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ABSTRACT

In the model matching problem, proper plant P and model T are given and a
proper M is to be found such that T = PM; M can then be realized via feedback
and feedforward compensation. For internal stability T and M must be stable.
The role of zeros in the model matching problem is fully explored in this
paper. Insight is gained by deriving conditions for the existence of proper
and stable solutlons M via several methods: using the interactor and the
Hermite forms of P and T, directly using factorizations of the tramsfer
matrices and by utilizing and extending results of the related "nominal syn-
thesis" problem. These results lead to formulations appropriate for direct
use in control design, which 1is the aim of this paper, thus bridging a gap in
the literature. Specifically, a method is introduced to appropriately select
T, using interpolation, so that a proper and stable solution to the model
matching problem does exist. It is also shown as an extension of the above
results that in any control design where feedforward and/or feedback compensa-
tion is used, the unstable finite zeros and all the zeros at infinity of the
proper plant P always appear in the overall transfer matrix T as long as
internal stability and causality are present.

This work was supported in part by the National Science Foundation under Grant
ECS 84-05714.
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I. INTRODUCTION
In the past decade there has been significant interest in the equation
T = PM (1)

where T{pxq), P(pxm), and M(mxq) are rational matrices, as such equations often
appear I1n systems and control problems. The problem of determining solution M
when T and P are given is usually referred to as the model matching problem
for reasuas discussed below.

Consider a linear time—invariant m-input, p—output plant y = Pu described
by its (pxm) prop;r transfer matrix P(s). Let the general control law
u = ny + Cpr be used

r | u Y
¢ P >

where C = [-Cy Cr] is the controller. The control action u can be expressed in
terms of the reference signal r only, as a mathematically equivalent open loop
control law. 1In particular u = Mr with M = (I+CYP)'1Cr a proper {mxq) trans-

fer matrix. In the Model Matching Problem (MMP) a desired response yy, = Tyr

is given (Ty the model) which should be matched exactly by y = PMr for all v
of interest. And the problem then becomes to determine proper M which satis-
fles the equation Ty = PM where Tp and P are given proper transfer matrices.
4 can then be realized via feedback and feedforward compensation {[1-4). MNote

that for Ty = I we have the Inverse Problem. TFor internal stability in the

control structure it is necessary that Ty and M be stable. Therefore in (1),
P proper and T proper and stable are given and we are lnterested in the exls-
tence and properties of proper and stable solutions M; and this is the MMP of
interest here,

It should be pointed out that in typical control applications T (or Tg)
is not exactly fixed since a number of different T do perhaps suffice to

1
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satisfy the control specifications. Furthermoce, the model of the plaat ?
only approximately describes the behavior of the physicai svstem, in which
case attempting to exactly match a given T is unrealistic. The study 57 the
mathematical MMP is however useful in contrsl, dbecause it provides iasight to
the properties of the realizable closed loop transfer matrices T and o the
required control M.

There 1s a number of control problems which benefi: from the unds-stand-

ing of the MMP. Among these: The Decoupling Problem whers T in {1) is not

completely specified but it must be a (block) diagonal transfac watrix; this
is one case of a class of problems where T is not given but restrictions aras
imposed on its structure or other properties; e.g., T must have speciiic poles.

In the Model Following Problem it is required that the error e = y - 7, asvmp-

totically approaches zero. This is equivalent to determining proper stable M
so that PM - Ty = T where the proper, stable Tp is given and T is any stable
transfer matrix. If T is specified to exactly determine the behavior of the
error, then this i{s the MMP with T = T, + T in (1).

The MMP has received a lot of attention In the literature both because of
its importance in control and its attractive mathematical formulation. The
equation T = PM has been studied over rationals, polynomials, over riags,
using a variety of mathematical tools and methods. And the literature is rich
with results which offer insight and suggest alternative methods of solution.

