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Abstract 
The problem of the optimal control of systems accurately represented with a 

logical discrete event system (DES) model is formulated and solved for the 
deterministic case in this paper. The given discrete event system model P is 
thought of as characterizing the valid dynamical behavior of the physical plant. 
Another DES model A represents design objectives which specify the allowable 
DES behavior which is "contained in" the valid behavior. Assuming that the 
allowable behavior can be attained, a controller may be constructed which will 
select a sequence of inputs that results in allowable plant behavior. Here we 
consider the case where there is another part of the design objectives which 
indicates that not only should the controller choose the plant inputs so that the 
plant behavior is allowable but that it should also, in some sense, be "optimal". It 
is within this context that we formulate an "optimal controller synthesis problem", 
i.e. how to construct a controller to achieve optimal allowable DES behavior. Our 
solution to this problem utilizes results from the theory of heuristic search to help 
overcome problems with computational complexity often encountered with logical 
DES models. This approach relies on the choice of a "heuristic function" which is 
used to focus the search for an optimal solution. The problem one encounters 
though is that it is, in general, quite difficult to find an appropriate heuristic 
function for particular applications. This is resolved here, and in fact we extend the 
theory of heuristic search by showing that a metric space approach can be used to 
specify such heuristic functions in a systematic way for a wide variety of DES.  
Examples are provided. 

1. INTRODUCTION 
This paper establishes the first steps towards developing the 

foundations for an optimal control theory for systems accurately 
represented with a logical discrete event system (DES) model. Here, 
we focus on one class of deterministic logical DES models (an 
automaton augmented so that it can model costs for events to occur) 
and the case where complete state information is available. (These 
results were originally established in [31] and related work is given in 
[30].) A new DES controller synthesis methodology is introduced in 
Section 2. The technique requires viewing the plant model P as 
characterizing the valid DES behavior. Another DES model A 
represents design objectives which specify the allowable (desirable) 
DES behavior which is "contained in" the valid behavior. Here we are 
concemed with those times when the design objectives dictate that not 
only should the DES behavior be allowable but that it is in some sense 
optimal. To quantify this, a performance index is defined in terms of 
the costs for the events to occur. The optimal controller synthesis 
problem for deterministic DES consists of the construction of a 
controller that chooses a sequence of inputs that will transfer the DES 
from its initial state to one state in a set of final states and minimize the 
performance index. This will result in "controller synthesis for 
optimal allowable DES behavior". 

Our solution to this optimal control problem (in Section 3) utilizes 
approaches developed in the theory of heuristic search to help 
overcome problems with computational complexity often encountered 
in the study of logical DESs. The idea is to search for an optimal 
solution among all the possible solutions to the optimal controller 
synthesis problem. We outline the main results from the theory of the 
widely used A* algorithm adapted to the controller synthesis problem 
and discuss computational complexity. The heuristic search approach 
relies on the choice of a "heuristic function" which is used to focus the 
search for an optimal solution. The problem one encounters though is 
that it is, in general, quite difficult to find an appropriate heuristic 
function for many applications. This is in part due to the fact that it is 
imperative that the heuristic function be "admissible" and desirable for 
it to satisfy a "monotone condition". In Section 4 we extend the 
theory of heuristic search by showing that a memc space approach can 
be used to specify the heuristic function in a systematic way for a wide 
variety of DESs. It is shown that our approach to specifying heuristic 
functions will always result in their satisfying the admissibility and 
monotone conditions. In cases where it is known that the costs of the 
events can be specified with a metric it is proven that we can expect 
computational complexity to be further reduced. Hence, the results 
offer a computationally efficient solution to the optimal controller 
synthesis problem. To illustrate the results we provide a solution to a 
minimum-time and a minimum-inpudevent cost problem and discuss 
applications to artificial intelligence systems in Section 5 .  
Comparisons to relevant research are made throughout the paper. 

2. THE OPTIMAL CONTROLLER SYNTHESIS 
PROBLEM FOR DETERMINISTIC DESs 

We consider DESs that can be accurately modelled with 
P=(X,Q,~,x,xo,Xf) (1) 

where 
(i) X is the possibly infinite set of plant states, 
(ii) Q is the finite set of plant inputs (controller outputs), 
(ii) 6:QxX-+X is the plant state transition function, 
(iv) x:XXX+IR+ is the event COStfKnCtiOn, 
(v) xo is the initial plant state, and 
(vi) XfcX is the non-empty finite set offinal states. 

The model P is limited to representing DESs that are deterministic in 
the sense that for a given input there is exactly one possible next state. 
A state transition can occur in a non-deterministic fashion relative to 
time so certain asynchronous DESs can be modelled. The set 

(2) 
denotes the (possibly infinite) set of events for our plant P (Xd is a 
dummy state, and (Xd,XO) a dummy event added for convenience). 
The event cost function x(x,x') is defined for all (x,x')E E(P); it 
specifies the "cost" for each event (state transition) to occur and it is 
required that there exist a 65-0 such that x(x,x ' )28 '  for all 
(x,x')E E(P). The addition of the cost for an event to occur is a new 
addition to the standard automaton model P. It allows for the 
development of a theory on the optimal control of logical DESs and 
the analysis of an important class of applications. Intuitively, we 
think of "changes", i.e. state transitions that occur in the system, as 
having an associated cost. Certain events or sequences of events may 
then be more desirable since they will result in a lower "overall cost" 
to be defined precisely below. 

