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ABSTRACT 
The internal model concept is fundamental in control problems. In linear 
control systems, internal models have been described in terms of poles in 
the unstable (bad) region of the complex plane which contain the needed 
information for the control system to  attain the desired objective. It has 
been erroneously believed for some time that  such internal models did not 
exist in the nonrobust regulation problem when a generalized plant was 
considered. It is shown here that  such internal models always exist not 
only in regulation, but also in stabilization, and tracking if the appropriate 
physically meaningful maps are considered, thus completely resolving the 
existing discrepancy between abstract results and intuition on one hand, 
and linear regulation literature results on the other. Both robust and 
nonrobust control problems are considered and a complete treatment of 
the internal models in all basic problems is presented. 

I. INTRODUCTION 
The concept of internal models is very general and it is 

applicable in diverse fields such as epistemology, neurology, 
psychology, and artificial intelligence [26]. Intuitively, in 
control theory, the internal model concept can be explained as 
follows: for acceptable performance, a system needs to have 
"enough" information about the conditions under which it has to 
perform. For example, if a system needs to perform under the 
effects of undesirable exogenous signals, then acceptable 
performance is possible if a copy of a model of the dynamics of 
the exosystem generating the exogenous signals is present in the 
compensated system. This copy is called an internal model, 
which provides the necessary information to counteract the 
effects of the undesirable behavior. Currently, the role of 
internal models in the regulation of linear, lumped, time- 
invariant, continuous, and discrete time systems is well 
understood. Furthermore, recent work has shown the existence 
of internal models for a class of systems that are described over 
rings (linear, lumped, and distributed) as well as for a class of 
nonlinear systems in the solution of the robust regulation and 
robust asymptotic tracking problems [1,2,7,27,28]. Also, 
internal models are present in the solution of the nonrobust 
asymptotic tracking problem in linear time varying discrete time 
systems [31]. Both robust and nonrobust control problems have 
been considered in the literature of internal models with 
emphasis on the robust case. In the former case, the internal 
model is a property of the controller, while in the latter case, it 
is a property of the cascade connection of the controller and 
plant. 

In the literature, i t  is generally believed that in the 
regulation of a fixed generalized (2-input, 2-autput) plant, 
where the measured and controlled variables are not necessarily 
the same, internal models do not exist. In this paper we show 
that internal models do exist but they manifest themselves in 
the compensated system in ways that have not been considered 
up to now. In particular, we show, wing a description of  
systems over rings, that there is always a map containing the 
internal model, not only in the solution of regulation, but also an 
stabilization, and asymptotic trackang problems, even when 
robustness is not required. This map may appear explicitly in 
the compensated system, but this is not necessary. In 
particular, the map between the regulated variables and the 
plant's output contains the internal model. In this sense, an 
internal model is always present in the solution of most control 
problems, contrary to current beliefs. These results are very 
appealing in control theory because they formalize the intuitive 
concept of internal models and explicitly verify their existence in 
all basic control problems. 

The detailed original contributions of this paper are to  
show the existence of internal models in the following control 
problems when robustness is not required: regulation; 
asymptotic tracking using one and two degrees of freedom 
controllers; and internal stability. In the first two cases, the 
measured and regulated variables do not coincide. For 
completeness, a brief outline of known results when robustness is 
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required is also included. 
In Section 11, we briefly discuss internal models; present 

definitions of internal models over a desirable ring, R (s); and 
introduce a set of maps that contain the internal mocfel of the 
transfer matrix of the exosystem in a generic formulation of the 
regulation problem. In Section 111, the existence of internal 
models in the regulation of plants, where the measured and 
controlled variables are not necessarily the same, is established. 
To this effect, two sets of solvability conditions are derived, a 
parameterization of controllers is presented, and the structure of 
the controller that solves RPIS over R,(s) is characterized. This 
section is an extension of the work presented in [3,4,19 , giving 
simpler conditions for the solvability of RPIS over RJs) than 
other recent ones in [5] and [6]. Furthermore, our approach, 
which characterizes the controller's structure, provides a direct 
treatment of internal models. In Section IV, the asymptotic 
tracking problem over R,(s) is considered. We show that there 
exists a map that always contains the internal model of the 
transfer matrix of the exosystem. In Section V, the presence of 
internal models in internally stable systems is established. The 
full version of this paper in [32] contains two appendices; 
Appendix A analyzes Rgstability and Appendix B presents 
some of the proofs (the rest of the proofs can be found in [9]). 

