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ABSTRACT 
A complete treatment of the hidden modes of interconnected sys- 

tems in control design is presented, which extends and unifies several r e  
sults which have appeared in the literature in the past decades. The un- 
controllable and/or unobservable hidden modes of one and two degrees of 
freedom control systems are characterized in terms of transfer matrices of 
the interconnected subsystems and in terms of design parameters. This 
characterization leads directly to design conditions, which can be used to 
adequately control the hidden modes; thus, avoiding unnecessarily high 
order controllers and undesirable behavior. The methods used are based 
on polynomial matrix internal descriptions, however, all results are expres- 
sed so that they can be directly used in control design. Internal stability 
is guaranteed using a novel stability theorem which adds significant in- 
sight to the problem. A method is also presented to characterize the hid- 
den modes of any interconnected system. 

I. INTRODUCTION 
The hidden modes of a compensated system correspond 

to  the compensated system's eigenvalues which are uncontrolla- 
ble and/or unobservable from a given input or output, respec- 
tively. The hidden modes for single degree of freedom and for 
particular two degrees of freedom controlled systems have been 
studied in the literature [l-5,17-23,31-331. In this paper we 
characterize the hidden modes for the general linear two degrees 
of freedom controlled system in terms of the frequency domain 
control design tools: transfer matrices and design parameters. 
The hidden modes can, of course, be characterized using internal 
descriptions [4,11,17-201, and this is useful mainly in the analy- 
sis of control systems. In frequency domain control design me- 
thods, where transfer matrices and design parameters are used, 
these characterizations are not as helpful. This characterization 
of the hidden modes in terms of the design tools leads directly to 
design conditions, which can be used to adequately control the 
hidden modes in control design; thus, avoiding unnecessarily 
high order controllers and undesirable behavior. It is recognized 
that if the interconnected system is internally stable then the 
hidden modes, if any, will be stable. By undesirable behavior we 
mean transient responses introduced unintentionally in the d e  
sign and phenomena such as ringing (see [ll] and Example 5.2). 

In this paper a complete treatment of the hidden modes 
of interconnected systems in control design is presented, which 
extends and unifies several results which have appeared in the 
literature in the past decades. The methods used are based on 
polynomial matrix internal descriptions, however, all results are 
expressed so that they can be directly used in control design. 
Internal stability is guaranteed using a novel stability theorem 
which adds significant insight to the problem. 

The two degrees of freedom controller, C, provides a uni- 
fyin framework in approaching complicated control problems 
invofvin multiple objectives, in a manner which is configuration 
indepenfent. Several researchers have utilized C in a time do- 
main state-space formulation 

advances in understanding and effectively utilizing such control 
laws. Assuming that the plant and controller are controllable 
and observable, then the hidden modes of the controlled system 
are introduced exclusively by the interconnections. Under this 
assumption the hidden modes are completely characterized in 
terms of the transfer matrices and design parameters. The im- 
plementation of the controller, C, is usually done by intercon- 
necting available subcontrollers, where each subcontroller is de- 
signed to handle a particular task such as stability and regula- 
tion. Therefore, the resulting controller is not necessarily con- 
trollable and observable, and it introduces additional hidden 
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modes; these are also characterized. In addition, given any par- 
ticular interconnected system we introduce a systematic method 
to characterize the hidden modes; for this we use an aggregate 
system representation 141. The proofs are found in [35]. 

II. PRELIMINARIES AND HIDDEN MODES OF 

An interconnection of irreducible systems is said to be 
SINGLE DEGREE OF FREEDOM SYSTEMS 

completely characterized by its proper rational transfer matrix if 
and only if an internal description of the overall system is con- 
trollable from the input and observable from the output. If a 
transfer matrix does not completely characterize an intercon- 
nection of subsystems, then the uncontrollable eigenvalues from 
the input and the unobservable eigenvalues from the output cor- 
respond to the hidden modes of the overall system. Notice that 
the hidden modes are due exclusively to the interconnections 
since every subsystem is assumed to be irreducible. 