Here we are mainly interested in methods to select T so that proper and
stable solutions M to (1) exist. We are aware of the flexZibility in selscting
T in practice and we would like to characteri.e the class of T for which a

solution to the MMP does exist. The characterization of course must be simole

and easy to use in control design.

=3
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For this, we concentrate on the finite and Infinite zeris T =must have for
solution M to exist. And we express the existence conditiog=sz i1 terms of those
zeros and their associated structure of dirsetions {ailtivari:idie case) in such
a2 way so that they can be directly used in control design. ¥a2te that condi-
tions involving zero structures do exist in the literature; :22 for example
[5, 3, 15). However, the form of these conditions does aost =139 direct and
transparent application to the control design problem which Is the aim of this
work. Two approaches are used: canonical forms in Section I and polynomial
matrix factorizations in Section IV. 1In Section ITT the Vemizal Synthesis
Problem, which is closely related to MMP, is discussed; resul=s are reviewed
and extended and then used in the other sections. 1t {s showz that for a
proper P and & proper and stable T of full row rank, propasr 31d stable solu-
tion M exists if and only if T has all the unstable finite and {afinite zeros
of P together with their associlated structure. This is made srecisa in this
paper and it is formulated in such a way so it can be used di-ectly in control
design. 1In Section V these results are utilized to derive simle guidelines
to choose appropriate T; for this, polynomial matrix interpolation is used.

This paper also formallzes the fact that in any control design, where the
control law can be described by the above general controller = = - Cyy + Crr,
all the RHP zeros of the plant P wmust appear as RHP zeros of the compensated
system transfer matrix T if internal stability is to be presz-ved or attained;
furthermore, T should be "more proper" than P. This result “>1lows from the
existence conditions of the MMP and the fact that any feedforv ard and/or
feedback linear controller (u = - Cyy + Crr) can be written zs a mathematically
equivalent open loop control law u = Mr as it was explained %1 the beginning
of this section. This important fact, involving the RAP zerss {and the zeros

at infinity), 1s perhaps more obvious in the single-input, siagle-gutput case
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although it does not appear to have besn formally stated in the classical con-
trol literature. TIn the multi-input, zulti-output case it is not easily de-
tectable due to the character of the zultivariable zeros and the widespread
use of state-space, with its "feedback Zirst" design, which tends to further
obscure this fact. However, it has t22a implied, shown in different degrees
of detail, or shown in abstract settizgs by a number of authors. Among others:
In [5] the "fixed poles" of M in (1) are defined, which are in effect those
poles of T not in P and those zeros c¢Z P not in T; for M stable, since T is
already stable, those zeros of P not In T must be stable and therefore all the
RHP zeros of P should be zeros of T; aad in [1] M is rélated to certain con~-
trol structures. In [6] this result is shown for a particular control stcuc-
ture and with only passing reference =5 asscciated zero structures of P which
must also appear in T. In [3] the A - structure matrices defined in the A =
1/(s+a) domain, are used in the same way as the canonical forms in Section IT.
In [7, Th. 3] it is shown in a coordinate-free way to what extent the zeros of
P "appear in" the zeros of T; this is done in terms of pole and zeroc modules.
The emphasis of this paper is not so much on the generality of the condi-
tions but on the derivation of the results involving zeros via alternative
methods so to gain insight, and more faportantly on the useful formulation of
the results so that they can be directly used in control design; and this is

shown in the last section.

FEs
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II. CANONICAL FORMS
iizr the equation

T = PM (1

where * 2xmj, T(pxq), rational matrices are given. Solution M(mxq), exists
over =z Ii2ld of ratiorals if and only if

rank [T, P] = rank P (ImT < Im P) . (2)

Suppns

? aad T are proper, i.e. lim P(s) < » . The existence of proper
g+w
solutizzs M can be studied using the interactors or the Hermite forms of P

and T.
TZ2 interactor £p of a proper P and its extension, the Hermite normal

Tz were introduced in [8, 9] respectively as appropriate canonical forms

0f P czder dvnamic compensation.

