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ABSTRACT: Neural computing offers mas- 
sively parallel computational facilities for the 
classification of patterns. In this paper, a cer- 
tain type of neural network, called the mul- 
tilayer perceptron, is used to classify nu- 
meric data and assign appropriate symbols 
to various classes. This numeric-to-symbolic 
conversion results in a type of “information 
extraction,” which is similar to what is called 
“data reduction” in pattern recognition. 
After introducing the idea of using the neural 
network as a numeric-to-symbolic converter, 
its use in autonomous control is discussed 
and several applications are studied. The 
perceptron is used as a numeric-to-symbolic 
converter for a discrete-event system con- 
troller supervising a continuous variable dy- 
namic system. It is also shown how the per- 
ceptron can implement fault trees, which 
provide useful information (alarms) in a bi- 
ological system and information for failure 
diagnosis and control purposes in an aircraft 
example. 

Introduction 
An important new branch of control theory 

is concerned with the study of discrete-event 
systems, which include manufacturing sys- 
tems and traffic systems. Another relatively 
new area is the field of autonomous control 
theory, where “intelligent” controllers are 
used to control complex systems. Such sys- 
tems include certain space systems and au- 
tonomous land and underwater vehicles. In 
both cases, as is explained below, symbolic 
(automata-theoretic) formalisms, as opposed 
to conventional differentiaUdifference equa- 
tion approaches, are often used in controller 
development. Frequently, however, portions 
(or all) of the plant output are numeric data 
rather than symbols. There is then the need 
to convert the numeric data to symbolic in- 
formation, i.e., to perform numeric-to-sym- 
bolic conversion. Such a conversion is, for 
instance, inherently performed by fault trees 
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in chemical process control to detect failures 
from plant data. Another example of such 
conversion is to reject or accept items in a 
manufacturing system based on their com- 
pliance with a tolerance. In this paper, a cer- 
tain type of neural network, called the rnul- 
tilayer perceptron, is used to perform the 
numeric-to-symbolic conversion task. This 
paper is an expanded version of the work 
presented in [l]. 

The goal of this paper is to introduce the 
idea of using the multilayer perceptron as a 
numeric-to-symbolic converter to provide 
measurement information for specific control 
purposes; there is no contribution to the the- 
ory of neural networks or pattern recogni- 
tion. The work involves the application of a 
particular neural network to problems often 
encountered in some of the more recent de- 
velopments in control theory. In particular, 
the results of this paper show one alternative 
for implementing the interface between nu- 
meric and symbolic information, a problem 
of significant importance. The results here 
also suggest that the use of numeric-to-sym- 
bolic (and symbolic-to-numeric) converters 
is a possible starting point in system design 
(e.g., for “hybrid” systems). Other appli- 
cations of neural networks to control have 
been in adaptive systems, since neural net- 
works have an inherent learning capability. 
(See, for instance, the special section on 
neural networks for systems and control in 
[2].) Such applications are not studied here 
since the learning capabilities of the percep- 
tron used are not utilized. 

Neural computing involves the use of 
neural networks to perform computations in 
a massively parallel fashion. A neural net- 
work is a model that represents the structure 
and function of the interconnected network 
of neurons in, for instance, a human brain. 
Researchers hope to emulate the highly ef- 
ficient “computing” that humans perform 
with ease. Here, a certain neural network, 
called the multilayer perceptron, is used to 
classify numeric data and assign appropriate 
symbols to the various classes. It is a feed- 
forward model that is restricted so that it 
does not self-adjust its weights or learn. The 

classification it performs is a form of infor- 
mation extraction from given data. It is per- 
formed with massively parallel computing; 
hence, it is inherently faster than conven- 
tional sequential processing. 

The conversion of numeric data to sym- 
bols is a form of information extraction. In- 
tuitively speaking, information extraction is 
the transformation of detailed information 
into abstract, generalized information; there 
is always a certain loss of information in the 
extraction process. Here, the detailed infor- 
mation is an n-dimensional vector of real 
numbers, the numeric data. The abstract in- 
formation is a set of symbols representing 
regions in the n-dimensional space. The in- 
formation extraction process is performed 
here using the multilayer perceptron. The 
type of information obtained is, for example, 
“signal 1 is greater than 0 and less than 5, 
and signal 2 is greater than -3 and less than 
10.” The information lost in our extraction 
process is the exact value of the real num- 
bers. (The “symbols” we refer to may not 
satisfy various mathematical properties such 
as addition and multiplication; however, they 
are normally chosen to have a particular 
physical interpretation.) It is understood that 
there are other types of information extrac- 
tion, e.g., when the behavior of the system 
generating the data is characterized. Char- 
acterization of behavior could involve find- 
ing that “signal 1 is the derivative of signal 
2.” 

The process of information extraction via 
the neural network studied here is closely 
related to what has been called pattern rec- 
ognition. In fact, the multilayer perceptron 
solves what are called “deterministic clas- 
sification problems” [3]. Similar problems 
have also been studied using the threshold 
logic circuits (networks) described in [4], 
except that in these circuits the theory only 
allows a finite number of discrete inputs, U. 
The pattern recognition process is viewed as 
a three-step “data reduction” process [3], 
PI: 

(1) Sensors make measurements of certain 
variables in the environment. 
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(2)  Feature extraction is then used to obtain 
a more global, high-level description of 
the measured data. 

( 3 )  Classijication algorithms are used to 
name the pattern. 