In classical control design of scalar systems it is straight- 
forward to characterize the hidden modes in terms of polezero 
cancellations. In the frequency domain control design of multi- 
variable systems, the hidden modes can also be characterized by 
considering "polezero cancellations." In this case, however, the 
characterization is not as direct mainly due to the fact that 
"polezero cancellations" are not as well defined in the multivar- 
iable case, and also because of the difficulty in associating hid- 
den modes with specific cancellations. Results that refer to par- 
ticular control confgurations have been reported in the litera- 
ture [l-3,211. In [16], these results have been formalized and 
extended; they are the basis of the results presented here. 

express these known conditions is given in Lemma 2.1. 
LEMMA 2.1. The system described by {?(s), Q(s), 2(s), W ( s ) }  is 
controllable from U (observable from y) if and only if the 
McMillan degree of the transfer matrix from U to z (Q(s)u(s) to 
y) is the same as the degree of 1 ?(s) I .U 

Lemma 2.1 specifies the products of transfer matrices in 
which a cancellation may result in a hidden mode; the 
uncontrollable (unobservable modes are associated with 
cancellations in ?(s)-IQ(s) (b(s)?(s)-'). In the following, 
appropriate transformations are used to map these products into 
products of transfer matrices of the interconnected subsystems. 
Transformations which yield equivalent polynomial matrix 
descriptions are used. In particular, we apply transformations 
that maintain system equivalence in the Rosenbrock sense [17]. 

It i s  well known that cancellations in products of transfer 
matrices are not simple extensions of scalar polezero cancella- 
tions. For example, it is possible to have a cancellation where a 
pole of one transfer matrix does not cancel with a zero of 
another transfer matrix (the zeros of transfer matrices are the 
transmission zeros of the system) as in 

2si3 1 1 
TI ( s )T~(s )  = -11 [v ,[=,i (2.2) 

In (2.2), TI(s) has no zeros an the pole of 2 at -2 cancels in 
TI(s)T2(s). Let bTi(s) denote the McMillan degree of Ti(S), 
i=1,2. Notice that bT,(s)=O and bT2(s)=2, while bT1T2(s)=l. 
This reduction in the McMillan degree confirms the fact that a 
pole was canceled in T ~ ( s ) T ~ ( s ) ;  the pole of T2 at -2. This pole 
corresponds to a hidden mode from the input and/or the output, 
for example, when Tl(s)T2(s) denotes the transfer matrix of the 
cascade connection of Tz(s) followed by Tl(s). 

It is now clear that cancellations in products of transfer 
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matrices should be taken as pole cancellations rather than pole 
zero cancellations. Notice that a pole of a transfer matrix Tz(s) 
cancels with a zero of a not necessarily square transfer matrix 
Tl(s in Ti s)Tz(s) only if rank(m!(s)).is full where T1=bl-lRl is 

canceled poles in a product of transfer matrices correspond to 
hidden modes from the input and/or the output if and only if 
these poles are eigenvalues of the interconnected system. Addi- 
tional observations on "multivariable cancellations" can be 

a le 1 '  t coprime polynomial factorization (1.c.). Moreover, the 

found in [16,19-23,301. 
The followinrr result will be used in the characterization 

-. -, - ,  
where TI, Tz, T3, and T4-&e pxm, mxr, pxm, and mxr, 
respectively. Note that, Tl2 can be considered to be the transfer 
matrix of the cascade connection of system Sa followed by Si, 
where each system is com ietely characterized by their transfer 
matrices Tz and [Tlt, I$, respectively. It is of interest to 
characterize the cancellations that result in a reduction in the 
McMillan degree of the resulting transfer matrix, that is, bT12 < 
qTit, I.]t + b T z  and bT34 < bT3 + 4T4, Im]. This is done in the 
following lemma. 
LEMMA 2.2. The cancellations that result in a reduction in the 
McMillan degree of the transfer matrices in (2.3) ( 2.4)) are 

!T3T4).0 
In view of Lemma 2.2, bT12=4T1t1 Im]t+bT2 and 

8I134=8l'3+b[T4, I.] if and only if (D1,NZ) is 1.c. and (R3,b4) is 
right coprime (r.c.), where TI=NlD1-1, T2=N2D2-1, T3=b3%, 
and T4=fj4% are coprime factorizations. 

We now apply the method described above to character- 
ize the hidden modes of the cascade, parallel, and feedback sys- 
tems shown in Figure 2.1. If the systems, Si, i=1,2, are assumed 
to be completely described by their proper transfer matrices Ti, 
then the hidden modes have been characterized in the literature 
before (for example, see [14,17-23,31331). Let S1 be com- 
pletely characterized by T1 and consider the case when S2 is not 
completely described by Tz. Assume that the feedback system 
is well defined, that is, II+T1T2l#O, and that every input- - 
output map is proper. 

iven by the poles of T1 (T4) which cancel in the pro 6 uct TlT2 

u2 Y 1  
(a) Cascade 

(b) Parallel 

-T I 

CASCADE: The uncontrollable modes from u2 correspond to 
the uncontrollable modes of S2 and to the poles of 
T1 that cancel in TlT2. The unobservable modes 
ei envalues of SZ from yz that cancel in Ti(22h-l). 