The discrete event controller (DEC) is C=(Q,X,c,qo) where (i) Q 
is the finite set of controller states (plant inputs), (ii) X is the set 
controller inputs (plant outputs), (iii) C:XxQ-+Q is the controller 
transition function, and (iv) qo is the initial controller state. The 
closed loop discrete event control system (DECS) is formed by 
connecting the outputs of the plant (states) to the inputs of the 
controller and the outputs of the controller to the inputs of the plant. 
The state of the DECS is given by certain pairs (q,x)E QXX. The pair 
(q0,xo) is a valid DECS state where qo and XO are the initial states of 
the controller and plant respectively. If (q,x) is a valid state for the 
DECS then a valid next state is given by (q',x') where q'=k(x,q) and 

E(P)=( (X,X')E XXX: X'd(q,X))U ((Xd,XO)) 

x'=6(q',x). 

Mathematical Preliminaries: State Trajectories and 
(x,X,)-ReachabiIity 

Let Z be an arbitrary set. Z* denotes the set of all finite strings 
over Z including the empty string 0. For any s,tEZ* such that 
s=zz'.-z'' and t=yy'.-y", st denotes the concatenation of the strings s 
and t, and tE s is used to indicate that t is a substring of s, i.e., 
s=zz'. ..I.. .z". For brevity, the notation szz" is used to denote a string 
S E  Z* such that s=zz'-d'  begins with the element Z E  Z and ends with 
Z"E Z. Let zo be a distinguished member of the set 2. The notation sz 

is used to denote a string S E  Z* such that s=y)z'-z begins with and 
ends with ZE Z. Furthermore, sz> denotes a string SE Z* such that 
s=zz'z''.- begins with ZE Z and the end element is not specified. A 
(finite) cycle is a string S E  Z* such that s=zz'-d'z has the same first 
and last element Z E  Z. A string S E  Z* is cyclic if it contains a cycle 
(for tZZE Z*, tZZE s), and acyclic if it does not. Let Is1 for S E  Z* denote 
the length of string SE Z, i.e., the number of elements of Z 
concatenated to obtain s. 

A string SEX* is called a state trajectory or state path of P if for all 
successive states XX'E s, x'=6(q,x) for some qE Q. Let 
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Es(P)cE(P) (3) 
denote the set of all events needed to define a particular state path 
SE X* that can be generated by P. For some state path s=xx'x"x'"-, 
E,(P) is found by simply forming the pairs (x,x'). ( x ' , ~ ' ' ) ,  
(x",x"'),-.. An input sequence UE Q* that produces a state trajectory 
SEX* is constructed by concatenating qE Q such that x'=G(q,x) for all 
XX'E s. Let XzcX and 

denote the set of all finite state trajectories s=xx'-.x" of P beginning 
with XE X and ending with X"E Xz. Then, for instance, Z (P,xo,Xf) 
denotes the set of all finite length state trajectories for P that begin with 
the initial state xo and end with a final state XE Xf. A similar use of 
state trajectories in DESs is found in, for instance, 1261. 

A plant P is said to be (xJJ-reachable if there exists a sequence 
of inputs UE Q* that produces an acyclic state trajectory SE %(P,x,Xz). 
Then, for instance, if P is (x0,Xf)-reachable we know that there exists 
an acyclic state trajectory s=xox-x' with X'E Xf. 

Allowable DES Behavior 
The valid behavior that the DES can exhibit which is modelled by 

P can be characterized by the set of all its valid state trajectories 
%(P,x,Xf) where XE X, along with its input sequences (it is specified 
with the graph of P). Let P=(X,Q,G,X,xO,Xf) specify the valid 
behavior of the plant and 

be another DES model which we think of as specifying the 
"allowable" behavior for the plant P. Allowable plant behavior must 
also be valid plant behavior. Formally, we say that the allowable plant 
behavior described by A is contained in P, denoted with A[P], if the 
following conditions on A are met: 

% (P,X,X,)CX* (4) 

A=(Xa,Qa.s,,Xa,xao,Xaf) (3 

(i) XaCX, 
(ii) CWQ. 
(iii) Ga:QaXXa+Xa is given by 

if B(q,x)E X a  
Sa(q'X){:k%ed otherwise 

(iv) Xa:XaxXa+R+ is a restriction ofX:XxX+R+, 
(VI xao=xO, 
(vi) XafcXf. 

Also, let E(A)cE(P) denote the set of allowable events defined as in 
( 2 ) .  The model A, specified by the designer, represents the 
"allowable" DES plant behavior which is contained in the valid DES 
behavior described by the given P. It may be that entering some state, 
using some input, or going through some sequence of events is 
undesirable. Such design objectives relating to what is "permissible" 
or "desirable" plant behavior are captured with A. This formulation is 
similar in character to the "supervisor synthesis problem" formulated 
in a language-theoretic framework and solved in [35,38]. There the 
authors use languages to specify the "acceptable" (allowable) and 
"legal" (valid) DES behavior. They develop an algorithm to 
synthesize a supervisor which will make the behavior of the 
supervisory control system characterized by yet another language to 
"lie between" the acceptable and legal languages. 

