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Abstract
Some issues in the implementation of two degrees

of freedom controllers are condered. In particular, a
systematic way to implement a two degrees of freedom
controler via the {R1G,H} controller configuration is
given and it is shown that three "two degrees of
freedom" controllers may introduce undesirable
response limitations.

I. introduction
In control problems with multiple objectives, the

design must be made independent of the controller
confguration in order to avoid unnecessary restrictions
on the attaiable control properties. The design of a
linear multivariable control system is made independent
of the controller configuration by usin a two degrees of
freedom control law, which represents the most general
linear controller that can be used to independently
specify the desred responses to the command and to the
disturbance inputs. Once the dgn pecifications are
met, the controller must be implemented using a
sutable configuration. Then, it is possible to conjecture
that any two deres of freedom controller
implementation should give satisfactory results. A
remark to this effect appears in the classical textbook
by Horowitz [1, p. 249]. However, this is not the case;
some two degrees of fieedom controler configurations
can introduce undesirable response limitations [2,
p655 this paper, we show that three specific "two
degrees of fieedom" controlers are not suitable in some
problems because the response to command and
disturbance and/or noise inputs cannot be attained
independently. To this effect, we first review some
basic facts of configuration independent two degrees of
freedom control systems. Then we consider the
{R;G,H} controler because it includes the three
unsuitale configurations as special cases. It is shown
that the {R;G,H} controller can implement all
admissible command/output, command/control, and
output-disturbance/output maps with internal stability.
A systematic approach to synthesize R, G, and H is
outlined.

Another important problem that needs to be
considered when implementing a controller is the hidden
modes. The hidden modes correspond to the
compensated system's eigenvalues which are
uncontrollable and/or observable from a given input or
output, respectively. If the plant and controller are
completely described by their transfer matrices then the
only hidden modes are those introduced by the
interconnection. These hidden modes are usually a
consequence of trying to meet several control
specifications.

Another source of hidden modes are the plant and
controller if they are not controllable and observable.
We have leamed to cope with the hidden modes of the
plant as long as the plant is stabilizable and detectable.
We believe that the the study of the effect of the hidden
modes of the controller also deserves special attention.
One control design method that leads to hidden modes
in the controller is the synthetic design approach where
additional compensators are introduced to handle a
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new problem. For example, one compensator could
handle stability, a second one regulation, and a third
one steady-state performance. To understand the
significance of the problem notice that the design of the
controller specifies all the input-output maps and,
hence, the output (y) and control (u) signals. The
signals that are not specified are those intemal to the
plant and to the controller, In the design of fault-
tolerant/reliable controUers the signals "inside" of the
controller must also meet some specifications. In
addition, the solution of robust control problems such as
robust traing mposes constraints that must be
satisfied by the controller implementation. These
additional spedfications on the controller usually result
in hidden modes. Thus conditions to nimize the
number of hidden modes and to understand their effect
when they are needed must be developed. The hidden
modes of two degrees of freedom control systems have
been studied from the control design point of view in
[3,16-18]
A Brief Historil Background

Control systems design using the general two
degrees of freedom control law has received considerable
attention in the research literature. The
implementation of the controller has not been as well
investigated. The published results either do not
address this issue or assume a specific controller
configuration.

The implementation of two derees of freedom
controllers has been considered when the plant has only
one input and one output. For example, Truxal in [4J,
gves a sequential procedure for the design of
disturbanceto-output and input-to-output transfer
functions, using a particular controller configuration.
Horowitz in [1] gives a comprehensive study of two
degrees of freedom controllers in the design of feedback
systems. Re y, Astram in [5] uses a particulu
controller configuration in the design of robust
controllers.

The folowing papers consider the implementation
of two degrees of freedom controllers when the plant has
multiple inputs and outputs.

Wolovich durig the treatment of the model
matching problem in [6] gives a procedure to realize a
transfer matrix M, where T = PM, with P representing
the plant and T the desired input-output model, in
terms of linear state feedback plus observer and a
precontroller. A similar controller configuration is
considered by Chen and Zhang in [7] where they give
general guidelines for the implementation of a transfer
matrix via some controller configuration. Also, optimal
methods like LQG incorporate observer type
realizations in their controller structure.

In the recent literature treating two degrees of
freedom control systems design, most authors consider a
specific configuration during the analysis. For example,
in [8,9] C is expressed as

C = [-Cy Cr] = fl'Ct['S'Y N' r] (1.1)
a coprime factorization of C, where fl'c, RY and S'r are
proper, stable rational matrices. A realization of C can
be obtained via the {R;G,H} controller in Figure 3.1
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with RS'r, G=flC'1 and H-N'
Pernebo [10] shows that tie regulation and servo

problems can be separated and sved squentially.
Then, he considers the foUowing control law

u= C[r]Rf[v] =R Rf rf] (1.2)
where Rff is a precompensator and Rf, correponds to a
compensator in the feedback loop.