PARALLEL: T i e  uncontrollable modes from U correspond to 
the uncontrollable modes of S2 from U:! and to the 

controllable eigenvalues of S2 that cancel with 
poles of TI  in (?~-1Q2)D1. The unobservable modes 
from y correspond to the unobservable modes of S2 
from yz and to  the observable eigenvalues of S2 
from y2 which cancel with poles of Ti  in 

FEEDBACK: The uncontrollable modes from ri correspond to 
the uncontrollable modes of S2 and to the 
controllable eigenvalues of SZ from u2 that cancel 
in (?~-1Q2)T1. The unobservable modes from y1 
correspond to the unobservable modes of Sz and to 
the observable eigenvalues of SZ from yz that 
cancel in T1(22?~-1).o 

Lemma 2.3 demonstrates that when Sz is not completely 
described by T2, the interconnected s stems considered here 
maintain the hidden modes of Sz only gom appropriate inputs 
and outputs. Furthermore, because of the interconnection 
additional hidden modes could be introduced. 

III. STABILITY THEOREM. PARAMETERIZATION8 

where d = [-Cy, b, proper, generates the plant input U by 
independent y processing the plant output y and the external 
reference input r as seen in Figure 3.1; 

D1(22?2-1). 

The two de rees of freedom linear controller 
U = C yt, rt]t = -Cy, Cr][yt, rtjt, ( 3 4  

Figure 3.1. The controlled system. 
Sp is the linear plant described by y=Pu with P its proper trans- 
fer matrix and S, is the controller described in (3.1). It is as- 
sumed that I I+PC, I = 1 I+CyP I #O and that every inputa tput  
map is proper. Under these assumptions, the controlled system 
is said to be internally stable if the inverse of the denominator 
matrix in a polynomial matrix description is stable. If the con- 
trolled system is internally stable, we say that S, is an internally 
stabilizing controller for Sp. 

A significant step towards better understanding the role 
of C in plant compensation was recently accomplished by para- 
metrically characterizin all internally stabilizing two degrees of 
freedom controllers C; &us extending the results on parametric 
characterization of all feedback controllers Cy [24-28,1,2,14-16 
which have greatly contributed to control design methods. Ad 
internally stabilizing controllers C can be parametrically charac- 
terized using two independent stable parameters K and X as 

where m, b, XI, x2 are polynomial matrices, and they are derived 
from coprime fractional representations of the plant 

and the associated Bezout-Diophantine equation 

In (3.2), K must be such that (x1-KRI # 0, and for C proper 
need D(xz+Kf)) proper and D(x~-KR) biproper (D(x1-Km) and 
its inverse proper . In [6], x1 and x2 satisfy the Diophantine 

Hurwitz). In [9,10], (3.2) involves proper and stable matrices fl, 
b, XI, x2, K, and X. The parameter K in 2) is the well known 

controllers Cy in [24,27 The parameter X is actually the res- 
ponse parameter used ky Antsaklis and Sain [l (and Liu and 

an error ) eedback setting. If Dz = U, y = Nz is an internal poly- 
nomial matrix representation of the plant P, then it can be 
shown that 

that is, X is the transfer matrix between the input r and the 
partial state z of the plant. 

It is advantageous to study internal stability of the 
system in Figure 3.1 in a novel alternative way [21]. 
THEOREM 3.1. The compensated system is internally stable if 
and only if 
(i) 

C = (XI - KM)-l[-(x2 + Kb),  XI, (3.2) 

p = ND-1= fj-lm, (3.3) 

(3.4) xlD + x ~ N  = I. 

equation xlD+xz ps = Do, with Do a polynomial matrix ( 1  Dol 

parameter used in the characterization of a1 \ stabilizing feedback 

Sung [29] to parametrically characterize feedbac k controllers in 

z = % ,  (3.5) 

