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a b s t r a c t 

The quest for autonomy has been a pervasive theme in human culture through-out history. In this pa- 

per a general definition of autonomous systems is presented and discussed that leads naturally to the 

establishment of metrics to measure the level of autonomy of a system. This definition is based on the 

systems ability to achieve goals under uncertainties and it does not involve the means by which the goals 

are achieved, such as sensing and feedback. This paper takes the point of view that any autonomous sys- 

tem is a control system, and that to achieve higher levels of autonomy one may need to add methods 

traditionally developed in areas such as operations research and AI. The work presented here is based on 

earlier work by the author on functional architectures for autonomous spacecrafts. 
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. Introduction 

Autonomous vehicles have certainly captured the imagination

f everyone, in recent years. It is fascinating to have machines

eing able to drive us around autonomously, without a human
∗ Corresponding author. 

E-mail address: antsaklis.1@nd.edu 

t  

a

ttps://doi.org/10.1016/j.arcontrol.2020.05.001 

367-5788/© 2020 Elsevier Ltd. All rights reserved. 
river. In addition, the promise of reducing or even eliminating ac-

idents via autonomy has been very appealing indeed, and more

o because of the convincing marketing strategies of the world’s

argest high tech and automobile companies. Furthermore, sig-

ificant progress in unmanned aerial vehicles (UAV) and in au-

onomous underwater and surface ships is announced daily. These

re exciting times, especially for researchers in control systems. 

https://doi.org/10.1016/j.arcontrol.2020.05.001
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v  
Autonomy in engineered systems is not a new concept. Auto-

matic pilots for aircrafts and ships that increase the degree of au-

tonomy of the system, have been operating very successfully for

many years — the first autopilot for aircraft was introduced in

1912. Furthermore, autonomy is not a new concept in society, in

politics, in companies and organizations, in biology, to mention but

a few. 

These engineered systems are examples of accomplishments of

the Quest for Autonomy , a pervasive theme in engineered systems

through the centuries starting even earlier than Ktesibios’ water-

clock with its feedback mechanism in the 3rd century BC and con-

tinuing strong today. It seems that we always wanted to build

things that did more things by themselves, that served us. In fact,

as it was mentioned in the works of the ancient poets Hesiod and

Homer around 700BC, Hephaestus the Greek god of invention and

blacksmithing had created several creatures that were accomplish-

ing different tasks by themselves. One of them was Talos, a giant

bronze man commissioned by Zeus to protect the island of Crete.

As the story goes, Talos marched around the island three times ev-

ery day autonomously and hurled boulders at approaching enemy

ships! ( Mayor, 2018 ), see also ( Antsaklis, Vachtsevanos, & Polycar-

pou, 2005; Valavanis, Vachtsevanos, & Antsaklis, 2007; 2014 ). 

When people refer to autonomous systems they often mean dif-

ferent things. It is important to be more precise and agree upon a

common definition. 

The purpose of the present paper is to define autonomy, de-

scribe concrete ways to talk about autonomy and levels or degrees

of autonomy and provide quantitative relations. 

The terms autonomy and autonomous imply that the system

has the capability to accomplish certain goals. A system is au-

tonomous always with respect to certain goals; it is not au-

tonomous for the sake of being autonomous. Although this appears

to be an obvious point, if it is not recognized, it can lead to misun-

derstandings when attempting to compare autonomous systems. 

A second major point is that a system which is autonomous

with respect to certain goals is always subject to uncertainties in

the system and its environment; uncertainties that affect the abil-

ities of the system to accomplish the goals. That is, uncertainties

are always present, because if they were not and we had per-

fect knowledge of the system and its environment, we would have

been able to preprogram the system to accomplish any goals —

possible by its structure and its environment. 

Therefore, when we state that a system is autonomous we are

really saying —or we should be saying— that the system is au-

tonomous with respect to a set of goals subject to a set of un-

certainties. 

Such use of terminology is analogous to the use of the term

optimal which really means optimal with respect to certain opti-

mization criteria, say minimum cost (goals), subject to constraints

(restrictions such as uncertainties). Just stating that a solution is

optimal is too vague. In fact, anything can be optimal with respect

to something! The constraints restrict the set of possible solutions.

The constraints may be severe enough for a feasible solution not to

exist (set of constraints being infeasible) in which case no optimal

solution exists (in fact no solution exists at all). Similarly, the un-

certainties restrict the set of possible control policies that achieve

the goals. The uncertainties may be large enough for no control

policies to exist that achieve the goals (the set of uncertainties ren-

der the problem infeasible) in which case no control policy exists

that make the system autonomous with respect to the given set of

goals. 

In view of the above we can characterize autonomy as follows: 

If a system has the capacity to achieve a set of goals under a

set of uncertainties in the system and its environment, by it-

self, without external intervention, then it will be called au-

c  
tonomous with respect to the set of goals under the set of un-

certainties. 

For the same set of goals, the larger the set of uncertainties the

ystem can handle, the higher is its degree of autonomy. The lower

he needed external intervention by humans or other systems to

chieve the goals under the uncertainties, the higher the degree of

utonomy. So, the level of autonomy depends on both, a measure

f the set of the goals that are being accomplished and a measure

f the set of uncertainties present. Specifically, {Measure of the Set

f Goals} × {Measure of the Set of Uncertainties} = L, the level of

utonomy. This definition allows the comparison of the autonomy

evels of different systems. 

An autonomous system has goals to be accomplished and

echanisms to accomplish those goals under uncertainties. This is

xactly what a control system does. Control policies are added to

atisfy certain specifications under uncertainties. Therefore, every

utonomous system is a control system . Adding to traditional con-

rol systems advanced sensing and incorporating decision making

rom areas such as AI is a way to increase substantially the level or

egree of autonomy of a system. Control systems should be seen as

he cornerstone of autonomous dynamic systems. 

The issues outlined above are discussed in detail in this paper. 

The present paper focuses on measures of autonomy with em-

hasis on comparing levels or degrees of autonomy. The definition

f autonomy used here was first presented in Antsaklis (2017) and

urther discussed in Antsaklis and Rahnama (2018) where the main

deas behind defining levels of autonomy were elaborated upon. 

It should be noted that the concepts in defining autonomy us-

ng sets of goals and uncertainties have appeared in the writ-

ngs of the author, published in the open literature, much ear-

ier; see for example ( Antsaklis, Passino, & Wang, 1988; Antsaklis

 Passino, 1993; Antsaklis, Passino, & Wang, 1989; 1991 ). Auton-

my in engineering systems and its relation to intelligent behav-

or was discussed in the task force report ( Antsaklis, 1994 ). De-

ails of defining levels of autonomy were discussed in a paper draft

 Antsaklis, 2018 ) which was circulated and commented upon by

olleagues. These ideas were also presented in a keynote address

t the Mathworks Research Summit in early June 2019. 

To appreciate what is needed to achieve high levels of au-

onomy a conceptual description of a functional architecture for

n autonomous spacecraft is given. This description first ap-

eared in Antsaklis et al. (1988) and in journal paper form in

ntsaklis et al. (1989) . The version included in the present paper

ay be found in Antsaklis (2011) and it is given in Appendix B .

t is recommended that the reader reads Appendix B , even before

roceeding to the main body of this paper. 

In the following, we start the discussion with our definition

f autonomy. The interested reader may want to read materials

rom Antsaklis et al. (1988) ; Antsaklis (1998, 2011) ; Antsaklis et al.