The izc:ractor Ep of a full row rank matrix P (rank P = p) was defined as the
unique 2onsingular polynomial matrix of certain canonical structure for which
éig §2775) = X where rank K = p. It was shown in [8, Th. 4.5] that if rank T =
rank ? = p then a proper solution M exists if and only if EPgT-l is a proper
matrix. The interactor was generalized in [10] and defined for P where rank P =

r { p. In addition, the relation between Zp and Hp (for P proper and denomina-

tors of Ip at 7 = s) was also shown to be EpHp = diag [Ir, 0]. [10, 111,

Hp(px=', t2e Hermite normal form of P [9], is a basis of Im P. In general

2 is

™

= %5 -aatrix meaning that the entries in P are in Rg the ring of real
transZzr functions with denominators in S; S is a2 multiplicative subset of
Rfs] coasisting of 1 together with all monic polynomials (of positive degree)
generaz2d bv a set of monic prime factors. P = HpP where P and Efl are

Rg —mz:irices. It has been shown that:

Theoren 2.1 [9] Given T and P, Rg -matrices, there exists solution M, an Rg
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-matrix, which satisfies (1) if and only if

Hp = HpH , M an Rg -matrix (35

Let Rg denote the proper transfer functions. The above result then deals with
the existence of proper solutions M of (1) given proper P and T. {3) in this
case can also be written in terms of the interactor &p and f7 as discussed
above,

The zeros at infinity of proper P(s) are the zeros at w = 0 of P(1/w).

They are exactly the zeros at infinity of Hp which implies that {(3) can be
used to study the zeros at infinity of T when a proper éolution M to (1) does
exist; note that in this case Hp does not have any finite zeros. Specifically,
let rank T = rank P = p:

Corollary 2.2 Any zero at Iinfinity of P is a zero at infinity of T,

Proof: 1In view of Hp = [gp‘l 0] (3) can be written as EPET'l = a proper
matrix which is the condition in [8, Th. 4.5]. Hp(l/w) and therefore
gp‘l(llw) is a polynomial matrix, in Hermite canonical form, with all

of its zeros at w = 0 [10]. Since EPET—I must be a proper matrix in s,
£p(1/w)Er 1(1/w) should not have any pole (at w = 0) which implies that

all the zeros at infinity of P must be zeros at infinity of T. Q.E.D,
Notice that the structure of the zeros at infinity of P (in the sense of (3))

will also appear in T for proper solutions M to exist.

Given P proper and T proper and stable we are interested in proper and
stable solutions M of (1). The existence of solutions ¥ in this case cannot
be studied directly via Theorem 2.1 since P is not necessarily stable and the
theorem demands that all matrices involved should be Ry -matrices, here taken
to be proper and stable matrices. It is however possible to show that a solu-

tion M of (1) exists if and only if there exists a solution to an equation

an
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which only involves proper and stable matrices. In particular:
Theorem 2.3 Given P proper and T proper and stable, there exists proper and
stable sglution M in {1} if and only if there axists proper aund stable solu-
tion X' in

T=N'%" . (4
where P = N'D'-] a proper, stable right coprime factovrization. Furthermore,
all sclutions M are given by

M =D'X' . (5)
Proof Direct in view of Theorem 3.2 in next section.

Theorem 2.1 can now be used to study solutions of (4). In particular
solution X' exists if and only if Hy = HyM where M a proper and stable matrix.
Hy and Hy contain the unstable (RHP) finite zeros and the zeros at infinity
of T and P and only those. Consequently this relation can be used to study
the counditions on the zeros of T for solutions to exist. The analysis is sim—
plified if rank T = rank P = p which is common in control practice. Also note
that Hy (derived with 7 = s+a a > 0 [9]) has as denominators of its entries
powers of 7 and it is of the form Hy = [H;, 0] with H; nonsingular.

Corollary 2.4 Any unstable finite zero of P is a zero of T.