U = -Cyy internally stabilizes the system y = Pu, and 
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(ii) C, is such that M := (I + C,P)-IC, satisfies D-1M = X, a 
stable rational, where Cy satisfies (i) and P = ND-1 a 
ri ht coprime polynomial factorizati0n.o 
T%eorem 3.1 separates the role of Cy, the feedback part 

of C, from Cr in achieving internal stability. Clearly if only 
feedback action is considered, only (i) is of interest; and if open 
loop control is desired, C,=O, (i) im lies that P must be stable, 
and Cr=M must satisfy (ii). In (iip the parameter M (=DX) 
appears rather naturally and in (i) the way is open to use any 
desired feedback parameterization, not necessarily K of 6,9-lo]. 

output maps attainable from r with internal stability. In 
particular, consider the two maps described by y=Tr and u=Mr 
which are characterized in Theorem 3.2. 
THEOREM 3.2. A pair (T,M) is realizable with internal stability 
via a two degrees of freedom configuration if and only if 
(T,M) = (NX,DX) with X stab1e.o 

There are many choices in parametrically characterizing 
all feedback stabilizin controllers Cy. and these are extensively 
discussed by Antsakfis and Sain In [2]. The stabilizing 
controllers C can therefore be expressed, in addition to (3.2) as 
(for example): 

where Q = DL DX = M with L, X stable and 
D-I(I-QP) = (I-iN)D-1 stable ( I-QP I # 0 or 11-LNI # 0). 
Parametric characterizations 01 all internally stabilizin 
controllers C, proper and nonproper are given in (3.6 . For 6 
proper, M and Q are chosen proper and such that )I-QP) is 
biproper; note that if P is strictly proper, Q proper always 
implies that (I-QP)-l is proper. Notice that L or Q in (3.6) 
must satisfy certain conditions, in addition to being stable, in 
contrast to K in (3.2); however, alternative to K 
parameterizations, such as in (3.6), are very useful, since they do 
have certain additional desirable properties (see [2]). 

L = xz+Kf) = D-lQ, 

These relations will be useful in Section 4.2 where the hidden 
modes of two degrees of freedom systems are characterized in 
terms of these parameters. 

From Theorem 3.1 we can directly characterize t i, e input- 

C = (I-QP)-I -Q, DX] = ((I-LN)D-l)-l[-L, XI, (3.6) 

The relations between the parameters are 
Q = DL = Cy(I+PCy)~~=(I+CyP)~~Cy 

X = (Xl-KR)Cr = D-lM, M = DX = (I+CyP)"Cp (3.7) 

JY. HIDDEN MODES IN TWO DEGREES OF FREEDOM 
CONTROLLED SYSTEMS 

In this section, the hidden modes of two degrees of f ree  
dom controlled svstems as deDicted in Figure 4.1.1. will be stud- 
ied. In Section"4.1, the hidden modeslrom given inputs and 
outputs will be characterized in terms of transfer matrices. This 
characterization is done when Sp and S, are completely de- 
scribed by their transfer matrices, and when Sp is completely 
described by its transfer matrix, but S, is not. In Section 4.2, 
the hidden modes are characterized in terms of the design pa- 
rameters: K, x, and L when Sp and s, are completely described 
by their transfer matrices. Using these characterizations we 
then give conditions in terms of the parameters of interest to 
avoid the introduction of hidden modes. These conditions can 
be incorporated in the control system design. 
4.1 Hidden Modes in Terms of I/O MaDS 

Consider 

Fi ure 4.1.1. A two degrees of freedom control system. 
where t%e vector of fictitious inputs Q is introduced to help with 
the interpretation of the uncontrollable hidden modes; the other 
variables were described in Section 111. 

First, consider S, to be completely described by its 
transfer matrix, that is, S, is controllable from [u't,  rt]t and 
observable from U. A polynomial matrix description for S, is 

sC: D ~ z ,  = -flyy+Nrr-Rym, U = Z ~  (4.1.1) 
where C = f),-l[-fl,, fir] is left coprime and U '  = ~ + y .  TWO 
possible polynomial matrix descriptions for Sp are 

s p :  D z = u ,  y = N z  (4.1.2) 
s p :  f )z=mu,  y = z  (4.1.3) 

where P = ND-1 = f)-IR are coprime factorizations. Combining 
(4.1.1) and (4.1.2) gives a polynomial matrix description for the 
two degrees of freedom controlled system 

DOZ = nrr-Ryv2, [yt, ut]t = [Nt, Dt]tz (4.1.4) 
where Do = D,D+flyN. Since Sp and S, are assumed to be 
completely characterized by their transfer matrices the hidden 
modes are due exclusively to the interconnection. 