The viewpoint can be taken that this com- 
plete process is performed by the multilayer 
perceptron. The patterns sensed are points in 
the n-dimensional space of real numbers. 
Feature extraction entails determining which 
region each element of the n-dimensional 
vector lies in. Classification involves taking 
logical combinations of these regions and at- 
taching labels to them. Rather than viewing 
the numeric-to-symbolic conversion process 
as a traditional pattern recognition problem, 
we prefer to view the multilayer perceptron 
as the device that performs only step 1 (in 
the preceding process) of a more abstract 
recognition process in which the goal is to 
take some action based on the pattern de- 
tected. For step l of the more abstract pro- 
cess, the perceptron senses data in the en- 
vironment and provides symbols as its 
measurements. These symbols are then used 
by a controller to make decisions on what to 
input into the plant. Clearly, the controller 
may need abstract, “symbolic” feature ex- 
traction and classification to complete the 
high-level pattern recognition so that it can 
make its decisions, but these problems are 
not studied here. A similar view of pattern 
recognition is taken in [6]. Note that the 
method used here does not employ the more 
complex pattern recognition techniques (e.g., 
statistical or syntactical) to recognize wider 
classes of patterns. For example, as indi- 
cated earlier, it will not characterize the dy- 
namical behavior of the environment over a 
period of time. For more information on pat- 
tern recognition techniques, see, for in- 
stance, [ 3 ] ,  [7]. An alternative view from the 
perspective of artificial intelligence that sup- 
ports the preceding ideas on the abstract 
classification process is given in [ 8 ] .  

Numeric-to-symbolic conversion can be 
used in several different ways in control sys- 
tems. It can be used in the control of certain 
discrete-event systems, in autonomous con- 
trol applications, and to implement fault 
trees. The three applications summarized 
here are described in more detail in the next 
section. The first applications considered are 
certain discrete-event systems. Note that 
there are cases when discrete-event control- 
lers can he used for the control of continuous 
variable systems. In these instances, there is 
a need for a numeric-to-symbolic converter 
to provide the symbols to the controller. In 
the case of autonomous control, there is a 
“symbolicInumeric interface,” where high- 

level, possibly “intelligent,” controllers are 
used to control continuous systems [9 ] ,  [IO]. 
The multilayer perceptron can be used to 
convert numeric information into more ab- 
stract symbolic information for use in, for 
instance, a planning system. Finally, the in- 
formation can be extracted by the perceptron 
so that it is useful in higher-level control 
decisions. For instance, the information pro- 
vided by afault tree on the failure status of 
a plant (what alarms should be on or off) can 
be used to generate appropriate control ac- 
tions so that the effects of the failures can be 
eliminated. It is shown here that the multi- 
layer perceptron can be used to implement a 
fault tree to produce alarms. 

In the sections that follow, the theory of 
the multilayer perceptron is outlined. Next, 
three examples are presented. First, an ex- 
ample of the use of the perceptron as a nu- 
meric-to-symbolic converter for a surge tank 
is given. Next, it is shown how the percep- 
tron can be used for the implementation of 
fault trees for a biological system and an 
aircraft. The paper closes with some con- 
cluding remarks and future directions. 

Information Extraction in Control 
Systems: The Numeric-to-Symbolic 

Converter 
In this section, we discuss several ways in 

which information extraction is used in con- 
trol theory. In practice, information is al- 
ways extracted-in the modeling of pro- 
cesses, for example. The extraction we 
discuss here is the transformation of numeric 
data to symbolic information, which is done 
dynamically in an on-line control system. 
There are three main applications to control 
theory discussed here. 

The first is discrete-event systems. There 
are dynamic systems that either cannot be 
described by differentialidifference equa- 
tions, or it is not desirable to do  so because 
subsequent analysis and design is very com- 
plicated, awkward, or simply inadequate. An 
alternative approach is to begin with a dif- 
ferent model. In [ I l l ,  the authors give an 
example of how to use a symbolic formal- 
ism-the nondeterministic finite-state au- 

tomaton-to describe a plant (a surge tank) 
that is normally described with a nonlinear 
differential equation. Using this description, 
a finite-state controller was given and certain 
closed-loop properties were verified. In these 
cases, for controller implementation, a nu- 
meric-to-symbolic converter is needed to 
convert the sensor data to symbols for use in 
the discrete-event controller. The perceptron 
developed here is used to implement this 
converter. Another example of a combined 
study of discrete-event and continuous sys- 
tems is given in [12]. 

The discrete-event controllers considered 
in this paper will be referred to as symbolic 
controllers, since they are developed using 
a symbolic formalism (automata-theoretic) 
and have symbols as inputs and outputs rather 
than numeric data. (Of course, numbers are 
symbols too, but the symbols we refer to 
here may not possess mathematical proper- 
ties such as addition or multiplication.) The 
situation where we have a symbolic control- 
ler controlling a continuous variable dy- 
namic system is depicted in Fig. 1 .  The syni- 
bolic controller uses Y, (symbols) as inputs 
and a reference input, say, R, (symbols), and 
generates the control inputs to the plant U, 
(symbols). The numericisymbolic converter 
transforms the measurement data y ( f )  into 
symbols Y, . The symbolicInumeric converter 
transforms the symbols U, into numeric plant 
inputs u(t) .  

