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Machine Learning was established as a research discipline in the 
1970's and experienced a growth expansion in the 1980's. One of 
the roots of machine learning research was in Cybernetic Systems 
and Adaptive Control. Machine Learning has been significantly 
influenced by Artificial Intelligence, Cognitive Science, Computer 
Science, and other disciplines; Machine Learning has developed its 
own research paradigms, methodologies, and a set of research ob- 
jectives different from those of control systems. In the meantime, a 
new field of Intelligent Control has emerged. Even though Intelli- 
gent Control adheres more closely to the traditional control systems 
theory paradigms - mainly quantitative descriptions, differential 
equations models, goal-oriented system design, rigid mathematical 
formulation of goals and models - it has also deviated from the 
traditional systems theory approach. 

The two fields have moved forward without much interaction 
between them - different conferences, different journals, different 
researchers. Machine Learning has been concerned primarily with 
general learning mechanisms and methodologies for software imple- 
mentation of learning systems. Intelligent Control has concentrated 
more on the dynamics of real physical systems and practical control 
problem solving. Because the two disciplines have a t  least m e  goal 
in common - automatic acquisition of knowledge about the world 
- they should have more interaction. The lack of interdisciplinary 
communication may lead to some undesirable results: establishing 
different terminologies for the same phenomena, repetitive work 
(discovering the same things independently), and lower quality re- 
search (ignoring the results established by the other discipline). 

The goal of this panel was to  analyze the interactions between 
Machine Learning and Intelligent Control. The panel consisted of 
several researchers both from the area of Intelligent Control and 
from Machine Learning. 

The panelists were asked to concentrate on such general issues 

- the need for the interaction, 

- common research topics, 

- common results, 

- common methods. 

The more specific topic of this panel was machine learning 

as: 

a n d  world dynamics. 

- Machine Learning devotes very little attention to the dynam- 
ics of real world. How does the lack of dynamics in the machine 
learning models affect the practical value of the machine learning 
results? 

- Intelligent Control concentrates on formally specified prob- 

lems while ignoring common-sense knowledge. How much of progresd 
in controlling real-world systems can be made without taking into 
account all kinds of imprecise information? 

In the following we present the views of the panelists. This pre- 
sentation is based on the written material submitted to the panel 
organizers by the panelists. The preeentation has been divided 
into four sections. The first section is devoted to the trends in the 
development of the two disciplines, Machine Learning and Intelli- 
gent Control. In the second section we present the panelists' views 
on the main p ~ a d i g m ~  within the two disciplines. The following 
section contains the common challenges to the both communities 
which occur as a result of the need to control complex dynamic 
systems. Finally, in the last section some similarities between the 
research issues and methods in the two disciplines are identified. 

MAIN TRENDS IN MACHINE LEARNING 
a n d  INTELLIGENT CONTROL 

Antsaklis Notes from the past. In the 60'5, adaptive control 
and learning received a lot of attention in the control literature. 
It was not always clear, however, what was meant by those terms. 
The comment by Y.Tsypkin (1971) describes quite clearly the at- 
mosphere of the period, which, I should say, also has some striking 
similarities with the today's atmosphere: 

"It is difficult to find more fashionable and attractive terms in 
the modern theory of automatic control than the terms of adapta- 
tion and learning. At the same time, it is not simple to find any 
other concepts which are less complex and more vague." 

Adaptation, learning, self-organizing systems and control were 
competing terms for similar research areas, and K. S. Fu says 
(1970): 

"The use of the word 'adaptive' has been intentionally avoided 
here ... adaptive and learning are behavior-descriptive terms, but 
feedback and self-organizing are strueture, or system configuration, 
descriptive terms. Nevertheless the terminology war is still going 
on .... It is certainly not the purpose of this paper to get involved 
with such a war." 

The term pattern recognition was also appearing together with 
adaptive, learning and self-organizing systems in the control liter- 
ature of that era. It is obvious that there was no agreement as to 
the meaning of these terms and their relation. 

