,x_{k+1}) + \hat{h}(x_{k+1},x_k)$ for all $i, 0 \leq i \leq k$. Therefore

$$\hat{h}(x_i,x_k) \leq \sum_{i=0}^{k-1} \hat{h}(x_i,x_{i+1}).$$

Selecting η_{ij} as stated in theorem above, it follows that

$$\hat{h}(x_i,x_k) \leq \sum_{i=0}^{k-1} \eta_{i,i+1}(\hat{h}(x_i,x_{i+1})) = h(x_i,x_k).$$

By assumption, the node x_g is accessible, therefore for some path generated by A^*, $x_k = x_g$, hence A^* is admissible. To prove consistency it must be shown that $h(x_i,x_j) = h(x_j,x_i)$ for all $x_i, x_j \in X$. By the triangle inequality $\hat{h}(x_i,x_j) + \hat{h}(x_j,x_k) \geq \hat{h}(x_i,x_k)$ and from admissibility $\hat{h}(x_i,x_j) \geq \hat{h}(x_i,x_k)$ so that $h(x_i,x_j) = \hat{h}(x_i,x_j)$. Note that the monotone restriction is also satisfied. **QED**

Note that for $\mathbb{R}^n = \overline{X}$ if (\mathbb{R}^n, p) is a metric space then so is (X, p) [8]. A few candidate metrics are listed below:

(i) $p_0(x,y) = 0$ if $x = y$ and 1 if $x \neq y$, called the discrete metric.

Denote elements $x,y \in \mathbb{R}^n$ by $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ then $\|x - y\|_p = (\sum_{i=1}^n |x_i - y_i|^p)^{1/p}$ for $1 \leq p \leq \infty$.

(ii) Let $X = \mathbb{R}^n$ and $p(x,y) = 0$ iff $x = y$, then (\mathbb{R}^n, p) is a metric space

$$\rho_p(x,y) = \left[\sum_{i=1}^n |x_i - y_i|^p \right]^{1/p}$$

Let W be a positive definite matrix. Then if $\rho_p(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$ is a metric space.

(iii) Let $X = \mathbb{R}^n$ and $p(x,y) = 0$ iff $x = y$, then (\mathbb{R}^n, p) is a metric space

$$\rho_p(x,y) = \left[\sum_{i=1}^n (x_i - y_i)^2 \right]^{1/2}$$

The next theorem is an application of Theorem 1.

Theorem 2: Suppose a system is described with the Petri net P_N and that an initial state and a reachable desired state are specified. Then there exists an admissible and consistent A^* algorithm that can select the appropriate sequence of transition firings to move the initial state to the desired state with least cost.

Proof: First, a δ-Graph representation of the Petri net P_N is given. Let $X = \mathbb{R}^n$, the state space of the Petri net P_N. Suppose that the enable rule E_x is given (2.2) and the next state function by (2.4). Let $x_0 = x_{p}(0) \in X_{p0}$ and the edges and costs are generated by

$$\Gamma(x_{p}(k)) = (\{x_{p}(k+1), c\} | x_{p}(k) = x_{p}(k) + A_{up}(k), c \in \mathbb{R}^n)$$

with $r = \hat{h}(x_{p}(k), x_{p}(k+1))$. Note that $\Gamma(x_{p}(k))$ is finite for all $x_{p}(k)$ and the assigned cost $c = \delta^2 = 0$. The assigned cost depends on the value of the metric $\hat{h}(x_{p}(k), x_{p}(k+1))$. Note that for a particular Petri net model if it is the case that $x_{p}(k+1) = x_{p}(k) + 1$ for all k then Theorem 1 is also valid for $\eta_{ij}(x_i)$ for all $x_i \in R$. In this case the transition cost function can be chosen as $Z(t_i, x_{p}(k), x_{p}(k+1), x_i)$ and used in (2.8).

Next, choose $\overline{X} = X$, and $\hat{h}(x_i, x_j)$ equal to any valid metric such as p_0, p_1, p_2, or p_∞. Then by Theorem 1, A^* is both admissible and consistent and thus finds a least cost path. To choose the sequence of transition firings A^* traces back through the pointers from x_{p} to x_0.