The numericIsymbolic converter can be 
thought of as analogous to the analog-to-dig- 
ita1 (AID) converter in digital systems. In 
the one-dimensional case, the real number 
line (numeric data) is partitioned into regions 
associated with, say, binary numbers (sym- 
bols), and the values of the input are con- 
verted into the appropriate binary numbers. 
Indeed, there have been neural network im- 
plementations of a 4-bit AID converter [ 131, 
[14]. The work here generalizes that appli- 
cation to the multi-input case using a differ- 
ent neural network. In addition to perform- 
ing a more general conversion process than 
AID conversion, the perceptron can operate 
in an asynchronous mode as well as in a 
synchronous one. Note that the perceptron 
can be expected to perform numeric-to-sym- 

Fig. I .  Symbolic/numeric conversion. 
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bolic conversion quickly. This is very im- 
portant if it is to be placed in the control 
loop, because delays tend to cause instabil- 
ity. The symbolic controller’s control ac- 
tions on the continuous plant can be trans- 
lated into numeric inputs by a generalized 
method analogous to digital-to-analog (D/A) 
conversion. It may convert a symbol to a 
simple numeric value or  to a sine wave, 
square wave, or  some other more complex 
signal. This problem is not addressed here. 

Autonomous controller architectures can 
be viewed as hierarchical with three main 
levels (see, for example, [9], [IO], and the 
references therein). These are the manage- 
ment and organization level, the coordina- 
tion level, and the execution level. The ex- 
ecution level contains the hardware and 
conventional control algorithms performing 
low-level feedback control. The manage- 
ment and organization level has the interface 
to the operator and the intelligent learning 
and planning systems for supervising the ac- 
tions taken at the lower levels. The cooi-di- 
nation level provides a link between the 
management and organization level and the 
execution level. Autonomous controllers are 
used in the control of very complex systems 
that are normally hybrid. A hybrid system is 
one that contains dynamics that can be de- 
scribed by, for instance, differential or dif- 
ference equations, and dynamics that are 
convenient to describe with some symbolic 
formalism. The controllers developed for 
such systems are also hybrid, with various 
numeric and symbolic components at each 
of the three levels. The numeric-type algo- 
rithms normally are used at the lower level 
of the architecture, the execution level, 
whereas the symbolic-type algorithms are 
operating at the highest level, the manage- 
ment and organization level. There is then a 
symbolicinumeric interface in the autono- 
mous controller much like the one in certain 
discrete-event systems discussed earlier. 
Consequently, the perceptron developed here 
will be useful in autonomous control appli- 
cations. 

The results can also be used in the field of 
intelligent control called expert control. The 
“safety nets” in 1151 use information ex- 
traction of ranges of variables for making 
high-level control decisions in adaptive con- 
trol. The results of this paper provide a 
method to produce the information for such 
control decisions. In [lS],  the authors pro- 
pose to use an expert controller, one that 
uses an expert system to emulate the actions 
a human operator would perform to maintain 
an adaptive controller’s operation. The hu- 
man in the control loop is being emulated. 
It is then natural to use a perceptron to em- 

ulate the human’s pattern classification abil- 
ities. 

In general, the multilayer perceptron can 
be used to classify data so that control de- 
cisions can be made. The symbols attached 
to various regions of the n-dimensional space 
of real numbers may have a particular phys- 
ical interpretation. The perceptron can pro- 
vide failure information such as “signal 1 is 
in range 4 AND signal 3 is in range S OR 
signal 7 is in range 1 I . ”  This information 
may be quite useful in making control de- 
cisions. For instance, the values of signals 
1, 3, and 7 may indicate that a certain failure 
condition is occumng and that a specific 
control action ought to be taken so that the 
failure will not degrade system performance. 
Failure information of the type described 
earlier is typically generated by fault trees 
[16], [17]. The low-level failures in fault 
trees are characterized by regions of certain 
variables, and fault-tree high-level failures 
are characterized by logical combinations of 
the low-level failures. Here, the multilayer 
perceptron determines in which regions cer- 
tain variables appear and performs the ap- 
propriate ANDing and ORing to indicate 
what high-level failure has occurred. In the 
following section, an outline of multilayer 
perceptron theory is given. 

Multilayer Perceptron for 
Numeric-to-Symbolic Conversion 
The multilayer perceptron is a feedfor- 

ward neural network used for neural com- 
puting (see, for example, [18]). The multi- 
layer perceptron considered here contains a 
single hidden layer between the input and 
the output layers, as illustrated in Fig. 2 for 
the case of two nodes at each level. This 
cascading concept is well understood in con- 
trol systems. For example, with two hidden 
layers, the output layer is measured directly, 
The first hidden layer feeds the output layer; 
the second hidden layer feeds the first hidden 
layer. The input of the perceptron is applied 
to the second hidden layer. The input to the 
multilayer perceptron considered here is the 
vector U with components U,, and it contains 
M continuous real-valued elements. The 
vector x’ (with components x,’), which con- 
tains M ,  binary elements, is the output of the 
input layer and the input to the hidden layer. 

The vectorx”, which contains M2 binary ele- 
ments, is the output of the hidden layer and 
the input to the output layer. The vector y 
(with components y i ) ,  which contains N bi- 
nary elements, is the output of the percep- 
tron. 

In Fig. 2 ,  the nodes are denoted with cir- 
cles and the biases with arrows that point 
downward. The biases on the input layer are 
denoted by b: , on the hidden layer by b,“ , 
and on the output layer by b,. The weights 
are denoted by all of the other arrows (which 
will be labeled with the weights) that are 
between U and the input nodal layer, between 
x’ and the hidden nodal layer, and between 
x” and the output layer. The element w,] of 
the M X M ,  matrix “denotes the weight on 
the arc from U, to the node with x; as its 
output. The M I  X M,  matrix W‘ denotes the 
weights on the arcs from each x,’ to the node 
with x;’ as its output. The M2 x N matrix 
W” denotes the weights on the arcs from 
each x: to the node with y j  as its output. The 
weights on the arcs connecting the output 
nodal layer to the outputs y ,  are unity. For 
convenience, if the weight of any arc is zero, 
the arc will be omitted from the graphical 
representation of the perceptron. 

