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Abstract 

An important problem in the adaptive control of large flexible 
structures is to appropriately select the adaptive controller parameters 
so that good performance is obtained. There is a lack of systematic 
methods in selecting these parameters mainly because of the 
mathematical complexity in studying the transient response of 
nonlinear systems. In this paper a method. based on machine 
learning, to solve this problem is introduced and discussed. These 
results are then used to propose an intelligent adaptive control 
system where the parameters in the adaptive controller are to be 
tuned on-line without human supervision. 

1.0 Introduction 

Large flexible space structures pose unique control problems 
because of the complexity of their dynamic behavior, the limited 
knowledge of the model, the time-varying elements, and the 
disturbances which occur. Adaptive control appears to be an 
effective way to control such flexible space structures[8]. In the 
literature on adaptive control. the main issues are stability and 
convergence. Unfortunately, once the stability and convergence are 
guaranteed for the system, there is almost no methodology to assign 
the design parameters (within the range imposed by stability 
constraints) to optimize or simply improve the closed-loop system 
performance. It is desirable of course to have some analytical 
relations between these parameters and the performance so that, 
first, good performance is obtained by choosing the parameters 
correctly, and second, once the performance starts degrading during 
control execution because of some extemal disturbances or changes 
in the dynamics of the plant, it can be recovered as much as possible 
by adjusting the appropriate parameters. This problem seems 
intractable mathematically, especially for the complex large flexible 
space structures although some progress has been reported recently 
for simplified models[3,4]. In addition, the set of design parameters 
may itself need to adapt to environmental changes. This happens 
when the nominal adaptive system reaches the limits of its adaptation 
and cannot tolerate further environmental changes. A way to 
effectively address these problems is to determine and store 
desirable sets of parameters for different operating regions of the 
adaptive systems. Before we introduce this approach to the 
problems, note that the problem of tuning design parameters in 
adaptive control systems can be divided into two parts: 

pan: Given a dosed-loop adaptive control system, assign 
all the assignable parameters in the adaptive controller so that 
a predefined measurement of the system performance is 
optimized. 

w: In the same system above, find the relation of each 
parameter and the performance measures. 

Unfortunately, very little can be found in the adaptive control 
literature that addresses the above problems. In practice, the control 
designers usually settle on tedious trial and error type of approaches. 
This approach is not just time consuming, but more importantly, 
may result in a reduced stability margin, poor performance, wasted 
control energy, etc., for missing the optimal set of parameters. 

In this paper, a new approach based on machine learning is 
proposed. It is shown that Learning by Observation and Discovery 
can be effectively used in the adaptive control design, and in 
particular in optimizing the system performance. The method 

resembles one of the early approaches which utilizes thc Hill 
Climbing method[ll]. It is shown that an expert system guided 
optimization scheme is well suited for the knowledge acquisitiop 
here. The search for the optimal performance is formulated as a: 
unconstrained nonlinear optimization problem where the variables 
are the parameters in the adaptive controller and the cost function is 
the performance index (PI) which is defined as a weighted sum of 
the root-square-error (MSR), the maximum error (ME) and the 
settling time (ST). In this proof of concept type of system, we 
would like to make the problem simple at the beginning by assuming 
that the performance surface is strictly quasiconvex; we do not 
consider the local minimum problem in this paper. We also assume 
that there is no constraint on the values of the parameters. 

The learning system is built on top of the adaptive controller 
and it employs a knowledge-based system which consists of a 
rulebase and a database. The rules in the rulebase are constructed by 
using the Hooke and Jeeves method[2] for multidimensional search 
and a line search method that is explained in Section 4.2. In running 
the learning system, the design parameters are continually perturbed 
by the knowledge-based system until an optimal PI is obtained 
according to predetermined criteria. During this process, a 
sensitivity analysis of the MSR, the ME and the ST with respect to 
each of the parameters is carried out at each step, the results are 
averaged over all of the steps and placed in a table in the database. 
The corresponding parameters for the optimal PI are placed in the 
database also. This approach is mainly an off-line learning process. 
In addition, the results over different operating regions and various 
types of the disturbances can be used in building an intelligent 
adaptive control system where the design parameters are tuned 
automatically on-line to overcome severe environmental changes that 
can not be dealt with an ordinary adaptive control system. This is 
further discussed in Section 6. 