11. INTERNAL MODELS 
The study of internal models in multivariable systems 

started in the early 1970's (for example, see [12-151). In these 
papers, the researchers investigated the necessary controller 
structure required to achieve robust regulation with internal 
stability. The main result is known as the Internal Model Prin- 
ciple (IMP). The IMP states that the robust regulation problem 
with internal stability is solvable if and only if feedback of the 
controlled variables is used and the controller includes a 
replication of the exogenous system dynamics in its 
denominator. The IMP is implicit in the results presented in 

The role of internal models in the regulation problem 
with internal stability (RPIS) is to make the undesirable modes 
of the exosystem unobservable from the variables to  be 
regulated. In this way, the exogenous signals will not affect the 
output variables of interest. In terms of multivariable zeros and 
poles, this is equivalent to say that appropriate transmission 
zeros, corresponding to the poles of the exosystem's transfer 
matrix, are introduced in the map between the variables to be 
regulated and the point of injection of the exogenous signal. 
When the controlled (yC) and measured (y,) variables coincide, 
then it is known that the synthesis of such a controller should be 
such that it introduces in the feedback loop an appropriate 
model of the dynamic structure of the exosystem which must 
make itself present at the injection point of the exogenous 
signals [21,23,7,9]. 

In 1977, a characterization of internal models in the 
frequency domain appeared in [17,18]. In particular, Bengtsson, 
in [17], gave a definition of internal models without the 
robustness requirement. In this case the internal model is a 
property of the loop gain, that is, the transfer function matrix of 
the cascade connection of the plant and controller. In this way, 
the regulation problem is solved utilizing any available structure 
in the plant. 

Before introducing the internal model definitions, the 
algebraic structure and notation are defined. Factorizations of 
transfer function matrices over a desirable ring, R,(s), are used 
to represent the systems, that is, a given transfer function 
matrix is modeled as the ratio of two rational matrices with 
entries in Rg(s). Let Rg(s) be a nonempty subset of Rp(s), the 
ring of proper rational functions with real coefficients, consisting 
of the proper rational functions that have all their poles in Sg. 
Sg corresponds to  the good region of the complex plane; Sg is 
symmetric with respect to  the real axis and contains at least one 
real point. For a description of the properties of Rg(s) see [8,9]. 

[161. 
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Let M(lR,(s) denote the set of all matrices with entries in R,(s), 

can be found in [1,2,10,11]. We will develop the theory in the 
context of linear, time-invariant, continuous and discrete 
systems, but it can be easily extended to consider other systems 
(for the appropriate algebraic tools see [1,2,10,11]). 

The internal model part of our work builds on the results 
presented in [17]. The following definition can be considered to 
be an extension of the internal model definition given in [17]. 
Mnition 2.1 Let R(s), V(s) be arbitrary proper rational 
matrices with the same number of rows. Let R=Q'r-@'r and 
V=Q'.,-1PTv be left coprime (1.c.) over R&s) where Qtr, P I T ,  &Iv, 

PIv E M(R,(s ), and Qor and QIv are square, nonsingular and 

regardless o 1 dimensions. The background to develop the theory 

biproper. T h en R(s) contains an internal model of V(s) if 
Q'rQ'v-1 E M(lRg(s)). 

From the definition we see that R(s) contains an internal 
model of V S) if and only if Q'r= 6 ' r Q ' v  where 6 ' r  E M R s)), 
that is, R(s\ contains a copy of the bud poles (in n = C\& of 
V(s) with appropriate structure, in the form of a right divisor of 
its denominator matrix. A particular form of an internal model 
that is useful in the solution of robust problems is described in 
Section 3.2. 

A second definition of internal models when the transfer 
function matrices have the same number of columns is given 
below. 

V=P'vQ'v-l be right coprime (r.c.) over R,(s). Then R(s) 
contains an internal model of V(s) if and only if Q'v-lQ'r E 
M(R,(s)), that is, &Iv is a left divisor of & I r .  

I t  is useful to consider now a particular generic 
formulation of the regulation problem. Its solution which is 
utilized in the following sections provides clear insight into the 
mechanism of regulation and the role of internal models. 
Consider the analysis of a compensated linear, lumped, 
time-invariant control s stem, where the controller is such that 
the system is R,-stable &he Rgstability problem is to place all 
the system's eigenvalues in S,, a desired region of the complex 
plane; see Appendix A [32]). Acting upon this system there are 
some undesirable exogenous signals. Let w be the vector 
containing the exogenous variables. It is assumed that w can be 
modeled as the output of a causal, linear, lumped, 
time-invariant, system described by w=Twdd, where d is a 
bounded vector, and T,d is antistable, that is, all the poles of 
T,d are in n. One interpretation for d is as the vector of initial 
conditions of the exosystem. No assumptions are made on the 
structure of the controller at this time, except that open-loop 
controllers are allowed only with stable plants with no 
uncertainty. 

Now, let A be the characterization of maps attainable 
with R e t a b i l i t y  from w to yc, that is, 

where A E M(R&s)), yc is the vector of variables to  be regulated. 
The regulation problem over R,(s) is to make AT,d E M(R,(s)). 
It is well known, that if this problem is solved that appropriate 
transmission zeros will be introduced in A [23 .  One 

models is given in Theorem 2.1. 