Each node produces at its output a sum- 
mation of its weighted inputs and its bias, 
which is passed through a threshold nonlin- 
earity. The result is a binary output for each 
layer. Two typical threshold nonlinearities 
are illustrated in Fig. 3. 

The input to the ith threshold nonlinearity 
of the input layer, denoted by f , ( t ) ,  is the 
weighted sum of the inputs added to the bias. 

M 

/ = 1  
f , ( Z )  = c (W,,U/(tN + b: (1) 

If f k ,  denotes a threshold nonlinearity of type 
k for the ith node, then the output of the 
input nodal layer is given by 

x,’ (4  = f n ,  (1, (0) ( 2 )  

The outputs of the hidden layer and the out- 
put layer are given by similar relations. With 
these equations, the input-output relationship 
for the multilayer perceptron is easily spec- 
ified. These equations were used for the de- 
velopment of the multilayer perceptron sim- 
ulations in the examples. 

gI ..w 

Fig. 2 .  Multilayer perceptron for  two nodes at each layer. 

46 I € € €  Control Systems Mogodine 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:17 from IEEE Xplore.  Restrictions apply. 

K. M. Passino, M. A. Sartori and P. J. Antsaklis, "Neural Computing for Numeric to Symbolic 
Conversion in Control Systems,” I EEE C ontrol S ystems M agazine , pp. 44-52, April 1989.



(a) (b) 

Fig. 3. 
multilayer perceptron. 

Threshold nonlinearities f o r  the 

The multilayer perceptron is commonly 
used for pattern classification. In the classi- 
fication problem, one desires to identify cer- 
tain “decision” regions that the input vector 
U lies in. Examples of dividing a two-di- 
mensional input space into decision regions 
are illustrated in Fig. 4. An input pattern U 

is presented to the perceptron. After pro- 
cessing, the output vector y represents cer- 
tain decision regions. In particular, if U is a 
member of one decision region, an appro- 
priate element of the output vector y be- 
comes a l (HI). If the input pattern U is not 
a member of a particular decision region, an 
appropriate element of the output vector y 
becomes a 0 (LO). 

The weights and biases of the multilayer 
perceptron depend on the decision regions to 
be identified. The technique used to deter- 
mine the weights and biases (and number of 
nodes) for the multilayer perceptron will be 
referred to herein as the “Harvey method.” 
It is based on the results presented in [18] 
and is outlined as follows: 

( I )  Determine: 
(a) decision regions (hyperplanes), and 
(b) symbols that characterize various re- 

(2) To define the input nodal layer, for each 
gions. 

hyperplane: 
(a) Add a node to the input layer, and 
(b) Define the weights and bias from 

each perceptron input to the node 
using the hyperplane definition. 

( 3 )  To define the hidden layer, use one node 
for each logical conjunction of input no- 
dal layer outputs needed to define the 
output symbols. 

(4) To define the output layer, use one node 
for each logical disjunction of hidden 

(a) (b) 

Fig. 4. Examples of two-dimensional 
decision regions. 
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nodal layer outputs needed to define the 
symbols output from the perceptron. 

Notice that not only are the weights and 
biases determined, but also the actual num- 
ber of nodes in each nodal layer. As with 
the weights and biases, the number of nodes 
also depends on the decision regions to be 
identified. The three layers of the multilayer 
perceptron, as shown in Fig. 2, are named 
(from left to right) the inputlplane layer, the 
AND layer, and the ORioutput layer. The 
input/plane layer consists of nodes repre- 
senting the hyperplanes dividing the input 
space. For example, in Fig. 4(a), region A 
needs eight one-input input/plane nodes since 
the region is constrained by eight different 
lines. The AND layer consists of one AND 
node for each decision region defined by 
more than one hyperplane. For example, in 
Fig. 4(a), region A needs two four-input 
AND nodes, each to denote that U is below 
one line, to the left of another line, above 
one line, and to the right of still another line. 
In other words, each four-input AND node 
will indicate that U lies in one of the two 
boxes that define region A. The OR/output 
layer consists of nodes used to associate dis- 
joint decision regions. For example, in Fig. 
4(a), region A needs one two-input OR/out- 
put node to indicate that U lies in one of the 
two boxes. Using the preceding method, the 
weights depend on which side of the plane 
the decision region lies, and the biases de- 
pend on the locations of the decision regions. 
As an alternative, the weights and biases 
could be determined by passing sample de- 
cision region data through the multilayer 
perceptron and updating the weights and 
biases based on a training (learning) algo- 
rithm (see [18]). 

There are numerous other methods used to 
automatically adjust the weights and biases; 
these are considered to be learning algo- 
rithms. For instance, the Back-Propagation 
Training Algorithm, which is presented in 
[19], [20], can be used for perceptrons sim- 
ilar to the one shown in Fig. 2. This algo- 
rithm may be particularly useful if the input 
space must be divided into decision regions 
that are separated by curved borders. In [21], 
three other training procedures are intro- 
duced and compared to the Back-Propaga- 
tion Training Algorithm. In [22], an alter- 
native to the Back-Propagation Training 
Algorithm, called the Selective Update Back- 
Propagation Algorithm, is introduced and 
shown to work in cases where the Back- 
Propagation Training Algorithm will not. 
Through the presentation of input data, the 
multilayer perceptron’s output, and the de- 

weights and the biases until they stabilize. 
Although the Back-Propagation Training Al- 
gorithm seems to work for most cases, con- 
vergence of the algorithm has not yet been 
proven for the fully interconnected multi- 
layer perceptron [ 191, [20]. Convergence for 
the lightly interconnected multilayer percep- 
tron is considered in [23]. 