In controller synthesis the design objectives often specify what 
plant behavior is desirable with a model. Then using the plant model 
and this model of the desired behavior a controller is synthesized to 
manipulate the plant inputs to ensure that the plant behavior is 
desirable. Often, optimal plant behavior is desired so the controller 
must select the inputs to minimize some performance index and 
achieve desirable behavior. It is within this context that we find the 
above approach using allowable DES behavior intuitively appealing as 
a control theoretic approach to optimal controller synthesis for DESs. 
Moreover, it appears promising for future extensions and 
developments. 

The Optimal Controller Synthesis Problem 
The performance index 

J:X:+R+ (6) 
is defined in terms of the costs of the events by 

J(s) = ~ X ( X , X ' )  (7) 
(x,x')E E,@) 

for all SE % (A,x,Xa) where XE Xa. By definition, J(s)=O if s=x 
where XE X,. As in conventional optimal control the objective is to 
find an input sequence that will produce a state trajectory s that will 
minimize J(s). Here, we are particularly interested in state trajectories 
that end in Xaf. Let S:>E Z(A,x,Xaf) denote such an optimal stare 
trajectory, then 

J(s:>)=inf( J(sX>):sx>~ %(A,x,Xaf)I (8) 
where XE X,. Notice that the inf is achieved for Is1 finite, indeed 
IJ(s)l+- if kl+- since x(x,x')>6' for all (x,x')E E(A). Since the 
graph of A is locally finite there are only a finite number of state 
trajectories of finite length; hence 

where XE Xa. There may, in general, be more than one state path 
where the minimum is achieved. Let X,cX,. The set of minimum 
cost state paths for A, beginning at state XE Xa, and ending at state 
X'E Xz is denoted by 

We are concemed with %*(A,xo,Xaf) the set of optimal allowable state 
trajectories that begin with xo and end in Xaf. Next, we state the 
optimal controller synthesis problem for P. 

The Optimal Controller Svnthesis Problem (CSP) 
Let A describe the allowable behavior for a plant P such that 

A[P]. Assume that A is (xo,X,f)-reachable where xo is the initial 
plant state. Find a controller that will generate a sequence of 
inputs that drives the system A along a state trajectory 
S*E %(A,xo,X,f) such that J(s*)=min( J (s ) : s~  %(A,xo,X,f)). 

J(s:,)=min( J(s,>):sx>e % (A,x,Xa)) (9) 

Z*(A,x,Xz)c%(A,x,Xz). (10) 

Once an optimal state trajectory s* is found, an input sequence, 
say UE Q* can be constructed to drive P along s*. From this a 
controller C can be constructed. An alternative optimal control 
formulation for an automaton can be found in 1161 or some general 
conventional optimal control formulations could also be adapted. The 
particular formulation above lends itself to a computationally efficient 
solution, allows for the specification of "minimum-time'' and 
"minimum-inpuvevent cost" optimal control problems, and is quite 
useful in applications. 

In summary, to perform controller synthesis to achieve optimal 
allowable DES behavior the following steps are taken: 

(i) Model the DES with P, 
(ii) Specify the allowable DES behavior with A such that A[P], and 
(iii) Find a sequence of inputs that will produce an "optimal" 

allowable DES behavior and construct the controller ... 
Assuming that the first two steps have been taken, Step (111) is now 
explained in detail. This amounts to solving the above optimal control 
problem for DESs. 

3. OPTIMAL CONTROLLER SYNTHESIS VIA 
HEURISTIC SEARCH 

In this section we solve the problem of how to find an optimal 
allowable state trajectory in A beginning at xo and ending in X,f 
assuming that A is (xg,X,f)-reachable and A[P] for a given plant P. 
The approach here is to use a search algorithm to successively 
generate candidate state trajectories until an optimal one is found. A 
brute-force approach to solving this problem may produce an 
algorithm whose computational complexity would prohibit solving all 
but the simplest of controller synthesis problems (CSPs). Here we 
use an approach which seeks to minimize the number of state 
trajectories considered as we discuss next. 

The solution to the CSP could be obtained by adapting certain 
shortest path algorithms (See, for instance, [1,7,3]). Here, however, 
the focus is on using an algorithm which will produce a 
computationally efficient solution to the shortest path problem for a 
wide variety of plants where certain information about the plant may 
be known and used to improve search efficiency. Also, we are 
concemed with the case where IXI can be infinite, the graph of P can 
be defined implicitly rather than explicitly, and we search for the 
shortest path to a set of states. One could use a conventional dynamic 
programming solution [2] but due to the problem of state space 
explosion often found using logical DES models [13,36] such 
methods can result in an inefficient algorithm with large memory 
requirements. Often, a branch and bound technique is chosen in such 
situations to produce either optimal or near-optimal solutions (See, for 
instance, [18,17,22,7]). This is the approach taken here. We use a 
particular class of branch and bound algorithms called "heuristic" 
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search algorithms which utilize the "principle of optimality" of 
dynamic programming 121 and the advantages of branch and bound 
algorithms that allow certain candidate solutions (state trajectories) to 
be eliminated from consideration by using information from the plant. 
The particular heuristic search algorithm used here is called the "A' 
algorithm". In 114,231 it is shown how A* is actually a branch and 
bound technique while in [7] it is discussed how A* is a generalization 
of Dijkstra's and Moore's shortest path algorithms. The main results 
for the theory of heuristic search using the A* algorithm were 
established in [10,11,6]. The formal properties of A* are given in 
[24,25] or in 1331 and are summarized below. 