Theorem 2.1. The regulation problem is solved if and only if A 

be arbitrary proper rational 
columns. Let R=P'rQ'r-l and 

yc = Aw (2.1) 

interpretation for the transmission zeros in terms o 1 internal 

contain an internal model of the exosystem. In the solution of 
the problems studied in this paper, there is a map containing the 
internal model explicitly in the loop (open or closed, depending 
upon the controller structure). But, there are problems in which 
no map containing the internal model appears explicitly in the 
loop; nevertheless, the problem is solvable as shown in the 
following sections. 

The conditions in Theorem 2.1 are valid for both the 
robust and nonrobust versions of the regulation problem. In 
robust regulation, parameter perturbations in the plant and in 

part of the controller are such that the controlled system 
remains Rg-stable. In  this case, the internal model usually 
appears in the controller, and i t  is suitably reduplicated (see 
Section 3.2). 

Theorem 2.1 generates a large class of maps which 
contains an internal model of the exosystem. Some of these 
maps are of particular significance in the control system. One 
way to select such maps that contain the internal model and at  
the same time have physical significance is as follows. Assume 
that A is square and nonsingular, B E M(R,(s), and (B,A) r.c. 
Rgfactorizations. Since (B-A,A) is also r.c. then 

contains an internal model of Twd. Appropriate choices for 
and B in (2.6) will be used in the following sections to form the 
map between the regulated variables and the output of the 
plant. It will be shown that this map contains an internal model 
of the transfer matrix of the exosystem. 

111. RPIS AND INTERNAL MODELS 
In this section the regulation problem with internal 

stability (RPIS) is considered. The problem is formulated in the 
next subsection. Then the robust and nonrobust problems are 
analyzed. In Section 3.3.2 i t  is shown that there is always a 
map that contains the internal model even when the controlled 
and measured variables do not coincide and robustness is not 
required 

(B - A)A-1 ' 2 . 2  

3.1. Problem Formulation 
Consider the system C(S,,Sc) in Figure 1, 

I I 
Figure 1. The compensated system C(S,,S,). 

where S, and S ,  denote the plant and controller, respectively. 
For a recent overview of the regulation problem with internal 
stability for C(S,,S,) see [19]. Assume that S, and Sc are 
controllable and observable. Let an input-output description of 
the plant be 

p11 p12 (3.1.1) 

respectively; the vector w contains all the variables that affect 
the plant, but are not manipulated by the controller (for 
example, nonmeasurable disturbances and initial conditions); 
and U is the vector of control inputs. This general plant model 
is used because it unifies the study of plants where the 
controlled and measured variables are not necessarily the same 
(yc#ym , and where an exogenous signal w is present. Let the 

controlled system C(S,,S,d is well-defined, that is, 
( I + P I ~ C ~ I = I I + C ~ P ~ ~ I # O ,  an that all input output maps are 
proper. As in Section I1 i t  is assumed that w is the output of a 
linear system with input-output relation given by w=Twdd, 
where d is a bounded vector and T,d is antistable. 

We call RPIS over lR, s) the problem of finding a causal, 

R e t a b l e .  A controller that solves this pro lem is usually called 
a regulator. 

The generalized plant representation can be simplified 
when a particular relation between yc and ym is known or needs 
to be established. A simplified plant representation that 
includes most common relations between yc and ym was 
presented in [25] and is considered in the next example. This 
plant representation is used to gain additional insight in 
Sections 3.2 and 3.3. 

contro r' U be given by u=-Cyym. Also, assume that the 

linear controller Sc that ma G es Tcd.E M lRg(s)), and C(S,,S,) 6 
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Examde 1. Consider the system represented in Figure 2. 

I -  1 

I 
Figure 2. A representation of plants when yc#ym. 

L A L  

and U = -cyym. (3.1.3) 
Some typical special cases are obtained as follows. If Pc=Pm, 
then ym=yc. In particular, the classical unity feedback system 
with -&stkbances at the output of the pla6t correspoids to 
Pc=Pm=Pw=I; and the classical plant-sensor configuration with 
disturbances at  the output of the plant corresponds to 
Pc=Pw=I, P,=Hs. Two other special cases are: if Pm=HsPc, 
then ym=Hsyc, and if Pc=QmPm, then yc=Qmym. In the latter 
case, i t  is said that the controlled variables are readable from the 
measured variables. 

We make the following assumptions: Qm=PcPm-l, 
Qm+=PmPc+ E M(R,(s)), where Pm-1 exists and PcPc+=I. 