Today, twenty or more years later, we have made some progress, 
at  least in agreeing about the meaning of certain terms and we have 
come full cycle in the popularity of certain research areas. Certainly 
pattern recognition is today a research discipline in its own right, 
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developing and using an array of methods ranging from conven- 
tional algorithms to  artificial intelligence methods implemented via 
symbolic processing. The term selforganizing systems has almost 
disappeared from use in the control literature. Adaptive control 
has gained renewed qopularity in the past decade mainly empha- 
sizing studies in the convergence of adaptive algorithms and in the 
stability of adaptive systems; the systems considered are primar- 
ily systems described by differential (or difference) equations where 
the coefficients are (partially) unknown. In an attempt to enhance 
the applicability of adaptive control methods, learning control has 
been recently reintroduced in the control literature. 

Evolution of control systems. I consider the introduction of 
learning in control as part of the continuing evolution of the cou- 
trol methods to address more complicated and demanding control 
problems. 

Typically, control systems are dynamic systems and they in- 
volve feedback mechanisms. The system to be controlled, usually 
called the plant, and the decision making controller are distinct 
entities and they are both described by differential or difference 
equations. Conventional control systems are designed using math- 
ematical models of physical systems. A mathematical model which 
captures the dynamical behavior of interest is chosen and then con- 
trol design techniques are applied, aided by CAD packages, to de- 
sign the mathematical model of an appropriate controller. The 
controller is then realized via hardware of software and it is used 
to control the physical system. The procedure may take several 
iterations. The mathematical model of the system must be ”sim- 
ple enough” so that it can be analyzed with available mathemat- 
ical techniques, and “accurate enough” to describe the important 
aspects of the relevant dynamical behavior. It approximates the 
behavior of a plant in the neighborhood of an operating point. The 
first mathematical model t o  describe plant behavior for control pur- 
poses is attributed to J .  C. Maxwell who in 1868 used differential 
equations to explain instability problems encountered with James 
Watt’s flyball governor; the governor was introduced in 1769 to 
regulate the speed of steam engine vehicles. Control theory made 
significant strides in the past 120 years, with the use of frequency 
domain methods and Laplace transform in the 30’s and 40’s and 
the introduction of the state space methods in the 60’s. Optimal 
control in the 50’s and ~ O ’ S ,  stochastic, robust and adaptive meth- 
ods in the 60’s to today, have made it possible to  control more 
accurately significantly more complex dynamical systems than the 
original flyball governor. The need to achieve the demanding con- 
trol specifications on increasingly complex dynamical systems has 
been addressed in the past by using more complex mathematical 
models, such as nonlinear and stochastic, and by developing more 
sophisticated design algorithms for, say, optimal control. Complex 
mathematical models, however, can seriously inhibit our ability to 
develop control algorithms, because of their mathematical complex- 
ity and the inability of existing mathematical methods to meet our  
growing needs. . Fortunately, simpler plant models can be used in 
the control design, for example linear models, where well developed 
algorithms do exist. This is possible because of the feedback used 
in control and fized controllers are designed so to guarantee stabil- 
ity, robustness, and performance. Adaptive controlis used to attain 
the control objectives when the plant parameter variations are too 
large for the control objectives to be achieved via fixed controllers. 

It is clear that the development of control theory has been 
driven by the need to attain increasingly demanding control objec- 
tives on more complex dynamical systems under increasing uncer- 
tainty in the plant and environment. 

Meystel Learning Control Systems are expected of improv- 
ing their operational behavior in real time as well as from opera- 
tion to  operation. These improvements have to be performed by 
the control system with no human involvement, i.e., autonomously. 
Learning autonomously - this is the ultimate capability of the con- 
trol system, and the ultimate challenge for the researcher i n  the 
control area. But  learning w h a t ?  Different researrhers in differ- 
ent time were offering different answers to this question. 