QED

2.4 Discussion

The significance of the results contained in the previous two theorems is discussed here.

Does Theorem 1 provide a method to pick the value of the heuristic function $\hat{h}(x_i, x_j)$ to obtain admissibility and consistency for any δ-Graph? No. There is a restriction placed on the costs allowed that depends on the choice of the metric. However, costs may be able to be redefined to fit the particular problem at hand and Theorem 1. The flexibility in the choice of the metric will help here. Another question left to be answered is how good the metrics are? This is a standard problem in the theory of the A^* algorithm. For instance, if the chosen metric is such that it gives an
extremely conservative estimate of the cost from all nodes x to a the preferred goal node, then A^* may expand too many nodes in finding a solution. The computational complexity involved in computing the metric itself must also be considered when studying the computational demands of a particular A^* algorithm.

Theorem 2 allows the planning system designer to transfer the work of choosing the heuristic function $h(x_i,x_j)$ to forming the Petri net model of the problem domain under consideration. This can be valuable if it is not clear how to pick the heuristic function for a particular problem domain. However, if the problem domain cannot be modelled via the Petri net defined the result cannot be utilized. Also, practically speaking, the Petri net model may be too complex to be utilized in the implementation of the A^* algorithm.

3.0 EXAMPLES

This section contains three examples to illustrate some of the results in Section 2. These include the blocks world planning problem, a “think and jump” game, and the missionaries and cannibals problem. Many details were omitted to save space.

Blocks World: The first example is the so called “blocks world” [1]. In this classic AI planning problem there are three blocks labelled “a”, “b”, and “c” which are placed on a table “t”. Using a robot arm, the objective is to move the blocks, by stacking and unstacking them, so that from an initial configuration of the blocks, a final desired configuration can be obtained. Let ab, ct, and $cabe$ represent the facts that “block a is on b”, “block c is on the table”, and “block e is on a which is on b” respectively. Also let $abct$ represent the fact that block a is on block b which is on the table and block c is on the table. The initial configuration is $ca;bt$, and the desired one is $abcet$. A Petri net model was constructed. This net had 9 places, 18 transitions and used inhibitor arcs. A planning strategy was specified by choosing the metric $h(x_i,x_j)=p_2(x_i,x_j)$ defined in (2.6) with $W=I_{9x9}$, the 9x9 identity matrix. The A^* algorithm was implemented to generate the sequence of actions to be taken by the planner. A^* expanded 5 nodes before it found the optimal path. The sequence of positions of blocks considered in solving the problem (expanded by A^*) was: $cat;bt$, $cat;bc$, $at;bt;ct$, $cbt;at$, $btc;at$, then the solution was found. The solution was optimal relative to the number of steps required.

Notice that W is a parameter to be chosen to load heuristic information into the A^* algorithm. Let $W=[wij]$ where $w_{ij}=0$ if $i \neq j$ and $w_{ij}>0$ for all i. Each weight wij corresponds to a place p_i. If it is important for tokens to be in a place p_i then the corresponding value of wij should chosen to be small relative to w_{kk} where w_{ii}. If it is important not to have tokens in a particular place p_i then wij should be chosen large relative to w_{kk} where w_{ii}. A particular set of weights was chosen for blocks world to reflect the importance of achieving the goal state, and that it may be important to unstack the blocks to solve the problem. When A^* is executed with this new choice for W it expanded only 4 nodes in finding a solution: $cat;bt$, $cat;bc$, $at;bt;ct$, $btc;at$.

Think and Jump Game: The second example is a “think-and-jump” game involving a triangular board with ten holes in it, and 9 pegs which fit into the holes. The 9 pegs are put in the holes. Pegs are removed if they are “jumped” by other pegs. A peg can jump another peg only if there is an empty hole directly on the other side of the peg. See Figure 3.1.