3.2. Robust RPIS 
By robust RPIS over R,(s),, we understand that 

parameter variations in the plant and in part of the controller 
are such that the compensated system remains Rgstable and 
the controller should be designed so that regulation over R,(s) is 
maintained. Robust RPIS of the system in Figure 1 is well 
understood and the necessary conditions have been given in 
terms of the Internal Model Principle (IMP) [15]. There are two 
parts to  the IMP. The first part characterizes the kind of 
systems that admit robust RPIS over R,(s). The systems must 
be such that yc is readable from ym [13], in the sense that there 
exists Qlm E M(R,(s)) so that 

yc = Q ' m Y m .  (3.2.1) 
If this condition is not satisfied, then robust RPIS over R,(s) is 
not possible. Notice that the condition in (3.2.1) is satisfied by 
the system in Figure 2, where Qlm=Qm=PcPm-l. In particular, 
the special cases considered in Example 1 admit a robust 
regulator. 

The second part of the IMP gives a way to synthesize the 
controllers that attain robust RPIS over Rg(s,. Let O(s be the 

invariant factors, of Dvw then the controller that solves the 
robust RPIS over Rg(s) must be of the form 

cy = Cy(OI)-l (3.2.2) 
where C must internally stabilize Pll(OI)-l. Because of O(s)I, 
Cy contzns an internal model of Twd. This internal model can 
commute with matrices, so that it can be present at the 
injection point where the exogenous signals come in 

3.3 Nonrobust RPIS 
3.3.1 Solvability Conditions 
First, consider the special case when yc=ym, then 

yc=[P1l, P12][ut, wl t .  In this case, Tcw = (I + Pl1Cy)-1Pl2, 
and the regulation con ition is satisfied when 

Tcd = (1 P11Cy)-'p12Twd E M(Rg(s)). (3.3.1) 
The following definitions are needed to derive the solvability 
conditions. Let 

(3.3.2) 
be coprime over R,(s), and let a doubly coprime factorization of 

largest invariant factor, that is, the one divisi le by all t h e other 

P l l  = NI1DI1-1 = D'l-lfi'll and Cy = fiTc-lfi'c 

P11 be 

x i  D '  -24 

U' U'-1 = [-fii Di][ N: 2i]' 
(3.3.3) 

where x'1, X'Z, %'1,8%& E M(R ( 5 ) )  [1,22]: In order to combine 
both the regulation and R,-sta%ility reqmrements, substitute the 
characterization of all R -stabilizing controllers Cy. in (3.3.1). 
The characterization is iiven in (A4) (in Appendx A). The 
substitution gives 

So RPIS over Rg(s) is solvable if and only if there exists K '  E 
M(R,(s)) such that (3.3.2) is satisfied. The solvability condition 
is given in Theorem 3.3.1. 

Theorem 3.3.1. RPIS over R&s) for the system with yc=ym is 
solvable if and only if there exlst e'l, el2 E M(R,(s)) satisfying 

TCd = (21 - N'1K')6'lP12Twd (3.3.4) 

fiT1eql + e12612w = I. (3.3.5) 

This is a direct extension of the results in [17], the proof 
is given in [9]. 

When yc#ym, the characterization of stabilizing 
controllers in (A4) [32] is also used to  combine the regulation 
and Rgstability conditions into one. First, note that 

Tcw = p24'21Cy(I + PllCy )-'P12 (3.3.6) 
and substituting 

P '  l:=P 2lD' P'2:=DT 1P 12! P'3: =P2rP 2lD' ~x'ZP 12 E M(R,( s)) . 
and (A4) [32] into (3.3.6) gives 

(3.3.7') TPw = P'q - P'rK'P'7. 
The regulation over R"(s) conkition is satisfied if and bnl if 
there exists K' E M(lfg(s)) so that Tcd=TcwTwd E M(R&)), 
which can be written using (3.3.7) as 

(3.3.8) 
where TWd=fiTw-lfi;l', is 1.c. over R,(s). so RPIS over I (s) is 

g 
solvable if and only if there exists K' E M(R,(s)) such that 
(3.3.8) is satisfied. Let 

Tcd = (PI3 - P'1K'P'2)fitw-1fimw E M(Rg(S)), 

- "  
P'2DfW-f = N'2wD'2w-l = D'zw-lN'zw 

and P'3fi1w-l = N'3WD'3*-ll (3.3.9) 

where ( N ' Z ~ , D ' Z ~ ) ,  (fi'2w,fi'2w)1 (N'3w,D'3w) are coprime over 
R,(s). Then there exist x'lw, x'zW E M(R,(s) , satisfying 

x'lwD'Zw + x'zwN'zw = ?. 
The solvability conditions are given in Theorem 3.3.2. 

Theorem 3.3.2. RPIS over Rg(s) for the s stem C(S S ) when 
yc#ym is solvable if and only if either (i) or &) is satis&$ 
(i) There exist K', V' E M(R,(s)) so that 

(ii) (a  D'1, E M(R,(s)), where D'lW=D'3W-1D'2W (3.3.12) 

(3.3.10) 

V D t w  + P'lK'P'2 = P'3 (3.3.11) 

(3.3.13) 
and ( b ) there exist K', R' E M(R,(s)) so that 

P'1K' - R'6'2w = N'3wD'lw~'2w. 