1989, 1991) ; Antsaklis and Rahnama (2018) ; Antsaklis (1994) and

onsult the references therein which describe early research (in

he late 1980s to mid 1990s) in combining control systems with

ntelligent methods from artificial intelligence and machine learn-

ng to design highly autonomous intelligent control systems. For

dditional discussion of autonomy and its levels see, for exam-

le, Beer, Fisk, and Rogers (2014) where the definitions introduced

orrespond to the definitions in this paper in that they use task-

pecific goals to be achieved by the system and refer to needed

utside intervention instead of uncertainties present; that defini-

ions also involve the means by which autonomy is achieved which

s not part of the definition in our approach. See also ( Barber &

artin, 1999; Durst & Gray, 2014; Hrabia, Masuch, & Albayrak,

015; Huang et al., 2007; NIST, 20 0 0 ). Note that a definition in-

olving necessary outside interventions to achieve the goals is dis-

ussed later in this paper. It should be noted that, contrary to
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ther definitions, our definition of autonomy does not involve de-

criptions of the means by which a specific level of autonomy

s achieved, whether smart sensors or intelligent decision making

re involved. We find it more useful to characterize autonomy us-

ng only the possible to achieve goals under given uncertainties

nd letting the specific means by which the level of autonomy is

chieved to be used in characterizations of the system as smart,

ntelligent etc. In fact, as it was stated many times in our publica-

ions, “autonomy is the goal and intelligent means is one way to

chieve it.” Higher autonomy typically involves higher intelligence.

Our definition of autonomous behavior provides a natural way

o define levels or degrees of autonomy via simple quantitative re-

ations, specifically, as it was mentioned above, {Measure of the Set

f Goals} × {Measure of the Set of Uncertainties} = L, the level of

utonomy. This easily leads to an intriguing and interesting rela-

ion, namely {Performance} × {Robustness} = L, the level of auton-

my. Here Performance is a measure of the set of goals that can be

chieved (and it may include stability) and Robustness (Resilience)

s a measure of the set of uncertainties under which the goals are

eached. Systems with higher performance and/or higher Robust-

ess/Resilience have higher degree of autonomy. These issues are

iscussed in detail later in the present paper. 

Entropy can also be used as a general measure of the set of

ncertainties. Entropy in autonomy is also discussed here. 

An additional interesting measure is the degree of external in-

ervention needed to achieve the set of goals. The higher the

eeded external intervention the lower the level of uncertainties

nder which the goals can be achieved; that is there exists an in-

ersely proportional relation between the level of needed exter-

al intervention and the level of uncertainties or robustness under

hich the system operates when achieving the set of goals. 

Examples are used throughout this paper to illustrate the con-

epts including a glimpse of how these definitions and new rela-

ions may be applied to the 5 autonomous vehicle levels used in

he self-driving car literature and industry. 

. Autonomous systems 

We start with the etymology of the word autonomy: 

The term autonomy originated in Ancient Greek: 

 autonomia ), from ( autonomos ), which comes from

( auto ) “self” and ( nomos ) “law”, hence when com-

ined it is understood to mean one who gives oneself his/her own

aw. Autonomous means having the capability and authority for self-

overnment. 

Autonomy goals : A system exhibits autonomous behavior of in-

erest only when is achieving a goal or a set of goals. That is, au-

onomy without clearly identified goals, autonomy for the sake of

utonomy is not interesting, if we want to build useful engineering

ystems. Autonomy without goals is as vague a concept as claiming

hat something is optimal without specifying a measure, such as a

ost to be minimized. For example, a goal of an autonomous train

ould be to move passengers safely from station to station follow-

ng a time schedule with some probability; the goal of a speed

ruise control of an automobile is to control the car so to main-

ain approximately constant speed. 

Every autonomous system is a control system: An autonomous

ystem always has a set of goals to be achieved and a control

echanism to achieve them. This implies that every autonomous

ystem is a control system . Here the term “control system” is used

n a most general sense, in which control (a decision mechanism

ypically using sensor measurements and feedback together with

ays to implement these decisions via actuators) is used to make
he system (a very general collection of processes) attain desirable

oals. 

As it was mentioned above, the word control in autonomous

ontrol has a more general meaning than in conventional control;

n fact, it is closer to the way the term control is used in every-day

anguage; see Antsaklis et al. (1988) . To illustrate, in a rolling steel

ill, while conventional controllers may include the speed (rpm)

egulators of the steel rollers, in the autonomous control frame-

ork one may include in addition, fault diagnosis and alarm sys-

ems; and perhaps the problem of deciding on the set points of the

egulators, that are based on the sequence of orders processed, se-

ected based on economic decisions, maintenance schedules, avail-

bility of machines etc. All these factors have to be considered as

hey play a role in controlling the whole production process, which

s really the overall goal. Note that in order to increase autonomy

t is typical to implement several layers/levels of automation. Local

ontrollers are often referred to as level 1 automation, set points

ssignment as level 2, and so on. 

System and its environment: As it is typically done in the field of

ontrol systems, it is useful to think of a system to be controlled

s being surrounded by a boundary separating it from its environ-

ent. The system acts upon its environment through its outputs

nd receives inputs in the form of disturbances or additional infor-

ation. What the system includes within its boundary, expressed

ia the particular system model used, depends of course on the

oals and the characteristics/properties used to achieve its goals. 

Goals and Uncertainties: In addition to the set of goals to be at-

ained the other central component of autonomy is the set of un-

ertainties. For example, in the above cruise control example, the

peed needs to be maintained (goal) under varying external con-

itions such as road incline, condition of road surface, wind gusts,

s well as internal varying vehicle conditions such as hot or cold

ngine and age of the car (uncertainties). Clearly the uncertainties

f interest in an autonomous system are the ones that affect the

ccomplishments of the goals. 

So, autonomy is the ability of a system to achieve a set of

oals under uncertainties in the system and its environment. Au-

onomy exists only with respect to a set of goals and it is of value

hen there are uncertainties. If there were no uncertainties, we

ould program the system ahead of time, in which case a macro-

ommand would be adequate. In control system theory if we had

omplete knowledge of the system to be controlled and of the ex-

ernal disturbances then we could only use open loop control and

he control problem would have been rather straightforward. Un-

ertainties however are always present in different degrees. For ex-

mple, in the above case of the train moving on fixed rails from

tation to station, as in an airport terminal, there are reasonable

uarantees that no passenger will cross the rails and there will

e an unobstructed path for the train and so the uncertainties are

ather limited and are primarily caused by variations in the flow

f passengers in and out the train at each station. This problem

s manageable and currently such automated trains are operating

uccessfully in many airports around the world. Compare this with

 car moving from point A to point B. Even if we assume that

he car stays in the same lane, the problem is much harder, com-

ared to the train example above, because there are uncertainties

uch as traffic lights, other cars changing lanes without warning,

edestrians crossing unexpectedly, the weather that affects sensors

nd braking distance and so on. Because of the increased uncer-

ainties designing autonomous cars to operate in a city is much

arder than designing autonomous trains to operate in an airport

erminal. It should be noted that significant successes have been

chieved in airplane automatic pilot systems that are being used

housands of times daily which maintain direction, speed and alti-

ude under unexpected disturbances such as gusts of wind and air

ockets. 
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In view of the above discussion we introduce the following def-

inition which captures the fact that autonomy should always be

considered in terms of goals attained under uncertainty. 

Given a system S , let G be a set of goals to be achieved under a

set of uncertainties U . 

Definition 1. A system S is autonomous with respect to the set of

goals G under the set of uncertainties U , if the system S is capable

of achieving all goals in G in the presence of all uncertainties in U ,

by itself, without external intervention. 

The set of uncertainties U is associated with the set of goals G .

It is implied that the uncertainties considered in the above defi-

nition are the ones that are relevant to the goals considered. For

example, for the goal of stability, certain uncertainty in the param-

eters may be relevant, but different set of uncertainties may be

relevant when the goal is tracking. Other uncertainties which are

irrelevant to the goals of interest do of course exist; for example,

in designing the autopilot of an aircraft we do not consider the in-

terior design of the passenger cabin unless it has implications on

the weight of the aircraft. 