Initially it was clear that the only thing a e  do no1 knob is t h v  
external world. Thus, for K.S.Fu (1971) the term learning controller 
meant equipping the controller with a set of devices with human-like 
capabilities, i.e., pattern recognition and decision making. These 
devices were to learn the reality. For Y.Tsypkin (1971) the system 
of learning consisted of a preassigned set of operations, and the 
control inputs were to be learned: ”Under the term learning in a 
system, we shall consider a process of forcing the system to have a 
particular response to a specific input signal (action) by repeating 
the input signals and then correcting the system externally.” The 
subsequent two decades can be considered a period of clarification 
and establishing a new scientific paradigm which is suggested by 
intelligent control. 

Meyrowitz  Research in machine learning, control, and their 
integration is sponsored by the Office of Naval Research within 
the ONR Intelligent Systems Program. That Program has two 
primary components: Artificial Intelligence, where the objective 
is t o  understand automation and extension of human intellectual 
skills, and Robotics, where the concern is with understanding t11r 
design of intelligent sensor-based mechanical systems. The common 
element of intelligence creates a broad overlap of research interest 
across the two areas. As progress is made in artificial intelligence, 
we expect to see the discovery of automated techniques crucial to 
advanced aids to human decision making; at the same time, those 
techniques are likely to play an important role in the controlling 
software for intelligent robots. 

The issues of automated inductive learning, reasoning by anal- 
ogy, and scientific discovery are receiving special emphasis in a 
Knowledge Acquisition Accelerated Research initiative. The inter- 
est is not just in extending these areas individually, but also in 
better understanding their integration, and in deriving theoretical 
results on the limitations of automated capabilities for learning. 

Some progress has been made in understanding how learning 
can contribute to robotic control. An important example is found 
in the research of Albert0 Segre (previously at the University of 
nlinois, now at  Cornell). In an experimental system called ARMS, 
Segre demonstrated the use of explanation-based learning in hav- 
ing a robotic system learn as an apprentice, i.e., observing humans 
solve assembly tasks and extracting for future reference solutions 
to such problems. One drawback to this work, noted by Segre him- 
self, was the fact that ARMS solved problems only in a simulated 
environment. This essentially insulated the system from red-world 
concerns related to complexity and uncertainty. 

Uncertainty can, in fact, arise in a variety of ways in the real 
world. The dynamic character of world events, the variable dnra- 
tion of actions and changes of world states, the lack of completcly 
accurate world models, the lack of knowledge about consequences 
of actions, and the imperfection of sensors can all contribute to the 
uncertainty with which robotic systems must cope. Segre, as well 
as Gerald DeJong (University of Illinois), are among a number of 
researchers now attempting to automate learning capabilities for 
robots which must be controlled under uncertain conditions, and 
there is consequently a growing preference for experimentation with 
actual devices rather than with simulation. 

Research in machine learning which will impact control must 
take into account not only the uncertainty of information available 
to a robot, but also the novel character of autonomous robotic sys- 
tems in having to function of a continuing basis. This will require 
t.he ability to learn diverse kinds of knowledge. It will, moreover, 
require learning through observation, analysis, exploration, and ex- 
perimentation as robots seek to take advantage of sensors used in 
an active way. There are deep research challenges in this regard, 
in terms of having robots exhibit generality in being able to cope 
with the broad spectrum of real world events, and having robots 
exhibit eficiency in learning and processing the great quantity of 
information to which 1 hey will be exposed. 
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P A R A D I G M S  A N D  DEFINITIONS 