A preliminary characterization of the hidden modes fol- 
lows directly from (4.1.4): The uncontrollable modes from r (m) 
correspond to  the poles of Do-1 that cancel in Do-lR, (Do-lR,). 
The unobservable modes from y (U) correspond to the poles of 
Do-1 that cancel in NDo-1 (DDo-1). This characterization gives 
insight into the controllability and observability properties of 
two degrees of freedom systems. For example, notice that the 
controlled system is observable from yt, ut]t, that is, the unob- 
servable modes from y are observable I rom U and vice versa. 

Notice that even though S, is completely characterized 
by C, there could be uncontrollable modes from r or from y. 
However, the uncontrollable modes from r of S, are controllable 
from y and vice versa. Let G, be a g.c.1.d. of (f)&,) and let G, 
be a g.c.1.d. of (f)c,Rr) then 

P c ,  my] = Gy[flcy, Rcy] (4.1.5) 
[ n c ,  Rr] = Gr[f)cr, mer] (4.1.6) 

where (flCy,MC2 and (f)cr,Rcr) are coprime polynomial pairs. 
The roots of I rI ( I  Gyl)  correspond to uncontrollable modes 
from r y) of S,. Furthermore, the roots of I GY( are closed-loo 

I f ) ,  D+R, N , &). This implies that no uncontrollable 
modks of lC irom r will be uncontrollable from r of the two 
degrees of freedom controlled system. 

Before giving the main result in Theorem 4.1.1 it is useful 
to characterize the poles of (I+PCy)-l and of (I+C,P)-1; the 
characterization is used to determine when a cancellation of 

eigenv a! ues, but the roots of Gr are not (IDol=culGyY 

LEMMA 4.1.2. The hidden modes are characterized by considering 
cancellations in the following products of transfer matrices. 
Unobservable modes from y: (I+PCy)-lP[fjc-l, I]. (4.1.7) 
Unobservable modes from U: (I+CyP)-l[f)c-l, I]. (4.1.8) 
Uncontrollable modes from r: [I, Pt t(I+CyP)-lfjc-l~po (4.1.9) 

The main result when !& and S, are completely 
characterized by their transfer matrices is given next. 
THEOREM 4.1.1. The hidden modes are characterized as follows. 
(i) The unobservable modes from y (U) correspond to the 

poles of C (P) that cancel in PC (R,P). 
(ii) The uncontrollable modes from r correspond to the poles 

of (I+C,P)-I that cancel in (I+CyP)-lCr, and to the poles 
of P that cancel in both PM and C P 
The next two corollaries speciaize the conditions in 

Theorem 4.1.1 for two single degree of freedom configurations. 
First, we consider the error feedback configuration where 
U = -C,y+C,r-C,% (C, = Cy), and then the feedback 
configuration where U = -C,y+r-C,Q Cr = I). 

unobservable modes from y (U) correspond to poles of Cy (P) 
that cancel in PC, (C,P). The uncontrollable modes from r 
correspond to the poles of P that cancel in PC,.o 
COROLLARY 4.1.2. In the second feedback configuration the 
unobservable modes from (U) correspond to the poles of Cy (P)  
that cancel in PC ( C ,, P i  . The uncontrollable modes from r 

COROLLARY 4.1.1. In the error feed b ack configuration, the 
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correspond to the poles of Cy that cancel in CyP.o 
Theorem 4.1.1 characterizes the hidden modes introduced 

by the interconnection of systems in Figure 4.1.1. It is also of 
interest to characterize the hidden modes when the controller is 
not completely characterized by its transfer matrix. The 
conditions for the general case of uncontrollability and 
unobservability, which requires another internal description of 
Sc, are given in Theorem 4.1.2. 
THEO EM 4.1.2. The uncontrollable modes of S, from u ' t  r t t  
will bRe uncontrollable from r, and the unobservable modes Af S!, 
from U will be unobservable from y.0 

The conditions in Theorem 4.1.1 are illustrated in 
Example 4.1.1. 
ExamDle 4.1.1. Consider the plant 

p = s-1 (4.1.10) Is-2 1 Is +1) 

(4.1.11) 

Theorem 4.1.1. The three hidden modes are "uncontrollable from 
r, one of the closed-loop eigenvalues at -1 is unobservable from 
U, and there are no unobservable eigenvalues from y.0 

4.2. Hidden Modes in Terms of Desim Parameters 
The results in the last section could be used to give 

conditions to avoid the introduction of hidden modes, but they 
would not be simple to implement in control design. In this 
section the hidden modes will be characterized in terms of the 
parameters utilized in the design of a control system, leading 
directly to desi n conditions to avoid unnecessary hidden modes. 
In particular, t f e  hidden modes will be characterized in terms of 
K, X, and L, which were used in Section I11 to parameterize the 
internally stabilizing controllers. 