Youla and Bongiorno [21 consider the {R;G,H}
controller to realize c which satisfies some optimality
conditions for the maps Q and M. These authors stress
that the selection of the controller configuration is an
important issue for future rearch. They suggest to use
the sensitivity to controller parameter variations as a
criterion in the selection of a specific control
configuration to implement the control law.

A different approach is taken by Desoer and In
[11( who make a comparative study of seven controller
structures -a unity feedback configration (this is the
fR;G,H} controller with R=I, H=2, we denote this as
I;G,I} controller) and six two degrees of freedom

configurations. The comparison is based on the
stability conditions in terms of the transfer function
matrices, the characterizations of all the attainable
maps of interest, and the sensitivity of the controller
configuration to plant parameter variations. Based on
these considerations they selected a particular two
degrees of freedom configuration as preferable in some
sense. The configuration they chose as preferable has
been used in [15]. Extensions to the nonlinear case are
also considerd.

Of course other two degrees of freedom controller
configurations have been used in the literature as in
[12-14].

II. Preiminares
The two degrees of freedom linear controller Sc

implements the control law u = C[yt, rt]t -Cyy+Crr,
whereC = [-y, C]as seenin Figure 2.1;

r u

Figure 2.1. The controlled system.
Sp is the linear plant described by y = Pu with P its
Yroper transfer matrix. It is assumed that
I+PCyj = I+CyP # 0 and that every input-output
map is proper. Under these assumptions, the controlled
system is said to be internally stable if the inverse of
the denominator matrix in a polynomial matrix
description is stable. If the controlled system is
intemally stable, we say that Sc is an inteally
stabilzing controller for Sp.

A convenient way to study internal stability of the
system in Figure 2.1 is given m Theorem 2.1 [18].

TXELEM 2.1. The compenated system is interay
stable if and only if
(i) u = Cyy intenally stabilizes the system

y = Pu, and
(ii) Cr is such that M := (I + CYP)i-Cr

satisfies D-M = X, a stable rational, where
Cy satisfies (i) and P=ND-' a right
coprie polynomial factorization.

A valuable tool in control design is the
characterization of all intemally stablIzing two degrees
of freedom controllers C. Using Theorem 2.1 the
folowing chaact ons follow in a straightforward
manner fom the w known results on parametric
characterization of all feedback controllers Cy. All

interally stabilizing controllers C can be
parametrically characterzed usng two independent
stable parameters K and X, or Q and X, or L and X as
[2,3,8,9]
C =(x1-KA)-q-x2 + Kfb), X], (2.1)

= (I-QL D-s-[-LI X],1 23
where ,1, Ix,x2 are polynomial matnc, and they
are deived from copirme factional represtations of
the plant P = ND-t = Wb-'S and the associated
Besout-Diophantine equation xDl + x2N = I (similar
results can be directly derved when proper and stable
fractional representations of the plant are used [3]).
The parameters K, Q, L, X must be stable and must be
such that DI(I-QP) = (I-LN)D-1 stable and

Ixi-KgI # O, II-QP #0 or II-LNI #0 . The above
parameterisations characterize all interlly stabilIng
controllers C, proper and nonproper. For C proper,M
and Q are chosen proper and such that (I-QP) is
biproper ((I-QP) and its inverse proper); note that if P
is strictly proper, Q proper alway implies that
(I-QP)-1 is proper. In terms of K, for C proper need
D(x2rlKb) proper and D(xrKR) biproper.

The relations between the parameters are
L = 13 + Kb = D-IQ
Q = DL = CA(I + PCy)-' = (I + C,P)IC,
X = (Xi1-K1Cr = D-lM
M= x =X(I + CYP)-'Cr- (2.4)

It is evident that if exogenous sgnals (such as
disturbances and/or noise) are assumed to be injected at
various points in Figure 2.1, 1all possible transfer
matrices from all inputs can be derived in terms of the
design parameters -K (or Q or L) and X (or M). This
charactenrz all "admissible" responses, under internal
stability. It folows that each transfer matrix depends
on only one parameter and that all the transfer matries
can be characterzed using only two parameters. In
particular, all the response maps from the command
signal r can be characterized in terms of X or M=DX.
Similarly all the response maps from disturbance and
noise inputs can be characterized in terms of K or Q or
L. This shows the fundamental property of two degrees
of freedom control systems: it, is possible to
independently attain the command/output and
disturbance/output maps. We call X, M the respone
parameters [20], and K, Q, and L the feedback
parameters.