Long term autonomy is of interest. It is assumed that the sys-

tem S is able to perform these functions autonomously over a sig-

nificant time horizon; that is, this is a repeatable function the sys-

tem is capable of, over extended periods of time. 

It is possible to have as a goal to control the system so that

some property is attained with certain probability. For example,

the goal could be to attain asymptotic stability with a probabil-

ity of 95%. So, the above definition captures the realistic scenarios

of achieving goals with certain likelihood. 

The above definition of autonomy should and does apply to or-

ganizations and natural systems as well. For example, in an organi-

zation, a team led by a manager accomplishes a set of tasks under

uncertainties such as personnel absences and equipment break-

downs, independently, without intervention by a general manager.

A bacterium may be able to reach a light under normal circum-

stances, but needs external help to remove unexpected obstacles

in its path. 

Autonomous systems should be able to collaborate with hu-

mans to accomplish enhanced goals which are not attainable by

just the human or just the autonomous system. Adaptive autonomy

is of interest here. Imagine the scenario where the driver in an au-

tomobile carries out variable tasks depending on how these tasks

are shared with the autonomous vehicle. For instance, the driver

may want to take on the task of maintaining certain distance from

another vehicle, that is taking on the advanced cruise control func-

tions. The vehicle may take full control if the driver is not capable

of driving safely due to tiredness or intoxication. 

The impact of autonomous systems on society is of significant

interest. It is most important to adopt autonomy in stages, pro-

viding education to prepare the population for the changes. Such

changes accompanied by temporary loss of jobs have occurred sev-

eral times in the past due to the industrial revolution and there are

many lessons to be learned from that, on how to ease the impact.

The hope is of course that autonomy and automation in the long

run will create more jobs that the ones that were lost. The diffi-

culty is that the new jobs will probably require new sets of skills.

The social impact of autonomous systems needs to be taken very

seriously. 

3. Levels of autonomy 

It is of interest to compare the levels of autonomy in systems.

Assume that a given system is autonomous with respect to a set

of goals under a set of uncertainties. If another system can achieve

the same goals under higher uncertainties (under a larger set of

uncertainties) then clearly the second system has higher autonomy.
imilarly, if more goals can be achieved under the same set of un-

ertainties then the system has higher autonomy. 

The autonomy level of a system can be manipulated and in-

reased by adding feedback control, adaptation, learning, planning,

ailure detection and reconfiguration capabilities, which in effect

ncrease the level of uncertainties the system can cope with au-

onomously. 

A fixed feedback control system has low degree of autonomy,

ecause it can achieve the stability goals under rather restricted

arameter variations and external disturbances. When there are

ore substantial parameter changes then one could use methods

rom adaptive control to achieve stability. Such adaptive control

ystem has higher degree of autonomy due to greater uncertainty

n the parameters it can handle. 

The degree of autonomy can be interpreted as the size of an

perating region (operating sphere) defined by a set of parame-

ers within which the system acts on its own in a safe manner

owards the goal. In the example of the car speed control, a typical

ruise control system can keep the car speed at acceptable levels

nly when the road is not too steep. And such control system has

ertain degree of autonomy as it acts appropriately within its op-

rating region, which is specified by the initial design of the sys-

em. We could build cruise control systems with larger operating

egions satisfying the goal of keeping the speed at a preset desired

evel. One way to achieve this is to anticipate, via perhaps a vi-

ion system an upcoming steep grade and prepare for it by shifting

ears or accelerating slightly, which is exactly what human drivers

ypically do. We could also have car speed control systems that

ay attain additional goals thus increasing even more their oper-

ting regions. For example, we could add in a car a control sys-

em that maintains the same speed as the car in the front (these

re called ACC —advanced cruise control systems), and in addition

t adjusts the distance between the cars depending on the speed,

or safety reasons. It is clear that these two control systems, taken

ogether can satisfy a set of goals under quite diverse conditions.

learly such system has higher degree of autonomy. 

For given set of goals, the degree of autonomy may be quanti-

ed by characterizing the safe operating region within which the

ystem acts appropriately. This region in control systems is some-

imes referred to as region (ball, sphere) of uncertainty and it is

haracterized by certain norm measures, when of course normed

paces are appropriate. Control systems that act appropriately in

hese uncertainty regions are called robust with respect to these

ncertainty regions and with respect to goals such as stability (typ-

cally Lyapunov asymptotic stability) or performance. 

Note that the same system may be autonomous or not depend-

ng on the stated goals and the uncertainties present. Furthermore,

 non-autonomous system may have several autonomous func-

ions. For example, in cars, the cruise control, the ABS, ACC, lane

reserving, etc., offer autonomous functionalities and for each one

f these subsystems the set of goals and the uncertainties could be

dentified. 

Autonomous systems deal with uncertainties primarily using

ensors, but also, for example, using prior knowledge and machine

earning, to improve their knowledge of the processes to be con-

rolled and also of the outside environmental influences, so to be

ble to achieve the goals by applying effective decision-making

ethods. Intervention (human or via a controller) reduces uncer-

ainties the system has to deal with autonomously. Successful con-

rol actions, by engineered systems or human intervention, reduce

he set of uncertainties that impact the goals and must be dealt

ith autonomously. Human intervention or adaptive/learning con-

rollers may provide information via, for example, cognitive abili-

ies, data bases, prior experience that reduce the uncertainties, and

ead to a smaller set of uncertainties that need to be dealt with au-

onomously. 
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Measuring the degree of autonomy is non-trivial. It is perhaps

traightforward to compare systems that have the same sets of

oals but different uncertainties. It was pointed out above that

n adaptive control system has higher degree of autonomy than

 fixed feedback controller because it can handle greater parame-

er uncertainty in achieving stabilization (the common goal). When

he goals are different as well, then the problem of measuring de-

rees of autonomy and comparing autonomous systems becomes

ore complex. 

The automotive industry currently uses a useful, descriptive

lassification to distinguish levels of autonomy. There is a SAE scale

f 5 levels (plus a zero level) with level 5 used for full autonomy.

imilarly, the AFRL Autonomy Framework is used in the UAV area,

here a scale of 10 levels (plus a zero level) is being used with

evel 10 used for full autonomy. 

. Metrics 

The above discussed relationships that help us characterize dif-

erent degrees of autonomy may be captured by the following very

imple relations: 

evel or degree of Autonomy = { Measure of the Set of Goals G } ×
 

Measure of the Set of Uncertainties U under which the goals in 

G are attained } 
Let M G be a measure of the set of goals G and M U be a measure

f the set of uncertainties U and L be a measure of the level of

utonomy of the system. 

Then L = M G × M U 

L , the level or degree of autonomy, depends on both, the mea-

ure of the set of uncertainties and the measure of the set of the

oals that can be accomplished. 

The measure of the set of goals should reflect the importance,

omplexity and number of goals. Importance may depend on ex-

sting priorities — tracking quickly within a few seconds may be

 higher priority than tracking asymptotically and in this case the

evel of autonomy with respect to the finite tracking is smaller if

nly asymptotic tracking may be achieved. Similarly, the measure

f the set of uncertainties should reflect the size, frequency and

umber of uncertainties. 

For a given level of autonomy L , when M U decreases, M G in-

reases, that is under reduced uncertainty more goals can be

chieved by the system. When M U goes up, M G goes down that

s, under increased uncertainty fewer goals can be achieved. 

When the goal is just stability and the uncertainties are small,

hat is M G and M U are small then the level of autonomy L is low.

his is the case for example when stabilization can be achieved

ia a fixed feedback controller. When stabilization can be achieved

nder higher uncertainties, which is the case for example when

daptive control is used to stabilize a system, the level of auton-

my L is higher. To increase L , when there is a fixed set of goals,

ne needs to increase uncertainties under which the system is ca-

able of achieving the goals. 