Examples of Numeric-to-Symbolic 
Conversion in Control Systems 

In this section, three examples of how nu- 
meric-to-symbolic conversion can be per- 
formed via the multilayer perceptron are 
given. A discrete-event system is studied in 
the first example, and fault trees are pro- 
duced for the last two. 

Surge Tank 

The first example, from chemical process 
control, involves a liquid-holding surge tank 
similar to the one studied in [ l l ] .  The tank 
is viewed as a discrete-event system, and its 
liquid level is controlled by a symbolic con- 
troller. The controller is a simple map from 
the plant outputs (liquid levels) to the plant 
inputs (valve open or closed). The tank is 
depicted in Fig. 5 .  The empty valve is un- 
predictably opened by some user, and the 
controller turns the fill valve on and off to 
keep the tank from becoming empty or full. 
The surge tank can be described with the 
first-order nonlinear differential equation 
WI, 

dh( t ) /d f  = { F ( ( t )  - k c ( t ) [ h ( f ) ] ” * } / p A  

(3) 

where p = 99.8, the fluid density of the 
liquid (water), A = I ,  the cross-sectional 
area of the tank, h(r) is the height of the 
liquid in the tank, and k = 1O00, a physical 
constant. The value of ~ ( t )  represents the 
variable outflow pipe cross-sectional area. 
The unpredictable user is modeled as c(t)  = 
O.lc,,(t), where co(t) is a random variable 
uniformly distributed on 0 to 1. The value 
of F,(r) = 100&F(r), where F(t) is either 
1 (indicating that the fill valve is on) or 0 

fl Normal 
Empty \ 

L O W  9, 

sired output, these algorithms train the Fig. 5. Surge tank. 

’ Level 

‘alve 
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(indicating that the fill valve is off). Notice 
that, with this choice, if the input valve is 
open, the liquid level will stay the same or 
rise. 

The height of the liquid in the tank is dis- 
cretized into five regions, which are repre- 
sented with the symbols y,. i = I ,  2, 3. 4, 
5 .  The case when F(t) = 1 will be repre- 
sented with the symbol u l ;  F(t) = 0 with the 
symbol uo. The symbolic/numeric converter 
is simply a device that outputs 1 when it has 
as an input U , ,  and 0 when its input is U ” .  

The controller that is the same as in [ 111 is 
given in Table 1. 

Next, the numericisymbolic converter 
must be specified. Let h ,  = 0 (empty) and 
h, represent the case when the tank is com- 
pletely full.  Also, let h2 and /i3 represent two 
particular levels in the tank that distinguish, 
respectively, a low liquid level from a nor- 
mal one and a normal level from a high one. 
Table 2 gives the necessary information to 
specify the classification problem. 

The multilayer perceptron designed using 
the Harvey method is illustrated in Fig. 6. 
The arrows indicate amplifiers. The shaded 
and unshaded circles indicate a summing of 
the inputs to the circle (arrows pointing to- 
ward the circle) and that the sum is passed 
through one of the two nonlineanties shown 
in Fig. 3. The shaded circles refer to Fig. 
3(a) (f,), and the unshaded circles refer to 
Fig. 3(b) (f2). Using Harvey’s method to 
specify the multilayer perceptron entails ap- 
propriately connecting nodes and arcs be- 
tween h(r) and y[. For instance, we choose 
the first output y I  = f , ( h ,  - h(t))  so that yl 
= 1 when h(t)  5 h , ;  consequently, yl = 1 
(HI) when h(t)  = h ,  = 0. The output y, = 
0 (LO) when h(t) > h ,  = 0. The output yz 

so that y2 = 1 (HI) if h ,  < h(r) < h 2 ,  oth- 
erwise y 2  = 0 (LO). Harvey’s method was 
used in a similar manner for y,. y4, and ys. 

= f , ( -  1.5 + fm) - h , )  + fdh2  - W))) 

Fig. 6. Numeric/syrnbolic converter f o r  
the surge tank. 

The object of the controller studied in [ 1 I ]  
was to stabilize the height of the liquid in 
the surge tank around a particular level. In 
particular, it was desired that the steady-state 
behavior of the plant entail only a sequence 
of y, and y4 alternating. When the plant, the 
numeric/symbolic converter, the controller, 
and the symbolic/numeric converter were 
connected together as in Fig. I and simu- 
lated, the output of the plant behaved as de- 
sired. The plant was given two initial con- 
ditions, completely empty and at level y,. 
Each time, the controller first opened the fill 
valve and then closed the fill valve when the 
level rose to y4. The input valve was opened 
again when the lower level fell to y3 and 
closed again when the level rose to y4. The 
system continued in this fashion, with the 
controller attempting to keep the level just 
above y,. Consequently, the multilayer per- 
ceptron successfully implemented the nu- 

Table l 
Surge Tank Controller 

Controller 

Controller Input ?‘I V? y3 Y4 ?‘S 

Controller Output U1 U1 U1 U0 U0 

Table 2 
Surge Tank Numeric/Symbolic Converter Specifications 

meric/symbolic converter for the surge tank 
and its symbolic controller. 