First, the Petri net model was constructed by letting the places p_i correspond to the holes i in the board and the tokens correspond to the pegs. The initial configuration of pegs is to have one in all the holes except for hole 3, and the goal configuration is to have all pegs removed from the board except for one in hole 2. The heuristic function is chosen to be $h(x_i,x_j)=p_2(x_i,x_j)$ where W is a diagonal matrix with weights chosen to reflect the importance of attaining a token in places p_4,p_5,p_7, and p_9 since in the step before solving the problem, the algorithm must have tokens in two of these places. The function Z can also be used to capture heuristic information about the problem domain. A heuristic used in this problem’s solution is to try to keep the pegs in the middle of the board. To capture this heuristic information high values of the cost function are assigned to transitions that fire and move tokens from the middle of the board. For these choices A^* was used to find a solution to the think and jump problem above. It expanded 58 nodes. The solution generated by the planner used only 8 jumps.

Missionaries and Cannibals Problem: Three missionaries and three cannibals are trying to cross a river. As their only means of navigation, they have a small boat, which can hold one or two people. If the cannibals outnumber the missionaries on either side of the river, the missionaries will be eaten; this is to be avoided. Find a way to get them all across the river.

For the Petri net construction $P=\{p_1\}, i=1,2, ..., 6$, and $T=\{t\}, j=1,2, ..., 10$ and the net is given in Figure 3.2.

Let tokens in: (i) p_1 (p_6) represent that cannibals are on the left (right) side of the river, (ii) p_2 (p_5) represent that the boat is on the left (right) side of the river, (iii) p_3 (p_4) represent that missionaries are on the left (right) side of the river. The initial state is $x_0(0)=[3 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$, and the goal state is $x_g=[0 \ 0 \ 3 \ 1 \ 3 \ 3]$. The next state function (2.3) and the state equations (2.4) were used.

Note that the above Petri net graph does not represent the complete problem. The fact that cannibals cannot
outnumber missionaries is not yet represented. Rather than using the graphical representation for this fact, this information is loaded directly into the enable rule. Therefore, choose
\[E_r(x_p(k),x_p(k+1)) = \{j| x_p(k) \geq a^j_r \} \text{ and } X_p(p_3,k+1) = \begin{cases} \emptyset & \text{if } x_p(p_3,k+1) > 0 \\ \{x_p(p_3,k+1) \} & \text{otherwise} \end{cases} \]

The transition cost function is defined as
\[c(x_p(k),x_p(k+1),r) = r \text{ for all } r \in R, \]
and this is valid since \(x_p(k) \neq x_p(k+1) \) for all \(k \).

The heuristics function is chosen to be
\[h(x_i,x_j) = p_3(x_i,x_j) \text{ where } W = I_6 \times 6 \]
the 6x6 identity matrix. \(A^* \) expanded 13 nodes in determining the solution. The solution generated by the planner is the sequence of transition firings: \(t_6, t_8, t_2, t_3, t_5, t_9, t_10, t_2, t_8, t_6 \). The symmetry in the solution sequence is interesting. The solution involves 11 boat trips which is the minimum number of trips needed to solve the problem.

4.0 CONCLUDING REMARKS

The examples given in the Section 3.0 are discussed here briefly. In the blocks world planning problem the Petri net graph that was generated was omitted due to space limitations. The metric was chosen via the guidelines given by the Theorems; but there is still much flexibility allowed in capturing heuristic information about the problem domain since any valid metric is allowed. In this example it was demonstrated that an appropriate choice for the metric (via \(W \)) can lead to a more efficient \(A^* \) algorithm. In the think and jump problem it was shown how to use the transition cost function to capture heuristic information about the problem domain. Notice that this provides another way to capture heuristic information about the problem domain. Hence, the metric can be used to capture heuristic information pertaining to a desire to have tokens in places and the transition cost function can be chosen to capture heuristic information pertaining to the desire to fire a transition. The missionaries and cannibals example demonstrated the flexibility of the Petri net model. All characteristics of the problem need not be modelled with the Petri net graph since certain information can be captured in, for instance, the enable rule of the Petri net.

5.0 REFERENCES