Appropriate controllers in effect increase the size of the set of

ncertainties relevant to the goals that can be accomplished au-

onomously and increase the system’s level of autonomy. Note that

hese controllers are modifying the system. Uncertainties that can

e dealt with autonomously may be increased, for example using

daptation and learning, or human intervention, where extra sen-

ors, cognitive abilities, past experience effectively increases the set

f uncertainties the system can cope with autonomously. For ex-

mple, consider the case when a driver intervenes and assumes

ertain functions to help the vehicle cope with uncertain situa-

ions. 

Clearly, by introducing restrictions on the uncertainties in au-

onomous vehicles (e.g. adding structure — staying in the same
ane, using rails, assuming good weather etc.) more goals can be

chieved. 

More goals can be achieved by adding additional controllers.

or example, assume that a given system is stabilized via a feed-

ack controller, which operates successfully over a set of uncer-

ainties. If a tracking controller is added the goals that can be

chieved increase; however, the set of uncertainties that can be

ealt with autonomously while tracking may be reduced compared

o the stabilization case. 

Given a system, if there are no uncertainties at all, a much-

nhanced set of goals may be achieved with appropriate con-

rollers. For example, we could use open loop control to cancel

ll existing dynamics and introduce any new desired dynamics.

owever, note that when a system is run open loop, uncertain-

ies in plant parameters and disturbances could deny the ability to

chieve control goals, such as stability. 

Given a system is there a maximum L ? The answer is affirmative.

or a given system there is a maximum set of goals that can be

chieved. For example, the attainable goals for a self-driving vehi-

le do not include the ability to fly — at least not yet. Considering

his maximum set of goals, consider the set of uncertainties that

ffect those goals and then consider the largest set of uncertainties

nder which this set of goals can be attained. To find the maxi-

um autonomy level of a system, consider the measures for the

et of goals and the set of uncertainties under which these goals

re achieved and then maximize their product by varying the sets

f goals and for each set of goals selecting the corresponding set

f uncertainties that have the maximum measure. 

. Humans in the loop and adaptive autonomy 

When one considers humans collaborating with engineered sys-

ems, then the overall system that includes humans in the loop

ay be considered autonomous with respect to a large set of goals

nd under a large class of uncertainties, that is having a high level

f autonomy. Depending on the role of the humans in the loop

nd the level of control authority humans exert, the remaining

ystem will have different degrees or levels of autonomy. So, in

n automobile, if for example the goal is to keep the vehicle in-

ide a lane while travelling with constant speed, the system may

onsist of the vehicle and the driver where the system attains its

oals in the presence of uncertainties/disturbances, such as gusts

f wind and road inclines. The driver together with the automo-

ile’s control systems provide the correct steering and gas pedal

ommands so the vehicle maintains its course within a lane and

t certain (approximately) constant speed in the presence of un-

ertainties/disturbances, such as gusts of wind and road inclines. If

ne considers the controller to consist of just the control systems

f the car without the driver, then the system, the car, has a lower

egree of autonomy, meaning that it may need extra help from hu-

ans or other systems to attain the required level of autonomy. 

Humans or other systems may insert themselves at different

evels of a functional hierarchy (that correspond to different levels

f autonomy) used to describe the operation of autonomous in-

elligent systems ( Antsaklis et al., 1988; Antsaklis, 1998; Antsaklis

t al., 1989; 1991; Antsaklis & Rahnama, 2018 ), and take over con-

rol functions. For example, humans may insert themselves to take

ver planning, failure detection and identification, reconfiguration

r learning functions. Or they may insert themselves to take over

ower control functions e.g. a driver may want to take over the

unctions of the ABS system to perform the braking pumping ac-

ion on his own. Such adaptive autonomy, where the authority the

uman operator exercises may vary, appears to be a very promis-

ng direction in autonomous systems research. The level of author-

ty of the human operator may vary and the changes may be initi-
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ated not only by the human operator, but also by the vehicle if it

detects driver errors or lowering of the driver’s alertness. 

6. External intervention 

Autonomy may also be defined in terms of needed, outside in-

tervention necessary to achieve the goals instead of in terms of a

set of disturbances. Note that an equivalent definition of autonomy

is: 

Definition 2. A system is autonomous with respect to a set of

goals G under a set of outside interventions I (by humans or en-

gineered systems), when the system can achieve all the goals in G ,

assisted by just the interventions I . 

If the goals can be achieved under a smaller set of outside (hu-

man and otherwise) interventions, then the system may cope with

higher uncertainties and has higher autonomy; if more goals can

be achieved under the same set of interventions or the same set

of uncertainties then the system has higher autonomy. 

The lower the needed intervention to accomplish the goals, the

higher the level of autonomy. The uncertainty the system can cope

with while achieving its goals, is inversely proportional to inter-

vention necessary to achieve the same goals. 

{Measure of the Set of Interventions I under which the goals

in G are attained} × {Measure of the Set of Uncertainties U under

which the goals in G are attained} = a constant which is taken to

be 1. That is M I × M U = 1 . 

These relationships may be captured via a simple relation: 

Level or degree of Autonomy = {Measure of the Set of Goals

G }/{Measure of the Set of Interventions I under which the goals in

G are attained} 

Let L be a constant that corresponds to the level of autonomy.

Let M G be a measure of the set of goals G and let M I be a measure

of the set of needed interventions I . Then 

L = M G /M I 

Note that here it was assumed that M U × M I = 1 . That is, M I the

measure of the set of needed interventions may be taken to be in-

versely proportional to M U the measure of the set of uncertainties

U . 

As an example, consider a home thermostat. A simple thermo-

stat can achieve the goal of thermal comfort with minimum energy

use, with user interventions to change the set-point when resi-

dents leave or return to home, sleep, etc. A smart thermostat could

achieve the goal without this level of human intervention, relying

on occupancy sensors, models of thermal comfort at night versus

daytime, etc. The smart thermostat has higher level of autonomy

as it can achieve the goal with lower user intervention. 

In certain cases, human intervention is needed to take care of a

subset of the existing disturbances thus eliminating them from the

set of uncertainties the system needs to cope with. Such interven-

tion allows the system to attain the goals autonomously, under the

now reduced set of disturbances. For example, the cruise control in

a car that maintains the car’s speed constant may be not be able to

perform if the road incline is too steep. The driver may intervene

using say look ahead control policies to cope with these large size

uncertainties of the road incline and so reducing the set of incline

uncertainties the system needs to deal with autonomously. 

7. Performance and robustness 

Performance may be taken to be a measure of the set of goals

G achieved by the system. A performance level is assigned that

captures the number of goals, their difficulty and importance. It

should be noted that the term Performance here has a more gen-

eral meaning than in the Controls literature, where typically it does
ot include stability. A level of Performance is accomplished under

 level of Robustness which corresponds to the level of uncertainty

nder which the goals are achieved. For fixed performance level,

igher level of robustness implies higher autonomy. Also, for fixed

obustness level, higher level of performance implies higher au-

onomy level. For fixed autonomy level, higher performance leads

o lower robustness and higher robustness leads to lower perfor-

ance. 

Level of autonomy L = {Performance} × {Robustness} 

Performance P is a particular measure of the set of goals G , M G .

obustness R is a particular measure of the set of uncertainties

 , M U . For P = M G and R = M U . 

 = P × R 

or fixed level of autonomy L when Performance increases Robust-

ess must be reduced. This brings up interesting issues regarding

undamental limitations. 

Robustness R which is a measure of the uncertainties the sys-

em can cope with is inversely proportional to M I the level of

eeded outside intervention. 

 × M I = 1 

. Summary of measures and relations 

Let M G be a measure of the set of goals G . Let M U be a measure

f the set of uncertainties U . 