Antsalclii Recently a number of papers dealing with learning 
control methods have appeared in the literature. It is quite unfor- 
tunate that there is no effort made in many of these works to relate 
t o  previous work on learning, either to the results which have ap  
peared in the learning control literature of the 60's and early 70's or 
the machine learning literature; and consequently, they are bound 
to  duplicate work done in the past and fall into similar traps. An- 
other related unfortunate fact is that the term "learning" is being 
used by certain authors quite looeely to describe what was known 
before as a converging algorithm, or an adaptive algorithm. As 
a result, the real contributions to the theory of learning control in 
the recent literature appear to be very few indeed; the contributions 
are mainly task oriented with no real attempt made to address the 
applicability of the method and its limitations, or to identify the 
method in terms of the Machine Learning classifications. It should 
be said, however, that learning is achieved, in a certain sense, when 
an adaptive control algorithm is used to adapt the controller pa- 
rameters so that stability is maintained. In this case the system 
learns and the knowledge acquired is the new values for the param- 
eters. ,Note, however, that if later the same environmental changes 
occur again and the system is described by exactly the same param- 
eters identified earlier, the adaptive control algorithm still needs to 
recalculate the controller, and perhaps the plant parameters, since 
nothing was kept in memory. So, in that sense the system has not 
learned. It has certainly learned what to do when a certain type of 
changes takes place. In particular, it has been told exactly what to 
do, that is it was given the adaptive algorithm, and this is knowl- 
edge acquisition by rote learning. The knowledge represented by 
the new values of the controller and the plant parameters, and the 
circumstances under which these d u e s  are appropriate, are not 
retained. 

Learning is becoming an integral part 
of the theory and methods to control a system. This is due to 
the increased requirements imposed on the controller and the au- 
tonomous capability expected from future control systems. It has 
been said that if we ignore the past, we are in danger of reinventing 
the wheel and then renaming it! It is important therefore to be 
aware of the developments which have taken place in the past and 
learn from them. Learning in control is an exciting area and it has 
a lot to contribute. It is up to us to identify the promising meth- 
ods, to relate and compare them to existing methods in machine 
learning and to the earlier learning control literature. Only in this 
way we can make significant progress and establish an identity for 
the area of Learning Control. 

Michalski Machine learning has been closely associated with 
the problems of automated control since the time adaptive sys- 
tems were introduced. The interpretation of the term 'learning' 
has changed over time. We can distinguish at least two different 
interpretations; they are closely related to  two different paradigms 
in the evolution of control theory. The two paradigms are: 

h88one to be &amd. 

- Conventional Control Theory, and 

- Intelligent Control Theory. 

In the conventional control theory paradigm everything (plant's 
models, environment, and the controller) needs to be defined in 
terms of parameters, variables, and equations. Learning within this 
paradigm was understood as modifying parameters of the plant's 
model and of the controller (adaptation). 

Intelligent control theory is a blend of traditional control the- 
ory, artificial intelligence (AI), and operations research (OR). In 
this paradigm the control system attempts to represent and use 
knowledge. Learning means here creating knowledge structures, 
not just parameter adjustments. 

T 

In the same way as intelligent control is an extenxion or 11w 
traditional control theory, machine learning in the AI senw i n  ari 
extension of the adaptive control approach. In other words, the A I  
approach to mechine learning can be viewed as a superset of the 
adaptive systems approach. 

Learning here is equated with building, modifying, or improv- 
ing descriptions (see Michalski, 1986). The descriptions can be in 
the form of declarative statements, procedures, control algorithms, 
simulation mod&, or theories. The procem of learning involves a 
source of information (either a teacher of the environment), and a 
learner (knowledge recorder). 

Within the AI approach to machine learning we can distinguish 
three main learning paradigms: 

- empirical learning, 

- analytic learning, and 

- constructive learning. 

Empirid learning (see Figure 1) utilizes lit& of background 
knowledge. It is based on knowledge-poor inductive inference. "he 
three directions within this paradigm are: 

- symbolic learning, 

- genetic algorithms, and 

- connectionist systems. 

Empirical learning creates new, hypothetical knowledge. 

...... >,. 