The problem of learning in automatic control systems has 
been studied considerably in the past, especially in the late ~O'S,  and 
it has been the topic of numerous papers and books[7.9,11-14]. 
References[7,11,13] provide surveys on the early learning 
techniques. All of these problems involve a process of 
classification, in which all or part of the a priori information required 
is unknown or incompletely known. The elements or patterns that 
are presented to the control system are collected into groups that 
correspond to different pattern classes or regions[l3]. Thus 
learning was viewed as the estimation or successive approximation 
of the unknown quantities of a function[7]. The approaches 
developed for such learning problems can be separated into two 
categories: deterministic and stochastic. Among these methods, Hill 
Climbing is pertinent to the problem addressed in this paper and it is 
discussed in the next section. Note that the description given here 
are brief by necessity. More details will be presented in future 
publications. 

The development of Artificial Intelligence (AI) theory and 
applications provides a solid background for further study of 
learning control systems. Machine learning is an important part of 
AI and is currently being applied to many fields[5.6.10]. Various 
AI software such as expert system shells, allow convenient use of 
AI methodologies in solving practical problems. Therefore we 
believe that we are in a much better position today to study the 
learning problem in control systems. 

The learning theory is discussed briefly in Section 2 to 
clarify what we mean by learning and what we expect from it. In 
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Section 3 we introduce the adaptive control system. The learning 
scheme, and the implementation of the leaming system are discussed 
in Section 4. The simulation results are shown in Section 5, and the 
use of these results in building an intelligent adaptive control system 
is described in Section 6. Finally in Section 7, some concluding 
remarks are made. 

2.0 Hill Climbing and Learning by Discovery 

What does learning mean in AI? H.A. Simon[ IO] states that 
"learning denotes changes in the system that are adaptive in the 
sense that they enable the system to do the same task or tasks drawn 
from the same population more effectively the next time." 
However, the term "learning", like a lot of other everyday terms, is 
used broadly and vaguely and when it is camed over to technical 
fields it often causes confusion. Rather than arguing what is 
"learning" and what is not, our objective is to apply the learning 
theory in AI to improve the performance of the adaptive control 
systems. 

In AI, learning has been classified on the basis of the 
underlying learning strategies[ IO]. One of them is the so called 
learning from observation and discovery (also called unsupervised 
learning). It is a very general form of inductive leaming without an 
extemal teacher. There are two sub-classes conceming the degree of 
interaction with the external process. One is passive observation, 
where the learner classifies and taxonomizes observations of 
multiple aspects of the environment. Another is active 
experimentation, where the learner perturbs the environment to 
observe the results of its perturbations. As a result, a learning 
system may acquire rules of behavior, descriptions of physical 
objects, problem solving heuristics, and many other types of 
knowledge useful in the performance of a wide variety of tasks. 

One of the early approaches utilized in learning control 
systems, the Hill Climbing method[ 111, is quite similar to the type 
of learning discussed above, although it has not received much 
attention in control. There are three successive steps in the method: 
i) perturb system parameters in a prescribed set of directions; ii) find 
the new PI, which is a result of the performance evaluation; iii) 
move the parameters along the gradient whenever the PI does not 
fall within an acceptable limit. This method is usually used in 
systems with stochastic perturbation. In one example[ll], the 

performance index is the expected value of the q u i t r e  ermr i n  a 
system and the goal is to minimize it. (This is actually a search for 
the bottom of a "valley", rather than the top of a "hill". Still, i t  is 
usually referred as hill climbing.) Here we are perturbing the 
parameters systematically and we monitor the system performance, 
and in that our method resembles the Hill Climbing approach. 
Using optimization techniques and an AI learning method, namely 
learning by observation and discovery, we built a learning system 
for the adaptive control system of large flexible space structures. 
This is shown in Section 4. 