Proof: Similar to the proof of Corollary 2.2. Take w = l/s+a a > 0. Actually,
using this mapping, not only results on the RHP zeros of T are derived but also
on its zeros at infinity.
Notice that the structure of the RHP zeros of P will also appear in T in
the sense of (3),.

Although £, and Hp provide significant insight they are difficult to
compute. This reduces their applicability and in the next sections we con-

sider alternative ways to study (1).
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IT1I. NOMINAL SYNTHESIS PROBLEM

In the Nominal Synthesis Problem it is assumed that P in T = PM is given
and it is of interest to determine the solution pairs (T, M). This problem
was studied in [7] and in the following the characterization of all solutiom
pairs is presented without proof.

Given P, we are interested in the good solution pairs (T, M) of T = PM.
A transfer matrix T is said to be good 1f its minimal polynomial is good. A
polynomial p(s) will be good if p(s) e Sg where Sg < R[s] is closed under
multiplication in R{s], it includes the polynomial 1 and it excludes the zero
polynomial; if.e. all the roots of p(s) are in symmetric regions, with respect
to the real axis, in the complex plane.
Let P = ND-! be a right coprime polynomial factgrization of P.
Theorem 3.1 The pair (T, M) is a good solution of (1) if and only if there

exists a good transfer matrix X such that

MENE

Proof: Direct from [7, Theorem 2].
Note that in [7], the above theorem is shown in a coordinate free framework.
Sg ckis] is a principal ideal domain of polynomials in s with coefficients
in an arbitrary field k and T, M etc. are morphisms of k[s] -vector spaces.

The above theorem deals with general good transfer matrices and it will
be used in this form to show results in the next section. A case of a good
transfer matrix is of course a stable one and many times in the following we
will be using stable and unstable instead of good and not good or bad.

Using Theorem 3.1 the following result is obtained which characterizes all
proper and stable solutions of T = PM. Note that it has already been used in

Section II to prove Theorem 2.3.
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Congider T = PM where P proper is given.

Theorem 3,2 The pair (T, M) is a proper and stable solution to (1) if and

only 1f there exists proper and stable X' such that

D)

where P = N'D'~1 is a right coprime proper and stable factorization of P.

Proof: It was shown in [12] that

N' N
= m, (8)
D’ D
where I, I-1 stable and DN biproper. If (T, M) is a proper, stable solution
pair, it is given by (6) or by (7) where X' = I"IX which is stable; X' is also
proper since ¥ = D'X' and D' is biproper. Conversely (7) is a solution for
any proper and stable X', Q.E.D,

Theorems 3.1 and 3.2 can be used to study the zeros of T and the

results are derived in the next section.
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IV. DIRECT STUDY OF THE ZEROS OF T AND EXISTENCE THEQREM

Given P, let T be a good transfer matrix such that a good solution M to
T = PM does exist. It is of interest to study the zerns of T. It is also sh. -
that the requirement T, M to be good implies that all the finite zeros of P
which are not good must appear as zeros of T (under amild conditions). It is
also shown that the requirement for T, M to be proper, assuming thatr P is
proper, implies that all the zeros at infinity of P will also be zeros at
infinity of T.

We shall assume that rank P = p which is a common case in practice. Let
P = ND-l a right coprime (rc) polynomial factorization and write

N = NpN {9

where the roots of |Np|(#0) are exactly those zeros of P which are not good
(also called bad). This can always be achieved by using, for example, the
Smith form of N. Note that since P has full row rank, Ny is a left divisor
of a greatest left divisor (gld) of the rows of N, the determinant of which
has roots the finite (transmission) zeros of P.
Let T = NTDT'I, a rc polynomial factorization.
Lemma 4.1 Np = Np¥T. (10)
Proof: In view of Theorem 3.1, T = NX where X is a good transfer matrix.
Then NybDp~l = NX or Np = Np(NXDT) which shows the result since NXDr = Nt a
polynomial matrix. Q.E.D.