The results in the following two lemmas are used to 
characterize the hidden modes in terms of the design 
parameters. In Lemma 4.2.1, the poles of the parameters of 
interest are characterized. In Lemma 4.2.2, the uncontrollable 
modes from qz are characterized. 

First, let GP be a g.c.1.d. of (f)k,&y), where K = f)k-lMk 
is 1.c. Then it can be shown that there exist polynomial 
matrices f)l and such that 

[Dk, Rcy] = Gp[fll, ml], (4.2.1) 
where L = f)l-lf?l is a coprime factorization. 

Do-i[N,, w, correspond to unobservable modes from U. The 
uncontrolla b le modes from r correspond to the poles of P in Gp-l 
and to the poles of L that are not poles of X.0 

The next corollary specializes the conditions in Theorem 
4.2.1 to the error feedback configuration. 
COROLLARY 4.2.1. In the error feedback configuration, the 
unobservable modes from U correspond to the poles of L (L=X) 
which cancel in NL. The uncontrollable modes from r 
correspond to the poles of P that do not cancel in (I-LN)D-l, 
that is, the poles of Gp-l.o 

The conditions in Corollary 4.2.1 agree with known 

results for the error feedback configuration in [2]. 
Remark 4.2.1. A characterization of the closed-loop 
characteristic polynomial in terms of the parameters used in this 
section is given by 

(4.2.2) 
where GP = GplGpZ and fJ1 = f)l1f)lz. The roots of 
I G, I I Gpl I I f)ll I correspond to the controllable eigenvalua 
from r; hence, they are poles of X. The roots of lGpzl If)lzI 
correspond to the uncontrollable eigenvalues from r. The 
controllable eigenvalues from r that are unobservable from y 
correspond to the poles of X which cancel in NX, and these 
eigenvalues can correspond only to some of the roots of 
lGyl If)11I. The uncontrollable eigenvalues from r that are 
unobservable from y correspond to the roots of If)lz I since none 
of the plant poles can correspond to unobservable eigenvalues 
from y. 

The final result of this section gives the design conditions 
that can be used to avoid unnecessary hidden modes. Notice 
that these conditions could be used the other way around when 
it is desirable to introduce a cancellation that does not affect 
internal stability. These conditions follow directly from 

h = k l G y I  IGpl( (GPzI IhI (fJ lz ( ,kEW 

Theorem 4.2.1. 
DESIGN CONDITIONS FOR NO HIDDEN MODES: To avoid 
unobservable modes from y do not choose 
eel in N[X, L]. To avoid uncontrollable 
the poles of L and the poles o f  P in Gp-l p 
observable modes f rom u don't choose PO 
P .  

These conditions are interpreted below for singleinput, 
singleatput feedback systems. Consider 

where gp = gplgpz and dl = dlldlz a n 8  the variables are the 
same as before except that the factorizations are given in lower 
case. The conditions in Theorem 4.2.1 for singleinput, single 
output systems can be given as follows. 
COROLLARY 4.2.2. The uncontrollable modes from r correspond 
to the zeros of gpz and d12. The unobservable modes from y cor- 
respond to the zeros of both gy and dl that are zeros of the 
plant. The unobservable modes from U correspond to all the z e  
ros of gpl, and to zeros of g and dl that are poles of the p1ant.o 

-- In order to ---- avoid Kidden modes from r and ya 
dlz = 1 and gpz = 1, and choose gy and dl to have no zeros e a d  ---- to zeros of the Dlant, remectivelv. To avoid hidden modes from 
U, choose gP = 1, and gy and dl to have no zeros eaual tQ 
poles of the Dlant. In terms of these desired values for the 
parameters, the expressions for Cy and Cr are given by 

P = f = e., 1gPlgPZ L = 3, 1 x = d=*, (4.2.3) 

C - = y,  Cr = qk* = *, (4.2.4) 
and if C = dc-l[ny, nr], then dc = gydcy, n = gygpinl, and 
nr = n,. These results are illustrated in the folhwing examples. 