3.0 The Adaptive Control Problem 

In this paper, a learning system is introduced for the 
selections of parameters in the adaptive contxoller of a large flexible 
space structure. The adaptive control system to be considered is 
shown in Figure 1, where the plant is a large space antenna[8]. The 
plant is decoupled into two single-input and single-output 
subsystems, where each one has six modes, known as boom-dish 
modes. For simplicity we only consider one of them, that is a single 
input and single output system of order twelve. The control action 
is provided by 

where YT = [Ey Xm um J ,  up€ R, U, E R, Cy E R ,  X ~ E  R', 
kE R(r+2), r is the dimension of the model system. The gain matrix k 
has the form 

where kI and kp are the integral and proportional gain respectively. 
They are given by the following equations: 

up = kT (1) 

k = kp + kI ( 2 )  

kp = -02kp+ LeyT T 

(3) 

(4) 

The parameters in the set, (01, 0 2 ,  L, i, T, T ), are to be chosen in 
the design process. The choice of these parameters determines the 
system performance. Unfortunately, there is no systematic guides 
available for designers to make the best possible choice. The 
stability and convergence analysis could provide the stability bound 
on these values, but due to the complexity of the transient response 
analysis in this nonlinear system, the analytical relation between 
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perfomi:incc . t i i d  pnraliictcr's IS difficult to find and this area is still 
the scb;ect of current recearchl3,4]. To reduce the problem 
complexity, we fix T and T, which leaves only 01,02, L and It to 

choose. Let S be the set (01,02, L, i) and Sopt denote the S that 
optimizes the system performance. 

4.0 Learning in Adaptive Control. 

The purpose of introducing learning in adaptive control 
system is to choose the optimal set, S = S,, automatically. Also 
we would like to obtain information on the relationship between 
parameters and performance, e.g., which of the components in the 
PI is most sensitive to the parameter L, and vice versa. 

4.1 The Learning Scheme 

problem in this adaptive control system has two parts: 
As discussed in the introduction. the parameter choosing 

m: For certain operating region (reference model and 
inputs), find an optimal set S = Sopt such that it optimizes 
the system perfoxmance. 

U: Exuact knowledge of the relation between parameters 
and performance. 

To solve the problem, a method based on the learning theory in 
Section 2 is introduced. The learning system configuration is 
shown in Figure 2. The learning process involves successive off- 
line simulations of the adaptive control system where the 
knowledge-based system changes the design parameters based on 
the performance analysis of the previous simulations results. 

system 

Figure 2 Learning in adaptive control system 

Here the environment of the learning is the closed-loop 
adaptive control system. The learning by discovery strategy is 
applied using the active experimentation and perturbing the design 
parameter set, S, of the adaptive controller. The learner, which 
perturbs S, is a knowledge-based system with a rulebase and a 
database. The learning process is described as follows: Given an 
initial value of parameter set S, start the simulation of the adaptive 
control system. The knowledge-based system monitors the system 
performance and perturbs the parameters in S in a systematic way 
according to the rules in its rulebase. The rulebase is constructed by 
using optimization algorithms which guide the search for the valley 
in the performance surface since the objective is to minimize the PI. 
The performance analysis provides the PI as well as its components 
the RMS, the ME and the ST, which are the performance measures 
of the system. When the valley, or the minimum of the PI, is 
reached, the corresponding S is placed in the database as the Sop, 
and the learning process for the given operating region terminates. 
The system is designed so that during the process, additional 
knowledge is extracted, such as the sensitivity of each parameter to 
the performance, and stored in the database. 

4.2 Implementation of the Learning System 

For the implementation of the learning scheme discussed 
above, the search for the optimal set of parameters is formulated as 
an expert system guided optimization problem. The cost function to 
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be minimized is the performance index which is defined as 

where w1, w2 and w3 am weighting factors. In the experiment, wl, 
w2 and w3 are chosen 100, 10 and 0.1 respectively. In general, 
the PI should include all of the important quantities for the  
evaluation of the system performance with the weights reflecting 
their relative importance together with their relative sizes. The 
problem of minimizing the PI is treated as an unconstrained 
nonlinear optimization problem. It is assumed that the performance 
surface is strictly quasiconvex[2] and that there are no limits on the 
values of the parameters. The problems beyond these assumptions 
will be considered in the future research. 