Biological System 

The second example involves a biological 
system where the multilayer perceptron is 
used as a fault tree to produce alarm infor- 
mation. To  model a form of biological 
growth, one of Volterra’s population equa- 
tions is used. A simple model representing 
the spreading of a disease in a given popu- 
lation is given by the following equations 
[25],  wherex,(r) is the density of the infected 
individuals, x2 ( t )  is the density of the unin- 
fected individuals, and a > 0, b > 0. 

dx,(t)/dt = -ux~(z )  + bx,(t)x>(t) (4) 

d ~ ? ( t ) / d t  = -b.r,(r)x>(f) ( 5 )  

Equations (4) and ( 5 )  are valid only for xl(t) 
2 0 and x2(t) 2 0. Equation ( 5 )  intuitively 
means that the uninfected individuals be- 
come infected at a rate proportional to 
x l ( t ) x 2 ( t ) .  This term is a measure of the in- 
teraction between the two groups. The term 
-ml(t) in Eq. (4) represents the rate at which 
individuals die from the disease or survive 
and become forever immune. The term 
bxl(r)xz(t) in Eq. (4) represents the rate at 
which previously uninfected individuals be- 
come infected. The initial conditions xl(0) 
2 0 and x2(0) I 0 must also be specified. 

The perceptron is to be designed to pro- 
duce alarms if certain conditions occur in the 
diseased population; it is to implement a 
simple fault tree. The perceptron uses .rl(t) 
and x2( t )  as inputs to produce the following 
alarms at its outputs: 

(i) “Warning: the density of infected in- 
dividuals is unsafe”; this occurs if .rl(t) 
> al. where 01, is some positive real 
number. 

(ii) “Caution: the density of the infected 
individuals is unsafe und the number of 
infected individuals is greater than the 
number of uninfected individuals”; this 
occurs if x , ( r )  > CY, and x , ( t )  2 x,(t) 
+ a: but .r,(r) < x z ( f )  + a,. where a? 
and ai are positive real numbers. 

(iii) “Critical: the density of the infected 
individuals is unsafe and the number of 

Numeric/ Symbolic Converter 

Numeric/Symbolic yI P? Y i  ?’, ?‘s 
Converter Output 

Regions 
Plant Output h(t)  = hl h ,  < h(t) < h2 h2 5 h(t) 5 h3 h3 < h(t)  < hJ h(t)  = h, 
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infected individuals is much greater than 
the number of uninfected individuals”; 
this occurs if xl(t) > C Y ,  and XI(?) 2 
x , (d  + a.3. 

The three alarms represent certain faults 
characterized by the decision regions shown 
in Fig. 7 .  

The first fault mode occurs when the val- 
ues of XI(?) and x2(t) lie to the right of the 
line x , ( t )  = a, .  The second occurs when 
x , ( t )  and x2( t )  lie to the right of x , ( t )  = 0 1 ,  

and x2( t )  = XI(?)  - a? [or on x2( t )  = x,(r) 
- cy2] and to the left ofx2(t)  = XI(?) - aj. 
The third occurs when x , ( t )  and x2( r )  lie to 
the right of XI(?) = a ,  and x&) = x, ( r )  - 
a j  [or on x,(r) = x , ( t )  - ai]. 

Using these decision regions, the Harvey 
method was used to produce the multilayer 
perceptron shown in Fig. 8.  Each output be- 
comes high when its corresponding fault oc- 
curs. The parameters a , ,  CY,, and a j  can be 
chosen according to the specific problem at 
hand. 

Aircraji 

The third example involves the implemen- 
tation of a fault tree for an aircraft. The mul- 
tilayer perceptron is used to indicate the fail- 
ure modes that depend on the aircraft’s inputs 
and outputs. The aircraft’s input vector U has 
two components: elevator (deg) 6,, and thrust 
(deg) 6,. The output vector y has three com- 
ponents: pitch rate (deg/sec) q, pitch angle 
(deg) 8, and load factor ( g )  17:. Four aircraft 
failure modes are considered here. Each in- 
put and output is discretized into five re- 
gions, with four boundaries associated with 
the real number line. For example, the ele- 
vator 6,. is discretized as shown in Fig. 9. 
The G (for green) region denotes an area of 
safe operation, the Y,  and Y, (for yellow) 
regions denote areas of warning, and the RI  
and R, (for red) regions denote areas of un- 
safe operation. Table 3 defines the five re- 

x,(?) 4 

t 
Fig. 7. 
biological system. 

Decision regions for  the 

Fault Mode 

Fig. 8. Numeric/symbolic converter for  the biological system. 

4 I I I 1 I 
I I I I 6,. 

6 R  I 6 Y I  0 6, 6 R ?  

Fig. 9. Aircraji decision regions. 

gions for the elevator 6 , .  The four other air- 
craft variables (6,, q, 8,  7,) are discretized in 
a similar manner using similar notation. 

Using the defined regions for the param- 
eters, four failure modes for the aircraft are 
identified as follows: 

Load factor is in region R, (7: E R,). 
Load factor is in region Y, (7: E Yz) .  
Load factor is in region Y2 and elevator 
is in region Yl (7, E Y2 and 6, E Y, ) .  
(Pitch rate is in Y ,  and pitch angle is in 
Y , )  or (pitch rate is in Y, and pitch angle 
is in Yz)  [(q E Yl and 8 E Y , )  or (q  E Y, 
and 8 E Y2)] .  