Heuristic search techniques have been applied to problems where 
computational complexity of search problems is either very high or 
intractable. The A* algorithm is one of the most widely used heuristic 
search algorithms. It utilizes information about how promising it is 
that particular state paths are on an optimal state trajectory to reduce 
the computational complexity. Such information is referred to 
collectively as "heuristic information". The heuristic information is 
quantified with the "evaluation function" (part of which is the heuristic 
function). 

The Evaluation Function 
The definition of the evaluation function depends on the 

performance index and what information is available to A* at the 
various stages where the evaluation function is computed. Suppose 
that some state path s=sxsx> and S E  X (A,xO,Xa), then J(s)=J(s,)+ 
J(sx>). If S*E 2: *(A,xO,Xaf) and S*=S*~S;, then J(s*)=J(s:)+J(s;,-) 
where J(s*,)=min{ J(sX):sX€ X (A,xo,x)] and J(s*,,*)=min(J(s,,-): 
s,,'E Z;(A,x,Xaf)}. If xbeXa is some state that is not on any optimal 
state trajectory and xbE s for some SE Z(A,xO,Xaf) then J(s)>J(s*) for 
S*E 2:(A,xo,Xaf). This shows that J(s) obeys the "principle of 
optimality" of dynamic programming [2] stating that a path is optimal 
iff each segment of it is optimal. Also, J(s) is a "perfect 
discriminator" since it can provide an exact indication of when states 
are not on an optimal state trajectory; hence using J(s) as defined 
above with A* would yield a perfect search strategy which would only 
consider states on optimal state trajectories [33]. The problem is that 
the appropriate information is not available for the A* algorithm to 
compute J(s*)=J(s:)+J(s:,*). Suppose that the current path found to x 
is sx. It is, in general, not known if s,=s*, so J(s',) cannot be 
computed. For J(s:,,) the entire path sxxe (optimal or not) is not 
known (this is what the algorithm is searching for). If A* tried to 
compute the extra information by searching the graph of P the main 
objective is not met, which is to avoid excessive search [33]. 

For the A* algorithm J(s*) is estimated by some easily computable 
evaluation function given by 

which is defined for all S E  X,* such that SE X(A,x,X,) where XE Xa. 
The evaluation function 1 is obtained by approximating both J(s;) and 
J(s:,,) with appropriately defined functions. Let s=sxsx> be some 
state path. The value of J(s:) will be estimated using 

where &sx)=J(sx) for all S ~ E  2: (A,xO,Xa). Note that &sx)=O if 
s,=xg the initial state of A. The function &sx) is used to keep track of 
the cost expended to reach the current state x. Hence, it can use the 
entire path from xo to x to produce its estimate. Notice that it is not 
necesssrily the case that &s,)=J(s:) where S*,E X*(A,xg,x). 
Intuitively, J(s:) is estimated with the cost of the current path found to 
x. To estimate J(S:,*), the remaining cost to be incurred from state x 
to some final state X'E Xd,  the function 

is used with &(x)=O if XE Xaf. For 6, generally speaking, the only 
information available to determine an estimate of J(sZx,) is the cuient  
state under consideration and the fixed set Xaf The function h is 
called the "heuristic function" since it provides the facility for 
supplying the A* algorithm with special information about the 
particular search problem under consideration to focus the search of 
A*. The proper choice of the heuristic function can result in efficient 
search, i.e., an efficient solution to the CSP. The evaluation function 

1:X,*+R+ (1 1) 

g:x:+IR+ (12) 

L:Xa+IR+ (13) 

is chosen to be 

where XE Xa is the current state considered by the A* algorithm. The 
proper interpretation of ?(sx) is that it estimates the cost of a state path 
from xo to x ' E X ~ ~  that goes through the state x. It is not to be 
interpreted as being just the cost of sx. 

(14) ;(s,)=p(S,)+&(x) 

The A* Algorithm 
The A *  algorithm proceeds by generating candidate state 

trajectories which are characterized with two sets CcE(A) and 
OcE(A). The contents of C and 0 change at different stages of the 
algorithm but it is always the case that there does not exist 
(x1,x2)e CUO and (x3,x4)e CUO such that x2=x4 and xbx3.  Let the 
set of state trajectories of A, investigated by A*, be denoted by 
X(A,C,O). Each state path S ~ ' E  Z(A,C,O) begins with xo. the initial 
state, and has an end state X'E Xa such that (.,XI)€ CUO. For 
SS'E X i  let s t s s '  denote the operation of replacing s by ss'. To find 
s X s  2: (A,C,O) from C and 0 choose (x,x')E CUO and let s=xx'. 
Repeat the following steps until xd is encountered: (a) Find 
(x1,x2)€ CUO with x2=x where s=x-, (b) Let s c x l s ,  and go to (a). 
The operation of finding the set &(x)=(x':xkX, and x'=6a(q,x)] is 
called expanding the sfate XE X,. For 2 and Z arbitrary sets let Z t Z  
denote the replacement of 2 by 2 .  Next, the A* algorithm which 
produces an optimal allowable state trajectory S*E Z; *(A,xo,X,f) 
assuming that A, such that A[P], is (xo,Xd)-reachable is given. 
A': 
(1) Let C=(]  and o=((Xd,XO)]. 
(2) If lobo, then go to Step 3. If 101=0, then exit with no solution. 
(3) Choose (x,x')E 0 so that ?(s,x') is a minimum (resolve ties 