If L is the level of autonomy of the system then 

 = M G × M U 

Performance P can be seen as an M G . Robustness R can be seen

s an M U . Then for P = M G and R = M U the above relation be-

omes 

 = P × R 

Let M I be a measure of the set of needed interventions I . Then

or M I × M U = 1 the above relation becomes 

 = M G /M I 

In view of the relation between measures of Uncertainty and

ntervention, namely M I × xM U = 1 and the fact that measure

f Robustness R = M U we have that M U = R = 1 /M I , that is the

maller the needed intervention the higher the robustness of the

ystem 

. Entropy 

We may use Entropy to compare autonomous systems that

chieve the same set of goals. Entropy is a measure of uncer-

ainty. If two systems accomplish the same goals, the system with

igher Entropy has a higher level of autonomy since the goals are

chieved under greater uncertainties. For the same goals, higher

ntropy implies higher levels of autonomy. 

We may use Entropy to compare autonomous systems with

arying sets of goals. Entropy measures uncertainty. Reduced en-

ropy means reduced uncertainty that implies an increase of the

et of goals possible, that is a higher level of autonomy. 

As Entropy decreases the set of goals that may be achieved in-

reases. When Entropy is epsilon or zero, a very large set of goals

ay be accomplished — restricted only by the system’s character-

stics, its dynamics and structure. 

As Entropy increases the set of goals that maybe achieved de-

reases. When Entropy is very large the set of goals that can be

chieved becomes very small — epsilon size or zero. 

Let M G be a measure of the set of goals G and M U be a measure

f the set of uncertainties U . 
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We have seen that L = M G × M U . 

Entropy can be taken to be the measure for the uncertainties. 

Let Entropy H = M U . Then L = M G × H. 

0. Concluding remarks 

General metrics to measure autonomy levels and compare lev-

ls of autonomy among different systems were introduced. They

re based on a very general definition of autonomy that involves

nly the set of goals to be achieved under a set of uncertain-

ies. This point of view was developed by the author, simplified

nd fine-tuned over many years. It is based on research performed

uring a summer spent at JPL in Pasadena, California on envision-

ng the capabilities of a spacecraft necessary to act autonomously

in a way bringing Houston Control on board of the spacecraft.

ppendix B below describes in detail how higher levels of auton-

my may be accomplished. It is quite interesting that fault de-

ection and identification and control reconfigurations needed for

utonomy are not being addressed in current efforts towards au-

onomous cars. Autonomy is a very exciting topic with many chal-

enges. I am glad to see that the big high-tech companies work-

ng on autonomous vehicles have started moving beyond the orig-

nal hype where full autonomy was to be implemented in our cars

ithin days, or weeks at most! There are many things to improve

nd more things to invent in this area. The challenges are serious,

ut the potential payoff makes it all worth it. The Quest for Auton-

my continues at an ever increasing pace. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

ppendix A. Autonomy in vehicles 

There is a SAE scale of 5 levels (plus a zero level) with level 5

sed for full autonomy. Consider the 0 to 5 levels of autonomy in

ehicles. We have: 

 G × M U = L 

nd 

 G /M I = L 

Let the scale for M G be 0–10 and the scale for M U be 0–10. Then

he range of level of autonomy will be 0–100. 

Assume that the goals are the same - to drive at the level of a

uman driver under any normal road conditions. We shall take M G 

o be equal to 10 across all levels. 

At level 5 we calibrate M U to be 10, which implies that all goals

re achieved under maximum uncertainties. At level 0 we calibrate

 U to be 0.1, which implies that all goals are achieved under min-

mum or no uncertainties. 

In summary 

• At level 0, M U = 0 . 1 

• At level 1, M U = 2 

• At level 2, M U = 4 

• At level 3, M U = 6 

• At level 4, M U = 8 

• At level 5, M U = 10 

The levels of autonomy then will be 

• At level 0, { M G = 10 } × { M U = 0 . 1 } = 1 = L the level of auton-

omy. 

• At level 1, { M = 10 } × { M = 2 } = 20 = L 
G U 
• At level 2, { M G = 10 } × { M U = 4 } = 40 = L 

• At level 3, { M G = 10 } × { M U = 6 } = 60 = L 

• At level 4, { M G = 10 } × { M U = 8 } = 80 = L 

• At level 5, { M G = 10 } × { M U = 10 } = 100 = L 

Instead of Uncertainty consider now a measure of required In-

ervention for the goals to be achieved. 

Let the scale for M G be 0–10 and the scale for M I be 0–10. Then

he range of level of autonomy will be 0–100. 

At level 5 we calibrate M I to be 1 / 10 = 0 . 1 , which implies that

ll goals are achieved under minimum or no intervention. At level

 we calibrate M I to be 1 / 0 . 1 = 10 , which implies that all goals are

chieved only under maximum intervention. 

In summary 

• At level 0, M I = 1 / 0 . 1 = 10 

• At level 1, M I = 1 / 2 

• At level 2, M I = 1 / 4 

• At level 3, M I = 1 / 6 

• At level 4, M I = 1 / 8 

• At level 5, M I = 1 / 10 = 0 . 1 

The levels of autonomy then will be 

• At level 0, { M G = 10 } / { M I = 1 / 0 . 1 = 10 } = 1 = L the level of au-

tonomy. 

• At level 1, { M G = 10 } / { M I = 1 / 2 } = 20 = L 

• At level 2, { M G = 10 } / { M I = 1 / 4 } = 40 = L 

• At level 3, { M G = 10 } / { M I = 1 / 6 } = 60 = L 

• At level 4, { M G = 10 } / { M I = 1 / 8 } = 80 = L 

• At level 5, { M G = 10 } / { M I = 1 / 10 = 0 . 1 } = 100 = L 

We could have taken 

• At level 0, M I = 1 / 0 . 1 = 10 

• At level 1, M I = 8 

• At level 2, M I = 6 

• At level 3, M I = 4 

• At level 4, M I = 2 

• At level 5, M I = 1 / 10 = 0 . 1 

In that case the levels of autonomy then will be 

• At level 0, { M G = 10 } / { M I = 1 / 0 . 1 = 10 } = 1 = L the level of au-

tonomy. 

• At level 1, { M G = 10 } / { M I = 8 } = 10 / 8 = L 

• At level 2, { M G = 10 } / { M I = 6 } = 10 / 6 = L 

• At level 3, { M G = 10 } / { M I = 4 } = 10 / 4 = L 

• At level 4, { M G = 10 } / { M I = 2 } = 10 / 2 = L 

• At level 5, { M G = 10 } / { M I = 1 / 10 = 0 . 1 } = 100 = L 

The constant then takes on different values from the case when

ncertainties are considered. 

ppendix B. Autonomous spacecraft 

In this Appendix a conceptual case study is described that

dentifies the capabilities of a spacecraft necessary to exhibit

utonomous behavior. It is pointed out that control theory is

 cornerstone of autonomy in systems. The level of auton-

my is increased by adding functions such as learning, plan-

ing, failure diagnosis and reconfiguration. The description be-

ow follow Antsaklis (2011) . Additional details maybe found in

ntsaklis (2011) and Antsaklis et al. (1989, 1991) and the refer-

nces therein. 

We begin by describing a conceptual functional architec-

ure of the autonomous controller necessary for the opera-

ion of future advanced space vehicles that was developed in
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Antsaklis et al. (1988) , Antsaklis et al. (1989) , and Antsaklis and

Passino (1993) ; Antsaklis, Passino, and Wang (1991) . This hierar-

chical architecture is certainly one of many possible control archi-

tectures. The choice is dependent on the particular problem ad-

dressed. We refer to it as a hierarchical functional architecture -

hierarchies make it possible for us to handle complexity better -

but the architecture in fact is a heterarchy, as it also allows direct

communication among elements on the same level. 