For the four failure modes, decision re- 
gions can be defined and a multilayer per- 
ceptron can be designed using the Harvey 
method. The perceptron’s inputs are the air- 
craft inputs and outputs, and the perceptron’s 
outputs are the four fault modes. For the first 
mode, the output is HI if the load factor 7: 
is in region R2.  Notice that 9.- E R, is equiv- 
alent to 7: 2 q R z  or 7: - 2 0. Using 
the last equation, the multilayer perceptron 
for the first fault mode is shown at the top 
of Fig. 10 (output 1). For the second fault 
mode, the output should be HI if the load 
factor vz is in region Y2.  Let * denote equiv- 
alence. Notice that the condition qY2 5 7: 
< qRz is equivalent to 

7: 2 O Y 2  * 1): - OY2 2 0 

and 

‘7: < OR2 e -7: + OR2 > (6) 

Using the Eq. (6), the multilayer perceptron 
for the second fault mode is shown in the 
middle of Fig. 10 (output 2). For the third 
fault mode, the output should be HI if the 
load factor 7: is in region Y, and the elevator 
6, is in region Y , .  Notice that the first equa- 
tion for this fault mode is the same as Eq. 
(6). The second equation (which must be 
ANDed with the preceding equation) is dRI  
< 6,, 5 dYI, which is equivalent to 

6, > 6 R I  6,. - 6 R I  > 0 

and 

6 ,  I 6,, * -6, + 6 y ,  2 0 ( 7 )  

Using Eqs. (6) and (7), the multilayer per- 
ceptron for the third fault mode is shown in 
Fig. 10 (output 3). 

For the fourth fault mode, the output 
should be high if either the pitch rate is in 
region Y ,  and the pitch angle is in region Y ,  . 
or the pitch rate is in region Y? and the pitch 
angle is in region Y2.  The decision regions 
for the fourth fault mode are shown in Fig. 
11. The shaded regions represent the regions 
that 8 and q must occupy for the fourth fail- 
ure to occur. To develop the perceptron, no- 
tice that the fourth failure mode can be char- 
acterized by 

q - q R I  > 0 and -q + qYl 2 0 

and 

8 - 8 ~ 1  > Oand -8 + BY,  2 0 

or 

q - qYz 2 Oand -q + q R 2  > 0 
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Table 3 
Elevator Decision Regions 

Elevator 6, Regions 
~~ 

Elevator Region RI  Yl G y2 R2 
Elevator Range 6, 5 6R1 6 R I  < 6, 5 6 y l  6yl < 6, < 6 y 2  6yz  5 6, < 6R2 6 ~ 2  5 6, 

Fig. 10. Numericlsymbolic converter for  uircruji fault modes 
1-3. 

/ 

Fig. 1 I .  
fault mode 4. 

Decision regions for  uircruji 

and 

0 - OY2 2 0 and -0  + OR* > 0 (8) 

Using Eq. (S), the multilayer perceptron for 
the fourth fault mode is shown in Fig. 12. 
The aircraft and the multilayer perceptron 
that implemented the fault tree were simu- 
lated. The multilayer perceptron appropri- 
ately identified all the fault modes. 

Concluding Remarks 
and Research Directions 

In this paper, we have shown how to use 
a multilayer perceptron to solve a numeric- 

to-symbolic conversion task, which is often 
encountered in discrete-event and autono- 
mous systems. The proposed method is used 
for deterministic classification problems. An 
important research direction is to determine 
the applicability of more elaborate pattern 
recognition techniques to the symbolic-to- 
numeric conversion problem. Then, for in- 
stance, the recognition of system behavior 
could be achieved. 

It appears that the idea of using numerid 
symbolic converters as a starting point in 

certain discrete-event or autonomous system 
designs is novel. The idea is introduced and 
illustrated via examples. Furthermore, the 
symbolic-to-numeric conversion task was 
discussed only briefly. The development of 
a complete theory of numeric/symbolic con- 
version is quite important, and it seems that 
it will impact research in hybrid systems 
(e.g., combined discrete-event and continu- 
ous variable systems). 

Clearly, another important problem is how 
to determine the level of quantization for the 
decision regions (i.e., the number of hyper- 
planes needed). This problem is analogous 
to the choice of the quantization levels and 
sampling period in conventional digital sys- 
tems; hence, it will impact many aspects of 
the system design. In general, the solution 
of this problem will be quite difficult because 
it depends on the plant, the controller, and 
the design objectives. 

As noted, the technique proposed herein 
does not utilize the learning capability of the 
perceptron used. The problems encountered 
did not dictate the need for learning. In other 
problems, however, its use may be required; 
in that case, an algorithm that learns the 
boundaries of the regions is needed (for ex- 
ample, where there are curved decision re- 
gions). Several approaches to solve this 
learning problem were outlined. These 

Fig. 12. Nurneric/symbolic converter for  aircruji fault mode 4. 
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methods seem quite promising for the nu- 
meric/symbolic conversion task but require 
more investigation. Alternatively, the results 
in [26], [27] may contribute some ideas on 
the knowledge of region boundaries. 
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News 
Call for Volunteers 

The IEEE Control Systems Society is con- 
sidering candidates for Associate Editors for 
the IEEE Transactions on Automatic Con- 
trol and the IEEE Control Systems Magazine. 
We are also looking for people who wish to 
take an active part in Technical Committees 
and Working Groups and other Society com- 
mittees. If you are interested in serving the 
Control Systems Society in that capacity or 
some other capacity, please send a cover let- 
ter along with your resume to the Society 
President-Elect: Prof. William S. Levine, 
Department of Electrical Engineering, 
University of Maryland, College Park, MD 
20742; phone: (301) 454-6841. 

John E. Ward Memorial 
John E. Ward, recently retired from the 

Massachusetts Institute of Technology (MIT), 
died unexpectedly on December 11, 1988. 
Throughout a distinguished career, he made 
many contributions to automatic control and 
to the control profession. 