This lemma can be used to study the relation between the bad zeros of P
and T and their associated structures, However, it does not necessarily implr
that the bad zeros of P in Ny should appear in N7 and therefore in T as the

following example shows:

Consider T = NpDt~! good (stable) with Np = f0 1]JT, P = ¥D-1 with

10
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N = Hy = diag[s-1, 1]. M =D[0 1]TDy"! is a gi:& {stable) solution of (1).
However the bad (RHP) zero of P at 1 does not am=ar in T.

In general, if rank T < rank P = p the lem=: ises not necessarily imply
that z;, a bad zero of P, will be a zero of T s_i.2 rank Np{z4) < rank N7 {the
normal rank) will not be necessarily true. Let

. (11)

rank T = rank P =

“wy

Theorem 4.2  Assume that T and M, good transfs- =z:zrices, satisfy (1), If
Gr is a gld of the rows of N then
Gr = NpGr (12)

Proof: Since rank T = p, Ny will be a left divis:r of Gr in view of (10). Q.E.D.

Note that the roots of [Gr| = |Np] |6r| are the z:zss of T and they include
the bad zeros of P in Np. Therefore

Corollary 4.3 Any finite zeros of P which is no- z00d is also a zero of T.

T may of course have more bad zeros in additior -3 the zeros of P.
The theorem implies more than the corollary incéi:zzzas. Not only the bad zeros
of P appear in T but also the structure assoclaz:zd with them {in Np) also ap-
pears in T (see discussion at the end of the se-=an).

Based on Theorem 4.2 results on the zeros £ “afinity will now be
directly derived.
Suppose that P is proper and given a T proper, : r-oper solution M to T = PM
has been found. Let (11) be satisfied.

Corollary 4.4 Any zero at infinity of P is a zzr> at infinity of T.

Proof: 1In T(s) = P(s)M(s) let s = 1/w to obtair >’%) = P(w)H(w). The zeros
at ‘infinity of P(s) are exactly the zeros at w = I in P(w). Consider w = 0
to be the zeros of P which are not good; then ¥; :efined in (9) only contains

zeros at w = 0. Theorem 4.2 then directly impl-zs the result. Q.E.D.

11
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Note that the structure at iafinity of P is also repeated in T. Covollary 4.4
says that for existence of a proper solution M, T should be "more proper” than
P.

The above results involviag the finite and infinite zeoros of P could have
been derived simultaneously as follows: Use w = 1/s+a a > 0 fixed to obtain
P(w) and consider the bad zerss of P to be the nappings of the bad finite
zeros of P together with the zeros at w = 0 which correspond to the zeros at
infinity of P; then the Thesrem and Corollary 4.3, in terms of P and T, imply
both desired results.

Theorem 4.5 Given P proper, T proper and stable with rank P = rank T = p,
there exists proper and stable solution M if and ounly if T has as its zeros
all the RHP finite zeros and all the zeros at infinity of P together with

thelr assoctated structure in the sense of {(12).

Proof: Necessity has been shown. The suffiéiency proof 1s constructive.
First, let p = m and work iz the w —domain (w = 1/s+a a > 0). M = P~IT =
D(Nhﬁ)-lNTDT_1° Since {10) aad Theorem 4.2 are satisfied, M = DN-iNpDr™!

which does not have any poles at w = 0 nor at any bad locations. Therefore M

is proper and stable. 1f p { m, write P = [Np 0]p~! and choose Xp = Ep-IHIDT-l
Xp Xp

inT = [N; 0] : then M = D where Xr is arbitrarily chosen
Xr Xr

for stability and properness. 0.E.D.