The concepts and methods needed to design successfully such

an autonomous controller are introduced and discussed. A hierar-

chical functional autonomous controller architecture for a future

spacecraft is described; it is designed to ensure the autonomous

operation of the control system and it allows interaction with the

pilot/ground station and the systems on board the autonomous ve-

hicle. A command by the pilot or the ground station is executed

by dividing it into appropriate subtasks, which are then performed

by the controller. The controller can deal with unexpected situa-

tions, new control tasks, and failures within limits. To achieve this,

high-level decision-making techniques for reasoning under uncer-

tainty and taking actions must be utilized. These techniques, if

used by humans, are attributed to intelligent behavior. Hence, one

way to achieve autonomy, in some applications, is to utilize high-

level decision-making techniques, “intelligent” methods, in the au-

tonomous controller. Remember that autonomy is the objective, and

“intelligent” or “smart” controllers are one way to achieve it. 

B1. Autonomous controller functions 

Autonomous control systems must perform well under signifi-

cant uncertainties in the plant and the environment for extended

periods of time and they must be able to compensate for sys-

tem failures without external intervention. Such autonomous be-

havior is a very desirable characteristic of advanced systems. An

autonomous controller provides high level adaptation to changes

in the plant and environment. To achieve autonomy the methods

used for control system design should utilize both 

(a) algorithmic-numeric methods, based on the state-of-the-art

conventional control, identification, estimation, and commu-

nication theory, together with advanced sensors and actua-

tors and 

(b) decision making-symbolic methods, such as the ones de-

veloped in computer science (e.g., automata theory), and

specifically in the field of AI. 

In addition to supervising and tuning the control algorithms,

the autonomous controller must also provide a high degree of tol-

erance to failures. To ensure system reliability, failures must first

be detected, isolated, and identified (and if possible contained),

and subsequently a new control law must be designed if it is

deemed necessary. 

The autonomous controller must be capable of planning the

necessary sequence of control actions to be taken to accomplish

a complicated task. 

It must be able to interface to other systems as well as with

the operator, and it may need learning capabilities to enhance its

performance while in operation. It is for these reasons that ad-

vanced planning and learning, among others, must work together

with conventional control systems in order to achieve autonomy. 

The need for quantitative methods to model and analyze the

dynamical behavior of such autonomous systems presents signif-

icant challenges. The development of autonomous controllers re-

quires significant interdisciplinary research effort as it integrates

concepts and methods from areas such as control, identification,

estimation, and communication theory, computer science, artificial

intelligence, and operations research. 
Autonomous controllers evolve from existing controllers in a

atural way fueled by actual needs, as is now discussed. 

2. Design methodology — History 

Conventional control systems are designed using mathematical

odels of physical systems. A mathematical model, which cap-

ures the dynamical behavior of interest is chosen and then con-

rol design techniques are applied, aided by software packages, to

esign the mathematical model of an appropriate controller. The

ontroller is then realized via hardware or software and it is used

o control the physical system. The procedure may take several it-

rations. The mathematical model of the system must be “simple

nough” so that it can be analyzed with available mathematical

echniques, and “accurate enough” to describe the important as-

ects of the relevant dynamical behavior. It approximates the be-

avior of a plant in the neighborhood of an operating point or a re-

ion. The first mathematical model to describe plant behavior for

ontrol purposes is attributed to J.C. Maxwell, who in 1868 used

ifferential equations to explain instability problems encountered

ith James Watt’s flyball governor ; the governor was introduced

n 1769 to regulate the speed of steam engine vehicles (the first

eedback control mechanism in the historical record is the water

lock of Ktesibios, 3rd century BC). 

Control theory made significant strides in the past 140 years,

ith the use of frequency domain methods and Laplace transforms

n the 1930s and 1940s and the introduction of the state space

nalysis in the 1960s. Optimal control in the 1950s and 1960s,

tochastic, robust and adaptive control methods in the 1960s to to-

ay, have made it possible to control more accurately, significantly

ore complex dynamical systems than the original flyball gover-

or. The control methods and the underlying mathematical theory

ere developed to meet the ever-increasing control needs of our

echnology. The evolution in the control area is fueled by three

ajor needs: 

(a) The need to deal with increasingly complex dynamical sys-

tems. 

(b) The need to accomplish increasingly demanding design re-

quirements. 

(c) The need to attain these design requirements with less pre-

cise advanced knowledge of the plant and its environment,

that is, the need to control under increased uncertainty. 

The need to achieve the demanding control specifications for

ncreasingly complex dynamical systems has been addressed by

sing more complex mathematical models such as nonlinear and

tochastic ones, and by developing more sophisticated design algo-

ithms for, say, optimal control. The use of highly complex math-

matical models however, can seriously inhibit our ability to de-

elop control algorithms. Fortunately, simpler plant models, for ex-

mple linear models, can be used in the control design; this is pos-

ible because of the feedback used in control, which can tolerate

ignificant model uncertainties. Controllers can then be designed

o meet the specifications around an operating point, where the

inear model is valid and then via a scheduler a controller emerges

hich can accomplish the control objectives over the whole op-

rating range. This is, for example, the method typically used for

ircraft flight control. In autonomous control systems we need to

ignificantly increase the operating range; we must be able to deal

ffectively with significant uncertainties in models of increasingly

omplex dynamical systems in addition to increasing the validity

ange of our control methods. This will involve the use of intelli-

ent decision-making processes to generate control actions so that

 performance level is maintained even though there are drastic

hanges in the operating conditions. 
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Fig. B.1. Conventional Fixed Controller for Robust Control. 

Fig. B.2. Conventional Indirect Adaptive Controller. 

Fig. B.3. Highly Adaptive Controller for Autonomous Control. 
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There are needs today that cannot be successfully addressed

ith the existing conventional control theory. They mainly pertain

o the area of uncertainty. Heuristic methods may be needed to

une the parameters of an adaptive control law. New control laws

o perform novel control functions should be designed while the

ystem is in operation. Learning from past experience and plan-

ing control actions may be necessary. Failure detection and iden-

ification is needed. Many of these functions have been performed

n the past by human operators. To increase the speed of response,

o relieve the pilot from mundane tasks, to protect operators from

azards, autonomy is desired. It should be pointed out that several

unctions proposed in later sections, to be part of the autonomous

ontroller, have been performed in the past by separate systems;

xamples include fault trees in chemical process control for failure

iagnosis and hazard analysis, and control reconfiguration systems

n aircrafts, planning the sequence of order execution in steel mills

nd setting control set-points. 

In the next section the functions, characteristics, and benefits

f autonomous control are outlined. Next it is explained that plant

omplexity and design requirements dictate how sophisticated a

ontroller must be. From this it can be seen that often it is ap-

ropriate to use methods from operations research and computer

cience to achieve autonomy. An autonomous control functional ar-

hitecture for future space vehicles is then presented, which in-

orporates the concepts and characteristics described earlier. The

ontroller is hierarchical, with three levels, the execution level (low-

st level), the coordination level (middle level), and the management

nd organization level (highest level). The general characteristics of

he overall architecture, including those of the three levels are ex-

lained, and an example to illustrate their functions is given. In the

ollowing section the fundamental issues and attributes of intelli-

ent autonomous systems are described. Then we discuss math-

matical models for autonomous systems including “logical” dis-

rete event system models. A “hybrid’ approach that includes both

onventional analysis techniques based on difference and differen-

ial equations, together with new techniques for the analysis of

ystems described with a symbolic formalism such as finite au-

omata appears to offer advantages. 

3. Functional architecture of an autonomous controller 

Intelligent Autonomous Control Motivation: Sophistication and 

omplexity in Control. The complexity of a dynamical system model

nd the increasingly demanding closed loop system performance

equirements, necessitate the use of more complex and sophisti-

ated controllers. For example, highly nonlinear systems normally

equire the use of more complex controllers than low order lin-

ar ones when goals beyond stability are to be met. The increase

n uncertainty, which corresponds to the decrease in how well the

roblem is structured or how well the control problem is formu-

ated, and the necessity to allow human intervention in control,

lso necessitate the use of increasingly sophisticated controllers.

ontroller complexity and sophistication is then directly proportional

o both the complexities of the plant model and of the control design

equirements. 