The theorem is proven in [9]. A similar condition to the 
one in (3.3.11) has appeared in [l], for the case when yc=ym. 
The conditions in (ii) demonstrate once again that the 
solvability condition of the regulation problem with internal 
stability depends on the solution of a skew-pkme equation. 

The solvability conditions in Theorem 3.3.2 can be 
simplified for the system in Figure 2. First, let 

be coprime factorizations, 

- I  

PcPu = N'cuD'cu-l = D'cu-lN'cu (3.3.14) 

UIcu Utcu-1 = [ !iCU ;2cu]  [ D, -2." I, (3.3.15) 
-Nkl Dm Ncu lcu 

be a doubly coprime factorization, and 
Cy = C y Q i  = (x'lCu - K'  I?cu)-l(x'2 + K '  D l C u )  

cu cu cu 

= (glzCu + D'cuK' )(?'I - N'cuK' ) - I  (3.3.16) 
cu cu cu 

be a characterization of all Cy that internally stabilize PcPu. 
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Corollarv 3.3.2.1. RPIS over Rg(s) for the system in Figure 2 is 
solvable if and only if there exist c ' ~ ,  c'2 E M(Rg(s)) satisfying 

N'cuc'i + c ' z D ' ~ ~  = I, 
where fi'cuPcPwfi)'w-L = fi13w-lfi'3w, a coprime factorization. 

Under the assumed relationship between yc and ym, this 
corollary shows that the solvability of RPIS over Rg(s) depends 
on the solution of a skew-prime equation with an identity on 
the right hand side as in Theorem 3.3.1. This is shown to be a 
sufficient condition for the explicit presence of internal models in 
the next section. 

(3.3.17) 

3.3.2. Internal Models and Controller Structure 
First, consider the case when ym=yc. If in addition, 

Pi2=I, the structure of the controller and its relation to  internal 
models is well understood (see (171). A direct extension of this 
result is to consider the case when P12fI. The study of internal 
models in this case is simplified by letting Plz be part of the 
exosystem. Then the exosystem's transfer matrix is PlzTcw and 
Tcw=(I+P1lCy)-l. The internal model result is given in 
Theorem 3.3.3. 

Theorem 3.3.3. Let yc=ym, if RPIS over R,(s) is solvable, then 
Piicy contains an internal model of P12Twd. 

If yll=Pllu, then yll=-PllC yc, that is, PIICY is the map 
from the regulated signal to y11, wLich can be considered to be 
the "plant's output.'' This is a general property shown in this 
paper: the map from the regulated signal to the "plant's output" 
always contains an internal model of the exosystem's transfer 
matrix. Since y C = y ~ ~ + P ~ z w ,  it can be seen that the role of the 
internal model in PllCy is to introduce appropriate modes into 
yI1 that will counterbalance the effect of the exogenous signal 
Plzw. Since PllCy contains the internal model, the internal 
model is present explicitly in the feedback system. 

The structure of the controller that solves the RPIS over 
Rg(s) in this case is of the form 

cy = G'd'iC, (3.3.18) 
where the controller C Rg-stabilizes P11G'd-l and G'd E 
M(IR,(s)). Note that G'd contains the poles of Twd that are not 
poles of the plant with similar structure, and by Remark A1 (in 
Appendix A [32]), Pi1 contains an internal model of P12. 

Similar results follow for the system described in Figure 2 
because the skew-prime solvability condition has an identity on 
the right hand side. In this case, PcPuCy contains an internal 
model of PcP,T,d, this internal model appears explicitly in  the 
feedback system, and the structure of the controller Cy is of the 
same form as in (3.3.18). 

When yc#y, it is known that internal models appearing 
explicitly in the loop are not necessary 1291, but under some 
conditions internal models will be present [4]. In Theorem 3.3.4, 
we give a map that always contains an internal model of the 
exosystem, under ,the assumption that Tcw is square and 
nonsingular, and (P  3, P'1K'P'2) a r.c. Rgfactorization. 

Theorem 3.3.4. Let 
P'IK'P'2(P'3-P'1K'P'2~~i contains an internaf: model of Twd. 

fy,, if RPIS over R (s) is solvable, then 

Let yzl=Pzlu and consider yzl to be the "plant's output." 
Note that y~~=P'~K'P'~(P'3-P'1K'P'z)-~yc, so once again the map 
between the regulated signal and the plant's output contains the 
internal model, which does not have to appear explicitly in the 
loop. This is illustrated in the following example. It was 
considered in [29] to illustrate the absence of an internal model 
and in (41 the conditions where given for an internal model to be 
present. 