In Example 4.2.1 the hidden modes of the feedback 
system considered in ExamDle 4.1.1 are characterized in terms of 

y r  dcy cy C Y  gYgPl 11 g, CY 

the design parameters. 

1 

(4.2.6) 
and 011 = 1. 

The unobservable modes from y correspond to the cancelk::is 
in: 

(4.2.8) 

Gpl = 1, f)l = 

1 8 

correspond to cancellations in: 

(4.2.9) 

From (4.2.9), one of the pods of the plant at s=-1 corresponds 
to an unobservable mode from U. The uncontrollable modes 
from r correspond to the poles of Gp-l and of L that are not 

2069 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:16 from IEEE Xplore.  Restrictions apply. 



poles of X. So the uncontrollable modes from r correspond to 

In Example 4.2.2 the conditions given in this section are 
used to redesign C so that the number of hidden modes is a 
minimum. 
ExamDle 4.2.2. The controller considered in Example 4.1.1 
introduces at least three hidden modes. If less hidden modes are 
desired, a new compensator C needs to be designed that attains 
the desired transfer function T = (s-l)/((s+cr)(s+D)). Since T 
is the same and T = NX = (s-1)X, X is the same as in (4.2.6), 
we need to design L. 

At this time it  should be noted that no internally stabili- 
zing single degree of freedom controller can attain the desired T. 
Therefore, the two degree of freedom design will yield at least 
one hidden mode. If no hidden modes are desired, the choice for 
T should be reconsidered. 

In order to  minimize the number of hidden modes, the 
poles of L should be the same as the poles of X and no poles of L 
should be zeros of the plant. Then a possible choice for L is 

(4.2.10) 
where K is a constant. the compensator to  be 
internally stabilizing and roper are X, L, and (1-LN)D-1 must 
be stable (see Section III!. Only the latter one needs further 
checking: 

{-1, -1, -2/3}. 

- -GH(I+PGH)-~D-~ (I+eHp)-%,-l -(I+GHP)-'GD<~ 

A(I+PGH)-W A(I+PGA)-'PD~-' ( I + H P G ) - ~ D ~ - ~  

0 0 0 

" (l-LN)D-l= m. s-2 s + l  s+o s+ (4.2.11) 
The transfer function in (4.2.11) is stable if and only if 
(2+a)(2+/3)=rcl i.e., ~=(1~4-2/3)/(2+/3). Then, for cr>O need 

0 < p +  (4.2.12) 
or choose (Y > 0, /3 > 0 and IE = (2+01)(2+P). By choosing IE in 
this wav. a controller C=I-C,. Crl that attains the desired 
Closed-lGp transfer function l s  ' -' 

where there is a polezero cancellation at s=-2 in the 
expressions for Cy and Cr. Suppose -1, &3, then ~ = 1 5  and 

c = [ml -ai]? (4.2.13) 

- q-9, 21. (4.2.14) 
For C in (4.2.14 there is only one hidden mode due to the 

s=-1 corresponds to an uncontrollable mode from r and to an 
unobservable mode from u.0 

interconnection o 1 the controller and the plant; the pole of P at 

V. HIDDEN MODES IN INTERCONNECTED SYSTEMS 
The characterization of hidden modes in terms of transfer 

matrices of a system interconnection can be done starting with 
the results in Section 4.1. For a complex interconnection of sys- 
tems i t  may be simpler to apply Lemma 2.1 to a polynomial ma- 
trix description of the interconnected system. A systematic me- 
thod to do this is explained in this section. For illustration con- 
sider the {RG,H} controlled system in Figure 5.1, 

r+ii+E 

Figure 5.1. -d An {R;G,H} controlled system. yp 

where the interconnected subsystems are completely described 
by their transfer matrices P, R, H, and G. The {RG,H} 
controller is an implementation of a two degrees of freedom 
compensator, where Cy = GH and Cr = GR. 