The expert system monitors the changes in the parameters 
following the Hooke and Jeeves method using line search. 
Although the details can be found in [2], the method is outlined here 
for completeness. There are two types of search involved in this 
method, exploratory search and pattem search. The exploratoT;' 
search is a line search along the coordinate axes in the parameter 
space. The pattem search is a line search along the pattem directions 
defined as xi+l-  xi. where q is the point reached in exploratory 
search at the ith iteration. Each exploratory is f o l b d  by a pattern 
search. For example, given xo, the exploratory search along the 
coordinate directions produces the point XI. Now a pattern search 
along a direction X I -  xo leads to the point y. Another exploratory 
search starting from y gives the point x2. The next pattern search is 
along the direction x2 - X I ,  yielding y'. The process is then 
repeated The speed of this method was significantly better than that 
of the cyclic method which was used initially. 

The line search is controlled by the rules which are 
constructed by the following strategy. Under the assumptions 
above, there is only one minimum along each of the coordinates in 
the parameter space, and the interval of uncertainty for each 
parameter is (-a-, =). Assume that the initial value of S, which are 
chosen by some heuristics or intuition, has no zero element, and the 
simulation of the closed-loop adaptive control system gives fmite 
output. At the beginning of the line search, a parameter is either 
increased or decreased by 10% of its initial value. If the PI 
decreases, then repeat the change and run the simulation again. If 
the PI decreases in three consecutive steps, the direction is correct, 
increase the step size by a factor of 10. Continue this until the PI 
increases, the direction is wrong, and the minima has been passed. 
Go back to the last value and change the parameter with step size ten 
times smaller in the reversed direction. When the PI increases in 
both directions, decrease the step size by a factor of ten again. In 
the case where both changes to the PI and to the parameter fall 
below predetermined small numbers, the line search for this 
parameter stops, and the line search for the next parameter begins. 
This method offered good results under a variety of conditions. 

Both the Hooke and Jeeves methcd and the above line search 
strategy are encoded into the rules of the rulebase in the knowledge- 
based system. The expert system controls the simulations of the 
adaptive control system and the search for an optimal set of 
parameters. This is essentially the Part I of the learning problem. 
For Part II. the knowledge acquisition in the learning process is 
accomplished by the sensitivity analysis at each step of the 
simulation controlled by the knowledge-based system. The results 
are then averaged over al l  of the steps and then placed into a look-up 
table, called the sensitivity table, where the columns represent the 
RMS, the ME and the ST, and the rows represent 01,02. L and L 
respectively. The values in the table are nonnegative and show the 
magnitude of sensitivity of the RMS, the ME and the ST with 
respect to each of the parameters. This table is used for the 
intelligent adaptive control system in Section 6. 

For practical implementation, the adaptive control algorithm 
in (3) and (4) is discretized and coded using the backward 
differencing scheme. The simulation program is written in the C 
language. The knowledge-based system is implemented using 
CxPERT, an expert system shell which is based on the C language. 
The advantage of this configuration is that there is no interface 
problem between the expert system and the numerical simulation 
program. The simulation runs on an IBM PC AT machine. 

PI w~RMS + w ~ M E  + w ~ S T  (5 )  
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5.0 Simulation Results 

Simulations are performed on the model of the large space 
antenna. Only the boom-dish modes are considered and only one 
subsystem is used. The inner loop design may be different from the 
one in [SI and there is no limit on the magnitude of the input to the 
plant. 

Experiment : Initial Deflection Regulation 
In this experiment, the states of the plant are given some 

initial value. The reference model in Figure 1 is a second order 
system with non-zero initial conditions and high damping (damping 
ratio < = 1.0). The adaptive controller forces the plant output to 
track the highly damped reference model output. The initial value of 
S was chosen to be ( G I =  0.5 , 0 2  = 6.0, L = i = 50 1. Table 1 
shows the results of the experiment. 

I PI I RMSl ME I ST 
I 

closed-loop 
withiearning 1.39 0.008 0.019 4.45 

Table 1 Experiment results 
* The open-loop response did not settle during the simulation time 
and the ST is set to 24.5 when the PI is calculated. 