Examde 2. Consider the following system description: 
Pll=l/(s+2), P12=PZl=l, and Pz2=-2/(s+1). Note that Cy=-l 
would regulate with internal stability a step disturbance l /s ;  
this fact was used in [29] to show that an internal model need 
not be present in the loop. Nevertheless, observe that 
P!l=(l/(s+a)) ( ( s + Z ) / ( s $ a ) ) ,  where a>O, 41, x'1=x12=1, 
K =-(o-l)(s+a{/(s+l), P 1=(s+2)/(s+a), P'z=(s+2)/(s+a),  

and PI3=-[2/(s+l) + ( ? ~ ) ( S + ~ ) / ( S + ( Y ) ] .  With these 
definitions, the map given in Theorem 3.3.4 is 
P'1K'P'z(P'3-P'IK'P'z)-~=-(a-l)(s+2)~/(s(s+a)), demonstrating 
the presence of the internal model in this map, even thongh it 
does not appear explicitly in the control system in this case. o 

The characterization of the structure of the controller 
when yc#ym is given in Lemma 3.3.1. 

Lemma 3.3.1. If RPIS over R (s) is solvable, then the structural 
conditions that must be satisfed by Cy are 

fi)'cD'l + NIcN'l = I (3.3.19) 
f i iC(- ( j i i2+~i l~T<lp) )  + f i i c ( ? l - ~ i l ~ i p )  = wlDizw. (3.3.20) 

Notice that (3.3.19) is the Rg-stabilit condition and that 
(3.3.20) corresponds to the RPIS over R 6) requirement. A 
characterization of controllers that solve R h S  over R,(s) can be 
obtained from (3.3.19) and (3.3.20) and is written below 
fitc = Zti  - Wtfi'zwfi'l and fitc = + W1fi'zwfi'l. (3.3.21) 

Notice that the set characterized in (3.3.21) is nonempty if RPIS 
over Rg(s) is solvable. Suppose that W'=O or 6'2, E Ker(W'), 
then a compensator that solves RPIS over Rg(s) is described by 

depends on the particular choice of W'. One way to characterize 
the part of the controller that is independent of the choice of W' 
is by defining 

G'd = a g.c.r.d. ( x ' ~ ,  D'zWfi'l) 
and G', = a g.c.r.d. (x'z, D'z,D'1), (3.3.23) 
then fiTC = D'&'d , N I c  = N',G', 

+ Cy = G'd-lCG'n, (3.3.24) 
where C=D'c-"'c and g.c.r.d. denotes greatest common right 
divisor. The significance of G'd and GIn is that they are 
introduced solely because of the regulation over Wg(s) 
requirement, while C must satisfy both structural conditions: 
(3.3.19) and (3.3.20). Note that )G'dl IG',] divides 16'~,1 
and that C satisfies the Rgstability condition (3.3.19) if and 
only if 

(3.3.25) 
If (3.3.25) is satisfied and if RPIS is solvable then 

file = D',G'd , N I c  = NI&', (3.3.26 
is a necessary and sufficient condition for regulation over Ig(s]. 
In this case, the controller must contain part of the exosystem 
dynamics in G'd and/or GI,. This is one way for the map in 
Theorem 3.3.4 to have the appropriate internal model. 

When yc#ym, we have seen that a map from the regulated 
variables, ycr to the output of the Dlant, yzl, always c o n t h s  the 
internal model, and that the controller that solves RPIS over 
R,(s) is given by (3.3.24). When (3.3.25) is satisfied, then the 
internal model is introduced in the map in Theorem 3.3.4 via 
poles of Cy (in G'd-1) and zeros of Cy (in GI,), in addition to 
some appropriate structure on the plant. But, this is not 
necessary in general, that is, the internal model does not need to 
appear explicitly in the feedback system. However, if yc=ym or 
if yc and ym are related as shown in Figure 2, then the internal 
model will be present explicitly in the feedback system. 

- -  

I G'dl I G ' n I  and I D ' z w l  are associates4 

LTwo elements a, b E Rg(s) are associates if they differ by U, a 
unit in Rg(s), that is, a = ub. 
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IV. ASYMPTOTIC TRACKING AND INTERNAL MODELS 
4.1 Problem Formulation 

Consider the two degrees of freedom system 

~ ~~ 

Figure 3. Two degrees of freedom control system. 
where w=O, the plant, S, ,  has transfer matrix [Ptll Pt&, the 
two degrees of freedom controller, S,, has transfer matrix 
C=[-Cy, It is 
assumed that r can be modeled as the output of a causal, linear, 
timeinvariant, finite dimensional system described by r=Trvv, 
where v is a bounded vector and T,, is antistable. 

The asymptotic tracking problem with internal stability 
over R,(s (TPIS over R (s)) consists on finding a linear two 
degrees o freedom controaer so that 

and the compensate system in Figure 3 is  R -stable This IS 
because the vector of error variables is given%y (I --'Tcr)Trvv 
and the objective of TPIS is to  drive the error variables 
asymptotically to  zero while maintaining Rgstability. 