(4) If x'EXaf then exit with S ~ ' E  X*(A,xo,Xaf), an optimal state 

( 5 )  For each X"E &(XI): 

arbitrarily). Let O t O - [  (x,x'))and C t C U (  (x.~ ' ) ) .  

trajectory. 

(i) If for all REX,, (iC,x")c CUO then 

(ii) If there exists %cXa such that (%,x")E 0 and ?(sx~x")<~(six") 

(iii) If there exists REX, such that (R,x")E C and ?(sX~x")<~(s-,x") 

The algorithm is nearly the same as that originally given in [ 101 
except that the "pointers" are included explicitly in the algorithm and 
the lists of "open and closed nodes" are replaced with sets of events 0 
and C that essentially define the pointers. 

let O t O U  ( ( x ' , ~ " )  1. 

then let OtO-{(X,x")) and CcCU((x',x")). 

then let CtC-((R,x")] and OtOU((x',x")). 

Theory of the A* Algorithm 
A* is said to be complete since it terminates with a solution. A 

heuristic function A(x) is said to be admissible if Od(x)lT(s:>) for all 
XE Xa such that s*,>E T*(A,x,Xaf). Let A*(i(x)) denote ,an A* 
algorithm which u:es h(x) as its heuristic function. If h(x) is 
admissible then A*(h(x)) is said to be admissible since it is guaranteed 
to find an optimal state trajectory when one exists, i.e., when A :Is 
(xg,X,f)-reachable. A heuristic h2 is said to be more informed than hi 
if both are admissible and h2(x)>6l(x) for all xEXa-X,f. If heuristic 
62 is moye informed than 61 the? A*(&2) is said to be more informed 
than A*(hl). An a1gori:hm A*(hl) is said to dominate A*(h2) if every 
state expanded by A*(hl) is also expanded by A*&). If A*(62) is 
more informed than A*(fl), then A*&) dominates A*(61). For all 
states XE Xa expanded by A*, ;(sx)lJ(s*) for S ~ E  'X(A,C,O) and 
S * E  2: *(A,xO,Xaf). Every state XE Xa such that (.,x)E 0 and 
?(sX)<J(s*) for S ~ E  Z; (A,C,O) and S*E X*(A,xO,Xaf) will be expanded 
before termination by A*. 