After leaming, the parameter set (optimal) is adjusted to be 

Note that the PI has improved by approximately 24% and the 
percentage changes to the parameters vary from approximately 41 % 
to approximately 257%. The RMS decreases from 0.012 before 
learning to .008 after learning, for a 33.3% change, the biggest in 
the three. ST increased by 0.1 for a 2.3% change. This is due to 
the different weighting in the definition of the PI in equation (S), 
which assigns the largest weight, 100, to the RMS and smallest 
weight, 0.1, to the ST. Thus it is not surprising that although PI 
decreased after learning, some of the individual terms of the PI 
increased a bit. The sensitivity table in Table 2 shows that L is the 
most sensitive parameter over all and that Lis  second most sensitive 
parameter. In general, the parameters related to the proportional 
gain are more sensitive to the ones related to the integral gain. 
Columnwise we can see that the RMS and the ST are the most 
sensitive to L and the ME is the most sensitive to L. 

Sopt = (01=0.061, 02 = 8.49, L = 115.5, i = 178.41 

I p 10.01 1 0.08 1 0.001 
0.10 0.26 0.01 
0.17 0.25 0.05 

Table 2 Sensitivity Table 

In the experiment, we found that the initial value of S is 
important for the learning system to work properly. This is 
especially important for the parameters L and i. If they are too 
large, the system becomes unstable. If they are too small, the 
controller does not provide sufficient input to the plant to affect its 
behavior. Our assumptions on the performance surface are 
reasonable when the initial value of S is relatively close, within a 
factor of one to two, to the optimal set. If S starts far away from 
Sopt, the system may reach a local minimum. This problem will be 
studied in the future research. 

The experimental results of this learning system are quite 
encouraging. The important achievement is that the learning system 
found the Sopt by itself successfully. The system can of course be 
improved in many aspects, e.g. the local minimum problem could be 

addressed and the efficiency of thr  algoi-ithms could he csplorcd. 
But it shows that its applications i n  solving many control problems 
are promising. For example, this 1e:irning system can be used in 
different operating regions for the adaptive control system, and a 
decision making mechanism can be built for the on-line tuning of the 
parameters in the controller based on the experiment results. This 
will increase the adaptability of the system, or in some sense, add 
"intelligence" to the system. 

6.0 Towards an Intelligent Adaptive Control System 

In conventional adaptive control systems, the variation of 
system dynamics that can be dealt with is quite limited. This is a 
restrictive limitation because it is desirable, especially in space, for 
the adaptive control system to be able to deal with wide ranges of 
environmental changes without human supervision. One way to 
avoid this limitation of the conventional adaptive control systems i b  

to add some "intelligence" to the system so that it is able to tune its 
own parameters automatically[ 11. To achieve this goal, a real-time 
knowledge-based system can be used to monitor the adaptive control 
system. 

This real-time knowledge-based system, which has a 
database, a rulebase, and an inference engine, is built based on the 
results from the learning discussed above. The database is 
constructed by running the learning system in different operating 
regions of the adaptive control system. The database consists of 
frames with each frame containing information such as the type of 
disturbance, the reference model, the corresponding optimal 
parameter set Sppt, and the sensitivity table. The rulebase is empq 
at the beginning. When the inference engine receives thi, 
information and together with the performance information (the I" 
as well as the RMS, the ME, the ST) from the control system, . 
locates the corresponding Sop, and sends it to the control systerr- 
Meanwhile, it generates the rules for the on-line turning by reading 
the look-up table in the same frame. For example, from reading 
Table 2, the inference engine would generate rules such as: 

If RMS is above the threshold, then tune i . 
The rules are fired during the control execution when the 
performance information indicates that some of the components in 
the PI, i.e. the RMS, the ME, or the ST, are not tolerable, and an 
immediate on-line tuning of the parameter set is required. In tuninji 
the parameter, the heuristics of control design can also bt 
incorporated into the rulebase. 

This real-time knowledge-based expert system is also 
implemented in the expert system shell CxPERT. Further on-line 
tesung will be performed as future research. 

7.0 Conclusions 

The application of learning methodologies in AI provides a 
method to solve the parameter choosing problem in the adaptive 
control system of a large space structure. The results of the 
implementation are encouraging. It is possible that this approach 
can be applied to other adaptive control systems where the selection 
of the controller parameters is crucial for the successful 
implementation. It is also proposed that the results of the learning 
can be used in automatic on-line tuning system for the intelligent 
adaptive control system. 
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