For the purposes of this paper we consider the
command/output (T) and comand/control ()
response maps, and the output sensitivity matrX (S).
These maps are described by y = Tr + Sd, u = r-
Qd, where -d is a vector of disturbances at the output of
the plant.
Tstouu 2.2. A triple (T,M,S) of proper and stable
matrices is realized with internal stability via a two
degrees of freedom configuration if and only if there
ensts proper and stable X, L such that

[4] = [ -N][t] + (2.5)
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1) Because of the intenal stability requirement, it is

Inown that the right half plane zeros of P must be
zeros of PCY and of T; thus, introducing
limitations on the transient response and
sensitivity minimization [19-23]. In addition, in
order to guarantee properness of M, the zeros at
infinity of P must be zeros at infinity of T [191.2) A fundmrnental limitation of one degree of freedom
systems (when Cy=Cr) is still present in two
degrees of freedom systems: the specifications on
noise attenuation cannot be achieved
independently of other feedback properties such as
disturbance rejection. Let n be the senor noise,
then y = Tr + Sd -PQn. The trade off is given
by

S +NL=I (2.6)
where NL=PQ. (2.6) clearly states that
sesitivityminimization and noise attenuation
cannot occur over the sme frequency range [24].
For multivariable systems the input sensitivity
matrix Si=(I+C0P)-t should also be considered
[21,24], which leads to a second trade off equation

Si+QP=L. (2.7)
In one degree of reedom systems where C -C
L=X, an Q=M, it is harder to meet aVthe
control specifications because the
co anm d/output respone must also be
traded-ff with disturbance rejection and noise
attenuation.

El. I pleumentationVia {RG,HG Compensation
The two degrees of om controller is

i mplemented via the {R;G,H} controller as seen in
Figure 3.1,

rr ( [)u
r ~~~~G P

I

Figure 3.1. S({R;G,H},P) system.
where the interconnected bsystems are completely
described by their transfer matrices P (pIm), R (mxq),
H (mxp), and G (mxm). Notice that C=[- , CrJG[-H,R]. in a rough sene, we have t matnx
equatios with three nknos (R,G,H). In most
control problems the dimensons are such that there is
freedom i the choice of ., G, and H. In this section it
wil be seen that a systematic implementation requres
the specification of another matrix parameter.

First, examine the conditions imposed on G, H,
and R due to the internal stability requirement.

TxroE.o -3.1. The system S({R;G,H},P) is intermalystable if and ony if
(i) The control law u=-GHy interally stabilizes P

with no nght half plane pole cancellations in the
product Gil.

(ii) The product GR is such that
M=(I+GHP)-'GR satisfies D-IM=X, a
stable transfer matrix, where R is stable,
GH satisfies (i), and P=ND-1 is coprime.

Theorem 3.1 is a direct application of Theorem
2.1. Note that the poles of R and any poles that cancel
in the product GH are closed-oop eigenvalues; hence,
they must be in the open left half of the complex plane.

Second. if the {R;G,H} controller satisfies the
internal stability conditions, then the folowing theorem

shows that it can implement any realizable triple
(T,M,S).

TuEoLEm 3.2. Assume that (T, M, S) = (NX, DX,
I-NL) with proper and stable X and L. Any such triple
T, M, S) can be realized with internal stability via
R;G,H} compensation with G proper, and R and H

proper and stable.

Note that H stable is a desirable condition but it
is not necesary. If H is not stable then its right half
plane zeros may result in unnecessary right half plane
zeros of T. The following example serves to prove
Theorem 3.2.
ExamDle 1. If P is stable, a feasible realization of C is
G =(I-QP)-1, H=Q, and R=DX=M, (3.1)while d P is unstable, a feasible realization of C is
G = (I-QP)-ID, H = (DI)-Q, and R= Xi (3.2)

where P = 1'(D'j-' is a proper and stable coprime
factorization. In these implementations, the feedback
loop compensators G and H take care only of the
feedback properties, and the precompensator R takes
care of the desired command/output response. To get a
better understanding of these two implementations it
helps to consider the {R;G,H} compensated system as
the cascade connection of f followed by the {I;G,H}
compensated system. The feedback system has
oommand/output, command/control maps descibed by
y = Tfar and u. = Mar, respectively. In the first
implementation we have that Tf=P and Mf=I, while in
the second one Tf=N' and Mf=D'. In both cas the
control input is given by u = Mr. 5

in Example 1 the two degrees of freedom system
was implemented in a way that the command/output
response was taken care of outside the fedback loop
and, of course, the feedback properties were ten care
of inside the loop. Clearly, for some problems, as in
those solvable with one deree of freedom systems, the
feedback loop can also beused to implement the
command/output map. In fact, for the {fR;G,H}
controller it is usually desirable that the
command/output response be taken care of by the
feedback loop, since the precompensator R should only
be used to "fine tune" the command/output map.