A heuristic function 6(x) is said to be m o n o t o n e  if 
h(x)l~(x,x')+fi(x') for all (x,x')E E(A). A heuristic function 6(x) is 
said to be cons is ten t  (equivalent to being monotone) if 
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$(x)Y(~:~-)+i(x') for all (x,x')E E(A) where S:<E I1G *(A,x,x'). If 
h(x) a monotone heuristic function then, (a) A*(h(x)) finds optimal 
paths to all expanded states, i.e., g(s,)=J(s:) for all XE Xa with 
(.,x)E C, S,E Z(A,C,O), and S:E X*(A,xo,x), (b) The ?(s,) values 
for the sequence of states expanded by A*(G(x)) are non-decreasing, 
and (c) The necessary condition for expanding state x is h(x)<J(s*)- 
J(s:) while the sufficient condition is G(x)<J(s*)-J(s: ) f o r  
S:E X*(A,xo,x) and S*E Z*(A,xO,X,f). An algorithm A*(G2) is said 
to largely dominate A*(61) if every state expanded by A*&) is also 
expanded by A*(fil), except perhaps some states XE Xa for which 
~~~(X)=&~(:)=J(S*)-J(S;)=J(S:>). If 62(x)>$l(x) for all XE X, ^and 
6l(x) and h2(x) are monotone, then A*&) largely dominates A*(hl). 
The real utility of knowing that h(x) is monotone lies in the fact that 
states are expanded at most once. This implies that the A* algorithm 
can be simplified by removing Step 5 (iii) since events (pointers) will 
never be taken from C and placed in 0. 

One serious problem with A*, that has limited its applicability, is 
the requirement that the heuristic function fi be specified in a special 
form (admissible and monotone) to guarantee the return of an optimal 
solution and to obtain efficient search in the worst case for all 
problems. In general, it is often very difficult, or seemingly 
impossible to specify h so that it possesses the required properties. 
As we shall discuss in Section 4 there have been many approaches to 
solve the problem of how to pick the heuristic function, but that each 
of these has certain deficiencies. We then introduce the idea of 
specifying the heuristic function using a metric space formulation and 
show that the approach is applicable to a wide class of DESs. 

Computational Complexity of A* 
Following [20] in a worst case analysis of A* we assume as a 

basic operation the expansion of a state. Let Xe=( XE X: T(s,)<J(s*) 
for S,E X(A,C,O) and S*E IIG*(A,xO,Xaf)). No more than lXel states 
will be expanded at termination. If the heuristic function is only 
admissible (and not monotone) then it is possible that A* expands 
O(29 (where r=IXeI) states since for each state expanded every other 
state that is expanded by termination could also be expanded [20]. If 
the heuristic function is known to be monotone (hence also 
admissible) then each state is only expanded once so A* runs in 
O(IX,I) steps [20]. 

It is also important to note that the computational complexity of A* 
is optimized relative to a certain class of algorithms that are. "equally 
informed" about the plant and return an optimal solution [4]. The 
class of algorithms considered include only those which use state 
expansion as their primitive computational step, only expand states 
that were generated by the algorithm, and that begin the expansion 
process with the initial state xo. This excludes, for instance, 
bidirectional searches. In [4] it is shown that in the case where it is 
known that the heuristic function for A* is monotone, then A* uses 
the most effective scheme of any admissible algorithm for utilizing the 
heuristic information provided by the heuristic function. In other 
words, any other admissible algorithm must expand at least as many 
states as A* by termination. It must be stressed however that for 
particular problems one may be able to construct an admissible 
algorithm that will expand fewer states than A*. But, no equally 
informed admissible algorithm will expand fewer states than A* f o r d  
problems that can be described with the plant model P. This sort of 
optimality with respect to computational complexity is significant in 
light of the results in the next Section where is is shown how to pick a 
heuristic function that is both admissible and monotone for a wide 
variety of applications. 

4. T H E  HEURISTIC FUNCTION 
There has been extensive work on the problem of how to 

automatically generate heuristics for an arbitrary problem. In [5],  
[8,9], and [32] the authors respectively introduced the related 
"problem similarity", "auxiliary problem", and "relaxed model" 
approaches to the generation of heuristics. The main deficiencies of 
these approaches is that there is no way to systematically produce 
similar and auxiliary problems or relaxed models. Furthermore, in 
[37] it was proven that the approach in [9] can be computationally 
inefficient. Approaches similar to these have also been used in 

operations research. See, for instance, [ 181 or [12]. 
As an extension to Pearl's (and the others) work the authors in 

[15] suggest a method for modelling a problem (plant) P that will 
always lead to the derivation of a set of "simplified" problems, say Pi, 
from which admissible and monotone heuristics can be derived 
algorithmically for the original plant P. Their algorithm uses a 
problem decomposition algorithm to obtain the problems Pi and then 
uses exhaustive search to find the minimal cost optimal path in each 
Pi. From this the heuristic which is admissible and monotone is 
generated. The problem with this approach is the reliance on an 
exhaustive search. While the authors have found computationally 
efficient solutions to several specific simple problems, the approach of 
decomposing the problem to generate heuristics was not proven to be 
computationally efficient in general. 

All of the above approaches are in some ways related. They rely 
on using another model to specify the heuristics for the problem 
(plant) at hand. Their subsequent disadvantages are correspondingly 
similar. The problem of finding a heuristic function to reduce the 
complexity of search is solved with another mechanical procedure 
(either a search method such as backtracking or an exhaustive search) 
that is, in general, computationally inefficient. The above results 
have, however, been successfully applied to a variety of problems and 