John Ward authored numerous reports and 
papers, contributed to several books and the 
Encyclopedia Britannica, and was coholder 
of a number of patents in the areas of con- 
trol and display. He helped organize the Pro- 
fessional Group on Automatic Control of the 
Institute of Radio Engineers in 1954, was its 
Chairman from 1958 to 1960, and served as 
President of the American Automatic Con- 
trol Council from 1963 to 1965. He was a 
Fellow of the IEEE (1968), was named a 
Distinguished Member of the IEEE Control 
Systems Society in 1983, and was a recipient 
of the IEEE Centennial Medal in 1984. 

He was born in Toledo, Ohio, in 1920. He 
attended MIT, where he received the B.S. and 
M.S. degrees in electrical engineering in 1943 
and 1947, and he has been associated with 
MIT since that time. At the end of the war, 
he joined the MIT Servomechanisms 
Laboratory; he became Laboratory Executive 
Officer in 1955, Assistant Director in 1959, 
and served as Deputy Director from 1967 
through 1973. 

John Ward wrote the history article entitled 
“Predecessors of the IEEE Control Systems 
Society,” which appeared in the February 
1987 issue of the IEEE Control Systems 
Magazine, and his biography appears in the 
October 1987 issue of the Magazine, in honor 
of his retirement from MIT. We will miss him 
as a colleague and as a friend. 

Sun Receives Award 
Rajan Suri has received an award of 

$50,000 from Ford Motor Company “in 
recognition of outstanding contributions 
made to the field of perturbation analysis of 
discrete-event systems.” Professor Suri 
developed the first videocassette under the 
auspices of the Control Systems Society for 
the IEEE Home Video Tutorials, “Analysis 
and Modeling of Modern Manufacturing 
Systems.” He is also one of a team of people 
from his university who received the 1988 
LEAD (Leadership and Excellence in Appli- 
cation and Development) Award from the 
Society of Manufacturing Engineers. In July 
1988, Suri was promoted to Full Professor of 
Industrial Engineering at  the University of 
Wisconsin-Madison. 

1990 ACC 
Plans are proceeding for the 1990 American 

Control Conference (ACC), which will be 
held several weeks earlier than usual, May 
23-25, 1990, at the Sheraton Harbor Island 
Hotel in San Diego, California. The General 
Chairman is Dagfinn Gangsaas from Boeing 
Advanced Systems and the Program Chair- 
man is Eliezer Gai from Draper Laboratory. 
A call for papers will appear in the August 
1989 issue of the Magazine. For more infor- 
mation, contact: Dagfinn Gangsaas, 1990 
ACC Chair, Boeing Advanced Systems, MS 
33-12, P.O. Box 3707, Seattle,  WA 
98124-2207, phone: (206) 241-4348. 

Software in Control Education 
The International Federation of Automatic 

Control has recently established a new Work- 
ing Group on the theme “Teachware for Con- 
trol.” One of the major goals of this group 
is to make a basic set of programs in control 
engineering available to every student. A first 
prototype of such a software package has 
been prepared with the help of many institu- 
tions and individuals at the IDA Center of 
ETH Zurich. It consists of some examples of 
training programs, basic simulation tools, and 
the public-domain version of MATLAB (C. 
Moler), and is available for Macintosh com- 
puters and IBM compatibles. A similar set 
consisting of XLISP (D. Betz), PROLOG 
(ABB), and small expert system shells is also 
available for introductory teaching of ar- 
tificial intelligence techniques. For further in- 
formation, contact: Prof. W. Schaufelberger, 

Projekt-Zentrum IDA, ETH-Zentrum, 
CH-8092 Zurich, Switzerland. 

Control Software for Netlib 
As one of his activities as Chairman of the 

IEEE Control Systems Society Technical 
Committee on Computer-Aided Control 
Systems Design (CACSD), Doug Birdwell is 
setting up a sublibrary of the Netlib facility 
at the Argonne National Laboratory. If you 
have software that you believe can benefit a 
reasonably significant segment of the control 
systems community and would be willing to 
place the software in the public domain and 
distribute it through Netlib, Professor Bird- 
well will recommend the software’s inclusion 
in Netlib with the understanding that the in- 
tent is strictly to provide a collection and 
distribution service for Society members. 

Authors of software will benefit by receiv- 
ing recognition for their software through its 
use. In addition, the expanded use of the soft- 
ware is highly likely to highlight limitations 
of the implementation or the theory on which 
the software is based, providing the author 
valuable feedback and an incentive to im- 
prove the software. The Society membership 
will benefit in general from the fast and free 
availability of software relevant to control 
systems problems. 

The Society Technical Committee on 
CACSD is offering to maintain the Society 
sublibrary of Netlib as a service; however, 
there are a few disclaimers. First, we will not 
serve as a reviewer of any of the software; 
whatever representations the authors make 
about the software are included in the library, 
but no testing is done. Therefore, we make 
no warranties as to the utility of the software. 
Second, we will accept only software that is 
placed in the public domain by its authors and 
has no restrictions or limitations on its use 
or consequent distribution. Only the author 
of the software, o r  the editor of a collection 
of software, may submit the software for in- 
clusion in Netlib. 

If you are interested in contributing soft- 
ware, please contact: Prof. J. Doug Birdwell, 
Dept. of ECE, Ferris Hall, University of Ten- 
nessee, Knoxville, TN 37996-2100. His e-mail 
address can be any one of the following. (All 
will end up at the first address, so don’t send 
multiple messages.) 
birdwell @cascade.engr .ut k.edu 
birdwell@utkvx. bitnet 
jdb@msr .epm.ornl.gov 
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