Based on these ideas, Saridis in Saridis (1979, 1989) suggested

 hierarchical ranking of increasing controller sophistication on

he path to intelligent controls. At the lowest level, determinis-

ic feedback control based on conventional control theory is uti-

ized for simple linear plants. As plant complexity increases, such

ontrollers will need for instance, state estimators. When process

oise is significant, Kalman or other filters may be needed. Also, if

t is required to complete a control task in minimum time or with

inimum energy, optimal control techniques are utilized. When

here are many quantifiable, stochastic characteristics in the plant,

tochastic control theory is used. If there are significant varia-
ions of plant parameters, to the extent that linear robust con-

rol theory is inappropriate, adaptive control techniques are em-

loyed. For still more complex plants, self-organizing or learning

ontrol may be necessary. At the highest level in their hierarchi-

al ranking, plant complexity is so high, and performance specifi-

ations so demanding, that intelligent control techniques are used.

n the hierarchical ranking of increasingly sophisticated controllers

escribed above, the decision to choose more sophisticated con-

rol techniques is made by studying the control problem using

 controller of a certain complexity belonging to a certain class.

hen it is determined that the class of controllers being studied

e.g., adaptive controllers) is inadequate to meet the required ob-

ectives, a more sophisticated class of controllers (e.g., intelligent

ontrollers) is chosen. That is, if it is found that certain higher-

evel decision-making processes are needed for the adaptive con-

roller to meet the performance requirements, then these processes

an be incorporated. These intelligent autonomous controllers are

he next level up in sophistication. They are enhanced adaptive

ontrollers, in the sense that they can adapt to more significant

lobal changes in the plant and its environment than conventional

daptive controllers, while meeting more stringent performance

equirements. One turns to more sophisticated controllers only if sim-

ler ones cannot meet the required objectives. The need to use intel-

igent autonomous control stems from the need for an increased level

f autonomous decision-making abilities in achieving complex control

asks. 

A brief literature overview of the early literature on au-

onomous intelligent control may be found in Antsaklis (1999) ;

ntsaklis et al. (1989, 1991) . The architecture in Fig. B.4 has three

evels. At the lowest level, the execution level, there is the interface



24 P. Antsaklis / Annual Reviews in Control 49 (2020) 15–26 

Fig. B.4. Autonomous Controller Functional Architecture — Spacecraft JPL. 
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to the vehicle and its environment via the sensors and actuators.

At the highest level, the management and organization level, there

is the interface to the pilot and crew, ground station, or onboard

systems. The middle level, called the coordination level, provides

the link between the execution level and the management level.

Note that we follow the somewhat standard viewpoint that there

are three major levels in the hierarchy. It must be stressed that the

system may have more or fewer than three levels. Some character-

istics of the system, which dictate the number of levels, are the ex-

tent to which the operator can intervene in the system’s operations,

the degree of autonomy or level of intelligence in the various subsys-

tems, the dexterity of the subsystems, the hierarchical Characteristics

of the plant. Note however that the three levels shown here in Fig.

B.4 are applicable to most architectures of autonomous controllers, by

grouping together sublevels of the architecture if necessary; the lev-

els are the lower execution level, the higher management level with

everything else in between being included in the mid coordination

level. Notice that as it is indicated in the figure, the lowest, ex-

ecution level involves conventional control algorithms, while the

highest, management and organization level involves only higher-

level decision-making methods. The middle, coordination level is

the level, which provides the interface between the actions of the

other two levels and it uses a combination of conventional and in-

telligent decision-making methods. The sensors and actuators are

implemented mainly with hardware. They are the connection be-

tween the physical system and the controller. Software and per-

haps hardware are used to implement the execution level. Mainly

software is used for both the coordination and management lev-

els. There are multiple copies of the control functions at each

level, more at the lower and fewer at the higher levels. For ex-

ample, there may be one control manager, which directs a num-

ber of different adaptive control algorithms to control the flexible

modes of the vehicle via appropriate sensors and actuators. An-

other control manager is responsible for the control functions of

a robot arm for satellite repair. The control executive issues com-

mands to the managers and coordinates their actions. Note that

the autonomous controller is only one of the autonomous systems

on the vehicle. It is responsible for all the functions related to the

control of the physical system and allows for continuous online de-

velopment of the autonomous controller and to provide for various

phases of mission operations. The tier structure of the architecture

allows us to build on existing advanced control theory. Develop-

ment progresses, creating each time, higher level adaptation and a
ew system, which can be operated and tested independently. The

utonomous controller performs many of the functions currently

erformed by the pilot, crew, or ground station. The pilot and crew

re thus relieved from mundane tasks and some of the ground sta-

ion functions are brought aboard the vehicle. In this way the de-

ree of autonomy of the vehicle is increased. 

Functional Operation: Commands are issued by higher levels to

ower levels and response data flows from lower levels upwards.

arameters of subsystems can be altered by systems one level

bove them in the hierarchy. There is a delegation and distribu-

ion of tasks from higher to lower levels and a layered distribu-

ion of decision-making authority. At each level, some preprocess-

ng occurs before information is sent to higher levels. If requested,

ata can be passed from the lowest subsystem to the highest, e.g.,

or display. All subsystems provide status and health information

o higher levels. Human intervention is allowed even at the con-

rol implementation supervisor level, with the commands however

assed down from the upper levels of the hierarchy. 

The specific functions at each level are described in detail in

ntsaklis et al. (1989) and Antsaklis and Passino (1993) . Here we

resent a simple illustrative example to clarify the overall opera-

ion of the autonomous controller. Suppose that the pilot desires

o repair a satellite. After dialogue with the control executive, the

ask is refined to “repair satellite using robot A’. This is arrived at

sing the capability assessing, performance monitoring, and plan-

ing functions of the control executive. The control executive de-

ides if the repair is possible under the current performance level

f the system, and in view of near term planned functions. The

ontrol executive, using its planning capabilities, sends a sequence

f subtasks, sufficient to achieve the repair, to the control manager.

his sequence could be to order robot A to: “go to satellite at co-

rdinates xyz ”, “open repair hatch”, “repair”. The control manager,

sing its planner, divides say the first subtask, “go to satellite at

oordinates xyz ”, into smaller subtasks: “go from start to x 1 y 1 z 1 , ”

hen “maneuver around obstacle,” “move to x 2 y 2 z 2 .”...“arrive at the

epair site and wait.” The other subtasks are divided in a similar

anner. This information is passed to the control implementation

upervisor, which recognizes the task, and uses stored control laws

o accomplish the objective. The subtask “go from start to x 1 y 1 z 1 ”

an for example, be implemented using stored control algorithms

o first, proceed forward 10m, to the right15 ′′ , etc. These control

lgorithms are executed in the controller at the execution level uti-

izing sensor information; the control actions are implemented via

he actuators. 