have offered much insight into the nature of heuristic infomation and 
how it should be used in a problem solving process. In our metric 
space approach to specifying the heuristic function there is no need to 
perform a search or use a mechanical procedure to find the heuristic. 
In this way we do not defeat the main purpose of using the A' 
algorithm - to reduce the computational complexity of search. 

The Specification of Heuristic Functions: 
A Metric Space Approach 

In this Section the concem is with whether given a plant P, and 
allowable behavior A, such that A[P], an appropriate admissible and 
monotone heuristic function h(x) can be specified for all XE X,. The 
approach taken here relies on the use of metric spaces. Let 2 be. an 
arbitrary non-empty set and let p:ZxZ+IR where p has the following 
properties: (i) p(x,y)?O for all x,yc Z and p(x,y)=O iff x=y, (ii) 
p(x,y)=p(y,x) for all x , y ~  Z, and (iii) p(x,y)Sp(x,z)+p(z,y) for all 
x , y , z ~  Z (triangle inequality). The function p is called a metric on Z 
and (Z;p) is a metric space. Let PE Z and define d(p,Z)=inf( p(p,z): 
ZE Z). The value of d(p,Z) is called the distance bemeen point p and 
ser Z. Let A(Z) denote the class of functions that are metrics on the set 
Z. 

The first theorem says that if the heuristic function is chosen to be 
the distance between a point x and a set X,f as defined in a metric 
space and the metric satisfies a certain constraint then it will be both 
admissible and monotone. 

Theorem 1: For the DES P and A[P] if 6(x)=inf( p(x,xf): XR Xaf) and 
P E  A(Xa) with p(x,x')lx(x,x') for all (x,x')E E(A) then 6(x) is 
admissible and monotone. 

Proof: For admissibility let sjuc"~ X(A,R,Xd) where RE Xa and let 
XX'ESZ," be two successive states on si,". From the triangle 
inequality, p(x,x")~p(x,x')+p(x',x"). Using repeated applications of 
the triangle inequality along s s  we know that 

P(R,X") C p h x ' )  (15) 
( x d k  &(A) 

and with the assumption that p(x,x')lx(x,x') for all (x,x')E E(A) 

(x.x')E &(A) (x,x')E &(A) 
CP(XJ ' )  2 CX(X,X') (16) 

where t = s ~ , ~ ~ .  Since this is true for any state path it is true for optimal 
ones also. Let sEx-~~%*(A,f ,Xaf)  (we need only consider cases 
where one exists). Then, 

0 5 p(%,x") I C X(X,X') = J(sEx,-) (17) 
(X.X'& &(A) 

where t=s;x--. So, by the definition of h(x) we have Od(%)SJ(s~,~~) 
for all RE X a and s Z x * e  X*(A,R,X,f) which guarantees the 
admissibility of k(x). For monotonicity let  six"^ T(A,R,Aaf) where R 
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E Xa and let XX'E sirx" be two successive states on sirx". Notice that 
for the sequence of states XE Xa expanded, the state at which the inf is 
achieved in g(x)=inf( p(x,xf):xfE Xaf) may change. Let xp denote the 
state at which the inf is achieved for x and +, the one for X I .  By the 
mangle inequality, p(x,~)Sp(x,x')+p(x',xd). But by the definition 
of 6(x) we know that p(x,xp)lp(x,x$. It follows that p(x,xp) 
lp(x,x')+p(x',$,). By the definition of k(x) we have 
h(x)lp(x,x')+fi(x') and since p(x,x')<x&,x'), h(x)<x(x,x*)+G(x') 
for all X,X'E Xa such that XX'E s where SE X (A,i(,Aaf) which 
guarantees the monotonicity of h(x). 

This Theorem was first proven in [29] for the case where IXafl=l 
and later in [30] for the case of multiple final states. Note that in the 
proof of Theorem 1 we could have just chosen to prove that the 
heuristic function was monotone because this automatically implies 
that the admissibility condition is true. Theorem 1 says that if the 
standard metric space notion of distance is used for the heuristic 
function (with constraints on the metric), then we automatically get an 
admissible and monotone heuristic function. The use of the metric 
space definition of distance shows how the A* algorithm can be 
seeking one final state as it expands states along some path then 
switch to seek a different final state even though it still expands states 
along the same path. This helps to clarify the operation of A*. 
Theorem 1 also gives support to the discussions in [32,33] on why 
heuristic functions that have been proven to be admissible are 
normally monotone also. Roughly speaking, it supports this idea 
since we often think of distance (when we devise heuristics) in the 
same way as is done in metric spaces. It is, however, not necessary 
to use this metric space notion of distance as Theorem 2 shows. Let 
0:XaXXa+R+ (0 not necessarily a metric) and suppose that 
B(x,x')<x(x,x') for all (x,x')E E(A). 

n e o r e m  7: For the DES P and A[P] there exist heuristic functions 
(a) h(x)=inf[ B(x,x'):xk Xaf) such that 0e A(Xa), or 
(b) fi(x)linf (B(x,x'):xk Xaf) such that 0~ A(Xa) 

that are admissible and in some cases monotone. 

Proof: For case (a) suppose that 0(x,x')=O for all X,X'E Xa. Then 
0e A(Xa) but when 8 is used in the heuristic function we have i(x)=O 
for all XE Xa which is clearly an admissible and monotone heuristic 
function. (Notice that if e(x,x')=O just for (x,x')E E(A) then it is not 
necessarily the case that h(x) satisfy the monotone condition. Also, if 
h(x) is monotone then it is not necessarily the case that 0 satisfy the 
triangle inequality.) For case (b) $(x)lk(x) for all XE Xa, where k(x)  
satisfies the -conditions of Theorem 4, so by the definition of 
admissibility h(x) is admissible (not necessarily monotone). 

Theorems 1 and 2 place the statements made in the theory of heuristic 
search about "distance" between points and between points and sets in 
a precise mathematical setting. It also clarifies the relationship 
between monotonicity and the triangle inequality which has only, in 
the past, been loosely referred to (See [ 10,331). 

The Specification of Good Heuristic Functions 
Consider the DES model P'=(X,Q,6,x',xo,Xf) defined as in (1) 

except x':XxX+lR+ where X'E A(X), i.e. the costs for the events are 
characterized by a metric. Also, in terms of the metric space (X,x') 
every X E X  is assumed to be an isolated point. The allowable 
behavior A'=(Xa.Qa,Ga,X'a,Xao,Xaf) such that A'[P'] as in (5 ) .  A 
heuristic function is said to be good if i(x)=inf( x ' (x ,xf ) :x~  Xaf] for 