C,], and r is the vector of request inputs. 

6' - Tcr)Trv E,M(Rg(s)) (4.1) 

4.2 Nonrobust TPIS 
4.2.1 Solvabilitv conditions 
First. note that in Amendix A 1321 it is shown that a 

characterization of all attainagle transfe; finction matrices with 
Rgstability from r to  yc is 

Tc,=P 2 ID' 1X'=P'1X' (4.2.1) 
where X' is the response parameter used in the characterization 
of Rg-stabilizing controllers C,. Let 

T,, = D',-lNt, (4.2.2) 
be an Rgcoprime factorization. The main result of this section 
is Theorem 4.2.1. 

Theorem 4.2.1. TPIS over Rg(s) for the system in Figure 3 is 
solvable if and only if 

P'IX' + vtrD'r  = I. (4.2.3) 

A special case of the above result is when yc=ym. In this 
case, Pll=P21, then P ' I = P ~ ~ D ' I = N ' ~ ,  and the solvability 
condition is 

N'1X' + V',fi', = I (4.2.4) 
which is well known. For scalar systems, the condition in 
4.2.3) ((4.2.4)) reduces to the zeros of P'1 (Pll) must be disjoint I rom the poles of Trv. This last comment has also been 

generalized to  the multivariable case. One way to present this 
disjointedness is as a coprimeness condition. For exam le, once 
an X and a V'r have been found in (4.2.3), then (4.2.35 can be 
rewritten as 

I(P'1X') + v'rljl, = I, (4.2.5) 

showing that (P'lX')fi'r-l is coprime. 

4.2.2 Internal Models 
The solvability condition in Theorem 4.2.1 is of the same 

form as the solvability condition of RPIS over R (s) when yc=ym 
(see Theorem 3.3.1). This indicates that TPfS over R,(s) is 
solvable if and only if an appropriately defined regaaiion 
problem is solvable. This is true even though we are using a two 
de lees of freedom controller to solve TPIS over R,(s). The 
diherence is that the solution of TPIS over Rg(s) as seen from 
(4.2.3) imposes constraints on Cr via X ,  while the solution of 
RPIS over R (s) im oses constraints on Cy and C, via K' (see 
Theorem 3.35,  and pA3) and (A4) in Appendix A [32] . 

of TPIS over R (s) implies that there exists a map that contains 
an internal mojeiel of T,". 

Theorem 4.2.2. Let yc#ym, if TPIS over lR,(s) is solvable, then 
PzlC, where C=M(I-P21M)-1, contains an internal model of Trv. 

We present now a new result that shows that t h e solution 

In general, the internal model characterized in Theorem 
4.2.2 does not appear explicitly in the loop. Note that 
C(l-PzlM)r=Mr implies that u=Ce or P21C is the transfer 
matrix between e, the signal to be regulated, and y21, the output 
of the "plant", where y21=P21uI that is, the map from the 
regulated variables, e, to the output of the plant, y21, contains 
the internal model. 

A relation between C and Cy and Cr is given by 
C = (I + CyP1l)-'Cr(I - P21M)-1 (4.2.6) 

= (I + CyP11)-'C,(I - P21(I + CyP11)-1Cr)-'. 
(4.2.7) 
The expression for C can be simplified for some typical cases. 
For example, if Cy=Cr, then 

e= Cy( I+( P 11-P 21)Cy) -1, (4.2.8) 
and if in addition, yc=ym then C=Cy=C,. Similarly, if yc=ym 
and TPIS over R,(s) is solvable, then P11M(I-P11M)-l= 
N'lX'(I-N'lX')-l contains the internal model. In this case, 

and if in addition Cy=Cr, then C=Cy=Cr, as expected. Clearly, 
when yc=ym and Cy=Cr, the internal model is contained in the 
product PIICY (Theorem 3.3.3). 

As a trivial case, it is interesting to note that the above 
results on internal models also hold for open-loop systems when 
no uncertainty is present. This is verified by example. 

Examde 3. Consider an open-loop plant with transfer function 
l / ( s+l ) ,  and a feedforward proportional controller with unity 
gain. This simple system can track a step input if no 
uncertainty is present. It follows that PC=l/s ,  but the internal 
model is not present in the open-loop system. 