Fgure 1. Empirical Learning 

Anoiytic learning (Figure 2) requires large amounts of back- 
ground knowledg. The basic inference type ?it uses is deduction. 
The learned knowledge is a new representation for the input infor- 
mation. It is not considered new as i t  is in the deductive dosure of 
the knowledge base before the process of learning took place. 

Figure 2. Analytical Leaming 
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Constructiwe learning (Figure 3 )  is a goal-oriented method. 
The learning strategy depends on the relevance of the background 
knowledge to the task at  hand. The inference can be either in- 
ductive or deductive. The created knowledge can be either new 

INFORMATION SOURCE r 
KNOWLEDGE BASE 3 
Figure 3. Constructive Learning 

(if learned through induction) or more effective (if learned through 
deduction). 

A control system with constructive learning capabilities is shown 
in Figure 4. The central unit of this system - inference engine - 
is connected to  four other modules. The system interacts with 
the external world through sensors and actuators, where the pro- 
cess of perception takes place. The results of all kinds of inference 
are stored in the knowledge base. The knowledge base has also 
information about control goals. The other two functional units 
perform evaluation and selection of the most relevant information 
to the goal of learning. 

External World 1 
I Sensors and Actuators 

Sutton Ultimately, the problem of Artificial Intelligence romps] 
down to making a sequence of decisions over time so as to achieve 
certain goals. AI is thus a control problem, at least in a trivial 
sense, but also in a deeper sense. This view is to be contrasted 
with AI’s traditional view of itself, in which the central paradigm 
is not that of control, but of problem solving in the sense of solving 
a puzzle, playing a board game, or solving a word problem. Areas 
where the problem solving paradigm does not naturally apply, such 
as robotics and vision, have been viewed as outside mainstream AI. 
I think that the control viewpoint is now much more profitable than 
the problem solving one, and that control should be the centerpiece 
of AI and machine learning research. 

If both AI and more traditional areas of engineering are viewed 
as approaches to the general problem of control, then why do they 
seem so different? In the 1950’s and early 1960’s these fields were 
not clearly distinguished. Pattern recognition, for example, was 
once a central concern of AI and only gradually shifted to become 
a separate specialized subfield. This happened also with various ap- 
proaches to learning and adaptive control. I would characterize the 
split as having to  do with the familiar dilemma of choosing between 
obtaining clear, rigorous results on the one hand, and exploring the 
most interesting, powerful systems one can think ofon the other. AI 
clearly took the latter ”more adventurous” approach, utilizing fully 
the experimental methodology made possible by digital computers, 
while the ”more rigorous” approach became a natural extension of 
existing engineering theory, based the pencil-and-paper of theorem 
and proof (see Figure 1). This is not in any way to judge these 
fields. 

The most striking thing indicated in the figure is not that some 
work was more rigorous and some more adventurous, but the depth 
of the gulf between work of these two kinds. Most AI work makes 
absolutely no contact with traditional engineering algorithms, and 
vice versa. Perhaps this was necessary for each field to establish its 
own identity, but now it is counterproductive. The hottest spot in 
both fields the one between them. The current enormous popularity 
of neural networks is due at least in part to its seeming to span these 

Machine 

Traditional Artificial 
Intelligence 

Connectionist 
Learning I Perception I 

More Rigorous More Adventurous 

Figure 5. AI vs. More Traditional Engineering 

Figure 4. A Control System with Learning Capabilities 

two - the applications potential of rigorous engineering approaches 
and the enhanced capability of AI. Intelligent control is also in this 
position. 

My conclusion then is that there is indeed a very fruitful area 
that lies more or less between Intelligent Control and Machine 
Learning (including connectionist or neural net learning), and whichJ 
therefore presents an excellent opportunity for interdisciplinary re- 
search. 