all XE X a  where X'E A(Xa). Considering Theorems 1- and 2, the 
motivation for this definition lies in the desire to choose h(x) as large 
as possible to get efficient search. 

Theorem 9: For the DES P and A'[P] if k(x) is good then k(x) is 
admissible and monotone. 

Proof: Since every XE X is an isolated point there exists a 85-0 
such that x'(x,y)26' for every x , y ~ X  such that xzy. Since A* 
prunes cycles it will not repeatedly investigate any single 
(x,x')E E(A') with x=x' and x'(x,x')=O; hence A* is complete, By 
Theorem 1 i(x) is admissible and monotone. 

This indicates that if we have a plant P without costs or a plant where 
it is not known how to specify the costs then Theorem 3 offers a 
method to assign the costs so that an efficient search may be possible. 
More importantly it illustrates how information from the plant (the 
knowledge that the costs were modelled with a metric) is used to focus 
the A*'s search for an optimal solution. This is further quantified by 
showing that if a good heuristic function h(x) is used we can expect 
A*(h(x)) to more narrowly focus its search. 

Theorem 4: For the DES P and A'[P'] if f i (x)=inf(~'(x,xf):xt .~X~f)  
for all XE Xa with X'E A(Xa) then l f i (x)-f i (x~)l<~~(x,x~)  for all 
(x,x')E E(A'). 

Proof :  From monotonicity i(x)<x'(x,x')+f~(x') for all 
(x,x')E E(A). Also, with a simple rearrangement, -~ ' (X ' .X)<~(X)-  
i(xt)<x8(x,xt). Since is a metric, x'(x,x')=x'(x',x) for all 
X,X'E Xa SO we have li(x) - i(x')I<x'(x,x') for all (x,x')E E(A'). 

If the heuristic function is monotone then the estimate of the 
remaining cost at the next state cannot be too much smaller than the 
estimate of the remaining cost at the current state. This !ends to 
guarantee that we have good heuristic information (large h(x)) so 
fewer states will be expanded. If x is a memc which specifies the 
costs for the events and is used to guide the search then it is also the 
case that the estimate of the remaining cost at the next state cannot be 
too much larger than the estimate of the remaining cost at the current 
state. This tends to guarantee that A* will not get side-tracked too 
much from finding an optimal solution. We see that when the 
heuristic function is based on a metric that is used to specify the costs 
of the events for the plant P' then enough information from the plant is 
used so that we are guaranteed to get an admissible and monotone 
heuristic function and we are guaranteed that the change in the estimate 
of the remaining cost is bounded by costs of events in P .  

We have still not said how to specify the exact form of the 
heuristic function for particular applications. There is a wide class of 
DESs whose state space can be modelled in terms of X c R " .  As 
evidence of this fact we tum to the many applications of the theory of 
Petri nets [34] (e.g. General or Extended Petri nets) where the states 
are n-tuples of natural numbers or the more recent work in [ 191 where 
numerical n-tuples are used. It is easy to specify a wide variety of 
memcs on R" [21]; hence most often there is no problem in finding a 
heuristic function for P. In addition, if one of these metrics can be 
used to model the costs of the events then the model P can be used 
and the benefits of a focused search can be obtained. It is interesting 
to note that if the typical metrics on R" are used for a particular 
application, the designer is still given some flexibility in that certain 
parameters in the memc itself can be chosen. This is important since it 
gives the designer another way to "load heuristic information into 
h(x)" so that the search can proceed in a more efficient manner. 

5. EXAMPLES 
In this section we briefly outline three examples which illustrate 

some of the above results. First, consider the minimum-inuut/eveat e nf deterministic DESs. Consider a DES modelled with P 
as defined in (1) except we shall define x in a special manner. Let 
xi:Q+R+ and require that there exists a 6 ' s  such that Xi(q)2G' for 
all qE Q and let xe:XXX+R+ be defined for all (x,x')E E(P). The 
function xi specifies the cost of each input and a specifies the cost of 
each event (state transition) as in (1). For all q e  Q, X,X'EX such that 
x'=6(q,x) define x(x,x')=xi(q)+xe(x.x'). The function x then 
specifies the combined cost of the input and event. Given A such that 
A[P] and A*(h(x)) where h(x) satisfies the conditions of Theorem 1 
will result in an optimal solution s* to the CSP. The sequence of 
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inputs generating s* will utilize a minimum inpudevent cost of all 
possible input sequences. A particular application that may benefit 
from this approach is a j o b  shop where one desires to  minimize the 
use of  input resources and the cost o f  operating machines to complete 
a job. 

suppose 
that the DES model P operates in a synchronous fashion relative to a 
clock with a n  interval between ticks of TE IR'. Let ~ ( x , x ' ) = T  for all 

(x,x')E E(P). Suppose that some allowable DES behavior A such that 
A[P] is specified. A*(h(x)) where h(x) satisfies the conditions of  
Theorem 1 will result in an optimal solution s* to the CSP. T h e  
sequence of  inputs generating s* will result in  the state of  P to  be 
transferred f rom xo to xfE Xaf  in minimum time. A particular 
application may be a synchronous manufacturing system where one  
desires to  find the sequence of  processing steps that will minimize the 
total processing time. 

Recently, relationships between artificial intellieencc (AI) planning 
svstems and control systems have been identified [29] and certain AI 
planning systems have been shown to  be DESs [27,28]. In these 
papers some of the above techniques have been applied to  simple AI 
planning problems such as the blocks world, N-puzzle, triangle and 
peg, and missionaries and cannibals problems. These examples serve 
to illustrate that certain AI systems where there is an inherent feedback 
are amenable to  analytical study with DES theoretic techniques. This 
provides a new application area for the control community. 
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