4.3 Robust TPIS 
The analysis and s nthesis of robust TPIS has appeared 

in the literature [1,2,24,25y. In these papers the necessity of an 
internal model in Cy is shown. The same results characterizing 
the structure of the controller and the necessity of an internal 
model can be derived starting with Theorem 4.2.2. Note that 
robust TPIS is solvable if C contains an internal model of T,, 
and the compensated system remains R -stable as the plant 
varies. When yc=ym and a single degree o? freedom controller is 
used, i t  is well known that TPIS and RPIS are mathematically 
equivalent. In this case, C=Cy contains an internal model of 
T,, with a structure similar to  the one in (3.2.2). Solvability 
and structural conditions are given in, for example, [1,2 . When 
yc=ym and a two degrees of freedom controller is used, robust 
TPIS has been analyzed in [1,24]. Their results could also be 
derived from C in (4.2.9). If yc#ym and the plant parameters are 
allowed to vary, then it is known that robust TPIS is not 
solvable. This is easy to see when Cy=C, from (4.2.8). Notice 
that even if Cy is of the form in (3.2.2) that C will not contain 
the desired internal model. Recently, the analysis of TPIS for 
the system in Fi ure 2 with a two degrees of freedom controller 
has appeared in b5] ;  structural conditions for the two degrees of 
freedom controller are given, which include an internal model 

C= (I + CyP11)-1Cr[I + P11(Cy - Cr)]-'(J + P I I C ~ ) ,  (4.2.9) 

V. STABILIZATION AND INTERNAL MODELS 
In this section we consider the controlled system in 

Figure 1 with yc=ym and w=O. Since it has been assumed that 
the controlled system is welldefined and that all input-output 
maps are proper, then Rgstability means that all the 
eigenvalues of an internal description of the controlled system 
are in S , the good region of the complex plane. The analysis of 

unstable modes (those modes that do not correspond to 
eigenvalues in S,) of the open-loop plant, S,, and controller, S,, 
must be refulated., I n  this way, in the absence of external 
inputs and or all imtial conditions, every signal in the feedback 
system will go asymptotically to zero and can be considered to 
be the regulated signal. So we can think of the plant and the 

R g s t a b h t y  is presented in Appendix A 
interpret the role of the control action in sta 
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controller as the exosystems whose unstable modes we need to  
regulate. Assume that the internal descriptions of Sp and S, are 
completely characterized by their transfer matrices P=P l I  and 
Cy, respectively. Then we are interested in determining maps 
that contain an internal model of P and Cy. These maps are 
given in Theorem 5.1. 

Theorem 5.1. If the system in Figure 1 with yc=ym is IRg-stable 
then PCy and CyP contain an internal model of P and Cy. 

Proof of Theorem 5.1 Under the stated assumptions, the 
controlled system is Wg-stable if and only if 

if and on y if 
D' ,-'J(I+CyP) -1, (I+C y P )  -'Cy] E M( Wg( s)), (5.1) 

L J  Y J  
This is a direct extension of results in [30]. In particular, to 
show that CyP contains an internal model of P, note that (5.1) 
implies 

(I + C y P  -1 = D'IV' ,  (5.3) 
where V' E M(Wg(s)). By (2.61 with B=I and A=(I + CyP)-l, 
CyP contains an internal model of P. Similarly, it can be shown 
that PCy contains an internal model of P. To show that PCy 
and C P contain an internal model of Cy, consider Cy to be the 
"plantY' and P the "controller" and follow the same approach. U 

Note that once again a map between a signal that is 
regulated and the output of the plant contains an internal 
model, in this case PC,. In addition, other maps must contain 
the internal model, such as C P Clearly, the presence of the 
internal model in P C J  and 6,P indicates that there are no 
unstable cancellations in PCy and in CyP. These are necessary 
conditions for R c t a b i l i t y  that guarantee that no unstable 
uncontrollable an /or unobservable modes are introduced [30,9]. 

In Appendix A [32] it is made clear that if yc#ym or if a 
two degrees of freedom controller is used, then the internal 
representations of Sp and Sc must be admissible. Admissibility 
requires that additional internal model relations be satisfied 

VI. CONCLUSION 
A treatment of internal models over rings has been presented. For 

a generic formulation of the regulation problem, a set of maps containing 
the internal model of the transfer matrix of the exosystem was 
characterized. This result was used in the study of the problems of RPIS 
and TPIS over [Rg(s) as well as Rgstabi l i ty  without a robustness 
requirement t o  show that  in each case a t  least the map from the 
"regulated" variables to the "output" of the plant contained the internal 
model. In RPIS over Rg(s) when yc#ym the map containing the internal 
model does not need to appear explicitly in the feedback system. 
However, if yc=ym o yc and ym are related as in Figure 2, then the 
skew-prime solvability equation has an identity on the right hand side 
and the internal model appears explicitly in the feedback system. In TPIS 
over [Rg(s) when yc#ym and a two degrees of freedom controller is used, 
then there is a map  containing the internal model that does not need to 
appear explicitly in the feedback system This map containing the internal 
model appears explicitly if yc=ym and Cy=Cr. For stabilization we 
considered the plant and controller to be the exosystems and characterized 
two maps that  contain the internal model. The existence of the internal 
model in these maps was interpreted as a necessary condition to avoid the 
introduction of unstable uncontrollable and/or unobservable modes. 
These results reemphasize the importance of internal models in most 
control problems. 
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