These comments suggest that the additional
parameter that needs to be introduced should be one
that characterizes the "control action" that needs to be
undertaken by the feedback loop. We can choose either
Mf or Xf, since there is a one-to-one relation between
them as seen by application of Theorem 2.2 to the
systm S({I;G,H},P) which yields the following
characterization of maps

[Tf] [ 01 rxl [01
it = [D _ [Lj + 0 (3.3)

where Xf an L are proper and stable maps. Notice
that the set of all command/output, command/control
and sensitivity matrices is the same in (2.5) and (3.3).
It will be seen, however, that not all admissible (T,M,S)
can be implemelnted with the {I;G,H} contro1ler.

Suppose Xf is chosen, hence Tf=NXf and Mf=DXf
are specified. Then the following theorem can be used
to synthesize G, R, and H.

TNEOlEm 3.2. The st of all the internally stabilizing
{R;G,H} controllers that implements the triple (T,M,S)
is
G = (I-QP)-1Mf, Mf[H R =[Q, M], (3.4)

where[Mf,M] = DfXf, Xl with Xf, and X stable;
Q=CAI+PCY)I, D-'{Q, (I-QP)] stable, II-.QPI#0; R
Stable and nO rght ha plane pole cancellations in GH.
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The first equation in (3.4) establishes a
one-to-one relation between G and Mf. The second
equation in (3.4) is a model matching type relation and
can also be written as Xf[H, R]=[L, X].

SPECIAL CASES
It has been demonstrated that any triple (T,M,S)

satisfying the admissibility conditions in Theorem 2.2
can be realized via {R;G,H} compensation. In addition,
the set of maps attainable with {I;G,H} compensation is
the same. This appears to indicate that any realizable
triple (T,M,S) can be implemented via {I;G,H}
compensation. However, that is not the case even
though {I;G,H} is a two dees of freedom controller.
In this section we consider thee two degrees of freedom
configuations that are a subset of the {R;G,Hl}
controller and show that they may introduce some
undesirable limitations.

Case 1. {I;G,H} Controller. In this case R=I, which
makes M=Mf and L=XH. Substituting the latter
equality in the trade off relation in (2-6) gives

S + NXH=I, (3.5)
or S + TH = L 3.6)
This shows that under some conditions this two
degrees of freedom" controller cannot achieve
independent output distubance rejection and
cmmnnd/output response. The independent
specification of these maps is stiU possible, for example,
when m=q and X is invertible, then let H=X-¶H, which
would introduce stable hidden modes. Its efct could
be study using [18].

In order to avoid the introduction of unnecessary
right half plane- zeros in T, G should be designed to
have no right half plane zeros and H should be stable.
An extreme case of this fact was given in an example in
[2, p.655] which it is put in our terms below.

Example 2. Consider {I;G,H} compensation and
suppose that the design parameter X is such that it has
a finite transmission zero in C+, the right half plane.
For this case Cy=GH and Cr=G, and if K and X have
been determined then using (2.1) leads to

G=(xr-KS)-iX and GH (xr-KN)-i(x2+Kfli).
Suppose that (xr-KSI) and (x-KI)l) do not have as a
zero the transmisson zero ofX in C, then this zero of X
must be a zero of G and a pole of H, becoming an
unstable hidden mode of the compensated system and
the internal stability requirement is not met. Note that
if (xr-KRl) has the zero of X in C, in a way that it
cancels when foming G, and that (x2+Kfli) does not
have it, then H would have it as a pole and internal
stability would be maintained. 0
Case 2. {R;G,I} Controller. In this case H=I which
makes X=LR and the trade off equation in (2.6)
becomes

T = (I - S)R, (3.7)
showing that indepedt command/output and noise
attenuatfon is not possible. Another limitation is that
Cy should not have right half plane zeros; otherwise,
unnecessary right half plane zeros are introduced in T.

Case43. {R;I,H} ControUer. In this case G=1 which
makes Mf=(I-QP) and the trade off equation in (2.7)
becomes

Si= Mf=DXf, (3.8)
or SR= X (3.9)
showing that command/output and input disturbance
reiection may not be achieved independently. In

addition this configuration has two very restrictive
conditions: Cr must be stable, and C should be stable
(to avoid introducing unnecessary nglt half plane zeros
in T).

Wv. Concusion
It has been shown that any realizable triple

(T,M,S) can be implemented via {R;G,H}
compensation. However, when R or G or H are set to
identity, the resulting "two degrees of freedom"
controller may not realize the desirable triple because it
cannot attain independently the respone and feedback
properties. E ples demonstrating this limitations
will be presented at the conference.
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