The interconnected systems will be represented as in [4, 
Chapter 41, where a systematic study of internal stability of 
system interconnections is presented. The aggregate system 
representation of the {RG,H}) controlled system is given in 
Figure 5.2, 

+I - I 
-@d 

Figure 5.2. Aggregate system representation. 

where Ti = block diag {P, G, H, R}; E = [ypt, ygt, yht, yrt]t and 
U = [up, ug, uh, Ur] are the vectors of outputs and inputs of each 
subsystem, respectively; is a vector of exogenous inputs 
entering at the input of each subsystem (for example, the 
exogenous input of R is r, the other ones are fictitious); and 

Y O 1  O 0  1 
( 5 4  

[ o  0 0 0 1  
is a constant matrix representing the constant gain 
interconnections between subsystems. The equations governing 
the input-output behavior of the aggregate of subsystems in 
Figure 5.2 are 

U = 8 + Fy, y = Tjg. (5.2) 
Assume that (I-FT$-1 exists, then every input-output map is 
proper and well-defined.. 

In order to  obtain a Dolvnomial matrix descrbtion of the 
{RG,H} controlled s stem; &mider the following=polynomial 
matrix descriptions o? the subsystems completely described by 
their transfer matrices P, G, H, and R 

Dz, = MUg, yp=zp, Dgzg = mgug, yg=zg, 

DhZh = Mhuh, Yh=Zh, DrZr = EfrUr, yr=Zr. (5.3) 
Let D = block diag{f), fig, f)h, &}, mi = block diag {m, fig, 
Mh, mr}, and zi = [zpt, zgt, zht, ZrtJt. A polynomial matrix 
description of the {R;G,H} controlle system is: 

where 
fjizi = Ma,y = z i , ~  = F z ~  + q, 

yaa 0 0 1  

(5.4) 

0 0 

modes is given in 
Theorem 5.1. The a regate representation of the intercon- 
nected system has %%ped by simplifying the derivation of a 
polynomial matrix description, the characteristic polynomial, 
and the inverse of Di. 
THEOREM 5.1. The hidden modes are characterized as follows. 

The unobservable modes from y correspond to the 
poles of G, H and R that cancel in PG, (PG)H, 
and (I+PGH)-t(PG)R, respectively. 
The unobservable modes from U correspond to the 
poles of H, P,  and R that cancel in GH, (GH)P, 
and (I+GHP)-lGR, respectively. 
The uncontrollable modes from r correspond to 
the poles of G that cancel in G(HP, R the poles 
of P that cancel in HPG and in PM; tke poles of 

( 9  

(ii) 

(iii) 
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H that cancel in HPG; and the poles of (I+GHP)-l 
that cancel in (I+GHP)-lGR.o 

The characterizations in Theorem 5.1 extend and 
simplify the results ori inally presented in [5]. 
ExamDle 5.1. Consifer the following implementation of the 
controller in (4.2.14): 

In view of Theorem 5.1, this choice for {RG,H) does not 
introduce any additional hidden modes, so there is still only one, 
corresponding to the pole of P at s = -1.0 
ExamDle 5.2. AstrBm and Wittenmark in [ll, p. 2321 show how 
a stable hidden mode can degrade performance. They consider 
the plant 

(5.7) G = s ,  s+l H = 1 5 , a n d R = 1 .  

(5.8) 

via 

in the {RG,H} controller configuration. Note that SO and s1 are 
chosen so that the controlled system is internally stable, and to, 
K,  and a are real constants defined in [ll]. The particular 
implementation of the controller does not affect the following 
remarks in [ll]: A simulation shows that the step response of 
the system contains an undesirable "ripple" or nringing'' in the 
control signal U while the output signal is well behaved at the 
sampling instants. It is pointed out in [ll] that the "rin ing" is 
caused by the cancellation of the (z-a) factor. From Tieorem 
5.1 it is seen that the reason for ringing is that the pole of G at 
z= b, which cancels in PG, corresponds to an unobservable mode 
from y that is observable from U. Moreover, from Theorem 4.1.1 
it is seen that the mode that corresponds to the pole of the 
controller that cancels with a plant zero will be unobservable 
from the output, but i t  will be observable from the plant input 
in any implementation of the two degrees of freedom controller. 

G = &, H = W ,  and R=l (5.9) 
0 :  

VI. CONCLUSIONS 
The results presented here on the hidden modes of inter- 

connected system in  terms of transfer matrices and parameters 
extend and unify the results in the literature. The emphasis 
here wits in control desi n. The results and the methodology 
presented are not limitei to the applications shown, but they 
can be applied to any interconnected system where the study of 
the hidden modes introduced by the interconnections is of inter- 
est. A direct extension of the results would be in the area of 
decentralized control. 
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