A comment on the "associated structures” of the finite (and infinite) zeros

referred to in the theorem Is in order. By this term we mean the structural
relation between P and T iaplied by (12) in addition to the relation of the

zero locations. Those relations refer to "zero directions" and they are

utilized and discussed in the next section. It should be noted that (12)

12
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implies more than a relation between the Smith forms of Gy and Np (N7 and N)

as the following example clearly shows:

1 0 1 Q
Let T = NyDp~!, P = ND-! with Ny = , W=
1 s-1 0 s-1
and use Theorem 4.5 and (12) to see if the RHP zero of T has the necessary
iocation and direction for a solution to exist. Here Gr = N7 and Ny = N,

Notice that both Gy and Np have the same Smith form, namely Np. However, (12)

is not satisfied; Nb'lGT is not a polynomial matrix.

13
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V. SELECTING T IN CONTROL DESIGN

In control, T in T = PM is chosen so that the systam response y = Tr L0
test inputs satisfies the control design specifications. Thsa relation
p = NpNT (10)

which characterizes the unstable finite zeros and the zeros at infinity T must
have for a proper and stable solution M to exist, does not provide a convenient
and direct way to choose appropriate T. Note that the transfer function en-
tries in T are individually chosen to satisfy speciflcations. And although
they can be easily chosen to include the zeros at infinity of P, i.e. T is
chosen to be "more proper" than P, the unstable zeros of P do not necessarily
appear as zeros of individual entries of T. Therefore there is a need for
simple and direct conditions which will help the designer to choose T contaln-
ing the unavoidable unstable zeros together with the appropriate structure.

Let 2z 1 =1,...,2 be the unstable zeros of P (roots of |Np|). Then
rank Np(z3) < p which implies that there exists a real lxp nonzero vector ag
such that ajNp(zi) = 0. Post multiplying by N(z1), the solutions do not change
and the aj can be determined from ajN(zy) = 0. Note that those aj are the
"characteristic vectors," or "directions" associated with the zeros z; of P [13].

Assume that z; { = 1,...,8 are distinct or if z3 is a multiple zero the
rank reduction in N(zj) equals the multiplicity of zj.
Theorem 5.1 The unstable zeros 2y i = 1,...,% of P together with their
structure will appear in T if and only if

ajNt(zi) = 0 i=1,.0.,2 (13)
where ay are determined from
ajl(zy) =0 1= 1,00e,8 (14)

Proof: Relations (13) and (14) are the necessary and sufficient conditions

for ¥y to be a left divisor of Nt. This is shown in [13]. Note that if zi

14
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includes multiple zeros which do not satisfy the above conditions, (13) and

(14) should be modified as it is shown in [13]; this was not included here for

in

lmplicity,
The theorem can also be written in terms of transfer functions:

(13) is always equivalent to a;T(z4) = 0 because T is stable;

(14) can be written as ajP{zi) = 0 when P does not have any poles at zj.
Assume that P does not have any poles at zj, i = 1,...,2. Then:

Corollary 5.2 The unstable zeros of P together with their structure will

appear in T if and only if
a{T(zy) = 0 (13a)
where aj are determined from

aq4P(z4) = 0 (1l4a)

As an example, consider a diagonal T; that is the control specifications

demand diagonal decoupling of the system. Let

1 s-1 0
P= — with a zero at s = 1. Then
s+l 1 1

aP(1l) = 0 =>a = [1 0] and T must satisfy aT(l) = [1 OJT(1l) = 0. Since

T must be diagonal {square and stable), ty;(1) = 0; that is the RHP zero of the
plant should appear in the (1,1) entry of T only. Certainly T can be chosen

to have 1 as a zero in both diagonal entries; note that if T(zi) = 0 (13a) is

always satisfied. However, the RHP zeros are undesirable in control and the

minimunm possible number should be included in T. Let

1 3—1 1
P = — with also a zero at s = 1, Then
s+l 0 1

aP(1) = 0 =>a =[1, =11 and aT(l) = 0 = t11(1) = 0 and t22(1) = 0. That
is, there are cases where the structure of P and the requirement that T be

diagonal imply that the RHP zero must appear in both diagonal entries of T.
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