Some Design Guidelines for Autonomous Controllers: There are

ertain functions, characteristics, and behaviors that autonomous

ystems should possess. These are outlined below. Some of the im-

ortant characteristics of autonomous controllers are that they re-

ieve humans from time consuming mundane tasks thus increasing

fficiency, enhance reliability since they monitor health of the sys-

em, enhance performance, protect the system from internally in-

uced faults, and they have consistent performance in accomplish-

ng complex tasks. There are autonomy guidelines and goals that

hould be followed and sought after in the development of an au-

onomous system. Autonomy should reduce the work-load require-

ents of the operator or, in the space vehicle case discussed here,

f the pilot/crew/ground station, for the performance of routine

unctions, since the gains due to autonomy would be superficial if

he maintenance and operation of the autonomous controller taxed

he operators. Autonomy should enhance the functional capability

f the system. Since the autonomous controller will be performing

he simpler routine tasks, persons will be able to dedicate them-

elves to even more complex tasks. There are certain autonomous

ystem architectural characteristics that should be sought after in

he design process. The autonomous control architecture should be

menable to evolving future needs and updates in the state of the
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rt. The autonomous control architecture should be functionally hi-

rarchical; for lower level subsystems to take some actions, they

ave to clear it with a higher-level authority. The system must,

owever, be able to have lower level subsystems, that are monitor-

ng and reconfiguring for failures, and act autonomously to certain

xtent to enhance system safety. There are also certain operational

haracteristics of autonomous controllers. Human operators should

ave ultimate supervisory override control of autonomy functions.

utonomous activities should be highly visible, “transparent”, to

he operator at the maximum extent possible. Finally, there must

e certain features inherent in the autonomous system design. Au-

onomous design features should prevent failures that would jeop-

rdize the overall system mission goals or safety. These features

hould enhance safety, and avoid false alarms and unnecessary

ardware reconfiguration. This implies that the controller should

ave self-test capability. Autonomous design features should also

e tolerant to transient errors, they should not degrade the reliabil-

ty or operational lifetime of functional elements, they should in-

lude adjustable fault detection thresholds, avoid irreversible state

hanges, and provide protection from erroneous or invalid external

ommands. 

4. Characteristics of autonomous control systems 

Based on the architecture described above we identify the im-

ortant fundamental concepts and characteristics that are needed

or an autonomous control theory. Note that several of these have

een discussed in the literature as outlined above. Here, these

haracteristics are brought together for completeness. Furthermore,

he fundamental issues which must be addressed for a quantitative

heory of intelligent autonomous control are introduced and dis-

ussed. There is a successive delegation of duties from the higher to

ower levels; consequently, the number of distinct tasks increases

s we go down the hierarchy. Higher levels are concerned with

lower aspects of the system’s behavior and with its larger por-

ions, or broader aspects. There is then a smaller contextual horizon

t lower levels, i.e. the control decisions are made by considering

ess information. Also notice that higher levels are concerned with

onger time horizons than lower levels. Due to the fact that there

s the need for high-level decision-making abilities at the higher

evels in the hierarchy, there is increasing intelligence as one moves

rom the lower to the higher levels. This is reflected in the use of

ewer conventional numeric-algorithmic methods at higher levels

s well as the use of more symbolic-decision making methods. This

s the “principle of increasing intelligence with decreasing preci-

ion” described in Saridis (1979, 1989) . The decreasing precision

s reflected by a decrease in time scale density, decrease in band-

idth or system rate, and a decrease in the decision (control ac-

ion) rate. All these characteristics lead to a decrease in granularity

f models used, or equivalently, to an increase in model abstract-

ess. Model granularity also depends on the dexterity of the au-

onomous controller. The execution level of a highly dexterous con-

roller is very sophisticated and it can accomplish complex control

asks. The control implementation supervisor can issue high level

ommands to a dexterous controller, or it can completely dictate

ach command in a less dexterous one. The simplicity, and level

f abstractness of macro commands in an autonomous controller

epends on its dexterity, which really corresponds to its level of

utonomy. The more able the execution level is, the simpler are

he commands that the control implementation supervisor needs

o issue. Notice that a very dexterous robot arm may itself have a

umber of autonomous functions. If two such dexterous arms were

sed to complete a task, which required the coordination of their

ctions then the arms would be considered to be two dexterous

ctuators and a new supervisory autonomous controller would be

laced on top for the supervision and coordination task. In general,
his can happen recursively, adding more intelligent autonomous

ontrollers as the lower level tasks, accomplished by autonomous

ystems, need to be supervised. 

There is an ongoing evolution of the intelligent functions of an

utonomous controller and this is now discussed. It was pointed

ut above that complex control problems required a controller so-

histication that involved the use of AI methodologies. It is inter-

sting to observe the following: Although there are characteristics,

hich separate intelligent from non-intelligent systems, as intelli-

ent systems evolve, the distinction becomes less clear. Systems,

hich were originally considered intelligent evolve to gain more

haracter of what are considered to be non-intelligent, numeric al-

orithmic systems. An example is a route planner. Although there

re AI route planning systems, as problems like route planning be-

ome better understood, more conventional numeric-algorithmic

olutions are developed. The AI methods which are used in in-

elligent systems, help us to understand complex problems so we

an organize and synthesize new approaches to problem solving, in

ddition to being problem solving techniques themselves. AI tech-

iques can be viewed as research vehicles for solving very com-

lex problems. As the problem solution develops, purely algorith-

ic approaches, which have desirable implementation characteris-

ics, substitute AI techniques and play a greater role in the solution

f the problem. It is for this reason that we concentrate on achiev-

ng autonomy and not on whether the underlying system can be

onsidered “intelligent”. 

5. Mathematical models for autonomous systems 

For autonomous control problems, normally the plant is so

omplex that it is either impossible or inappropriate to describe

t with conventional system models such as differential or differ-

nce equations. Even though it might be possible to accurately

escribe some system with highly complex nonlinear differential

quations, it may be inappropriate if this description makes sub-

equent analysis too difficult to be useful. The complexity of the

lant model needed in design depends on both the complexity of the

hysical system and on how demanding the design specifications are.

here is a tradeoff between model complexity and our ability to per-

orm analysis on the system via the model. However, if the control

erformance specifications are not too demanding, a more abstract,

igher level, model can be utilized, which will make subsequent anal-

sis simpler. This model intentionally ignores some of the system char-

cteristics, specifically those that need not be considered in attempt-

ng to meet the particular performance specifications. For example,

 simple temperature controller could ignore almost all heat re-

ated dynamics of the house or the office and consider only a tem-

erature threshold model of the system to switch the furnace off

r on. Logical discrete event system (DES) models and Petri nets

re quite useful for modeling the higher-level decision-making pro-

esses in the autonomous controller together with logics, seman-

ic networks, rule-based descriptions etc. Queuing network mod-

ls, Markov chains, etc. will be useful in the study. The choice of

hether to use such models will, of course, depend on what prop-

rties of the autonomous system need to be studied. 

The quantitative, systematic techniques for modeling, analysis,

nd design of control systems are of central and utmost practical

mportance in conventional control theory. Similar techniques for

utonomous controllers do not exist to a similar degree. This is of

ourse because of their novelty, but for the most part, it is due

o the “hybrid” structure (nonuniform, nonhomogeneous nature) of

he dynamical systems under consideration. The systems are hy-

rid since in order to examine autonomy issues, a more global,

acroscopic view of a dynamical system must be taken than in

onventional control theory. Modeling techniques for autonomous

ystems must be able to support this macroscopic view of the dy-
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2017. 
namical system, hence it is necessary to represent both numeric

and symbolic information. We need modeling methods that can

gather all information necessary for analysis and design. For ex-

ample, we need to model the dynamical system to be controlled

(e.g., a space platform), we need models of the failures that might

occur in the system, of the conventional adaptive controller, and of

the high-level decision-making processes at the management and

organization level of the intelligent autonomous controller (e.g., an

AI planning system performing actions that were once the respon-

sibility of the ground station). The heterogeneous components of

the autonomous controller all take part in the generation of the

low-level control inputs to the dynamical system, therefore they

all must be considered in a complete analysis. It is our viewpoint

that research should begin by using different models for different

components of the autonomous controller. Full hybrid models that

can represent large portions or even the whole autonomous sys-

tem should be examined but much can be attained by using the

best available models for the various components of the architec-

ture and joining them via some appropriate interconnecting struc-

ture. For instance, research in the area of systems that are mod-

eled with a logical DES model at the higher levels and a differ-

ence equation at the lower level, that is hybrid dynamical systems,

should be used. In any case, our modeling philosophy requires the

examination of hierarchical models. Much work needs to be done

on hierarchical DES modeling, analysis, and design, let alone the

full study of hybrid hierarchical dynamical systems. Abstractions

are of course at the center of any such study. 
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