While I am advocating more interdisciplinary research, let me 
also warn of its pitfalls, in the hope that we can avoid them better 
than our predecessors. One meaning of ”interdisciplinary” is ”be- 
tween disciplines”. The problem of working between disciplines is 
that if you are not actually in either discipline you may end up with 
no discipline at all. That is, with no constraints and methodologies 
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for measuring and ensuring progress. The best way to prevent this 
is for interdisciplinary work to fully accept some of the evaluative 
standards of its neighbor disciplines, to truly span them rather than 
fall between them. One of the best defenses is t o  maintain early 
falsifiability-some way of proving your interdisciplinary idea mis- 
taken before you've had to learn all about a whole new discipline. 

Definition of Learning. We can introduce the def- 
inition of learning which incorporates most of the views and ap- 
proaches in this area (see Meystel, 1988). It blends the ideas of 
knowledge and skill acquisition and/or modification, change of be- 
havior via change in the program, efficiency and quality of operation 
as a goal of learning, and achieving these changes in the structure 
of the controller as well as in the program of operation as a result 
of discovery. This definition is formulated as to be applied for the 
couple: Control System - Controlled System which is adequate to 
a multiplicity of technological problems, and 'allows for powerful 
interpretation in a number of practical cases (see Saridis, 1977). 

Definition 1. Learning is a process based upon ezperience of 
opemtion, of development (modifying and/or restructuring) of rep- 
resentations and/or of algorithms of Control Systems, which pro- 
vides their opemtion with better ualue(s) of the cost-functional(s) 
considered to be a subset of the (etternally given) assignment for 
the Controlled System. 

We gave answers to the question of 
"learning what". Another question that arises is: learning how? 
Let us discuss some of the terms from Definition 1. Development 
consists of modification and restructuring. Development can be 
a part of design prior to system operation, and can be a part of 
normal system operation. Thus, it can be said that learning is a 
perpetual redesigning of a system. Modifying can be understood 
as parametric adjustment of these algorithms with no changes in 
their structure, (e.g., making corrections in the range of the rules 
without changing the rules}. Cost-functional is considered to be 
assigned by the user who formulated the specifications. (In fact, a 
more complicated case can be considered when the user assigns only 
general policies, and lower level cost-functional6 are formulated and 
then modified, and restructured by the system itself. We won't talk 
about this type of systems in this paper, they seem to be out of 
reach now, our immediate goal is to discuss learning control systems 
which can work under preassigned cost-functional. If these learning 
control systems can be realized then our effort will evolve). 

Restructuring presumes not only modification of existing rules 
but also creation of the new rules, or even the new meta-rules (rules 
for the rules) which ends up with some rule hierarchy. This a more 
complex, more sophisticated case of learning. The highest level of 
learning takes place when the goals of the functioning could be re- 
considered based on the results of operation of the subsystem of 
learning. The following analogy can be of importance: the system 
with learning is permanently undergoing the on-line process of de- 
sign. The system with no learning has been designed in the past 
once and forever. 

Both learning via modifying and learning via restructuring can 
be based upon two types of knowledge: knowledge obtained from 
an external source ("learning by being told"), and knowledge cre- 
ated within the learning system ("learning by discovery"). The 
external source of knowledge is evaluated by the degree of belief, 
and therefore it just substitutes for the internal subsystem which 
creates the knowledge within the learning system (and whose re- 
sults of operation are also evaluated by the degree of belief). Thus, 
the systems with learning by being told can be considered a sub- 
set of systems with learning by discovery, in which the process of 
discovery is externalized. 

Typology of Darning. The following different types of learning 
processes and schemes are visualized by specialists in psychology 
(Cagne, 1965) (they will be interpreted in a fashion meaningful 
within the framework of control systems theory). 

Meystel 

Mechanisms of Learning. 

Type 1. Signal Learning, their asoociation by similarity, their 
discrimination by the lack of resemblance. Labeling the associa- 
tions. Generalization upon the 8et of labels. Actually, development 
of the phenomenological part of world repmuentation is presumed 
for this type of learning. 

Type 2. Stimulus-response Learning. Causal relationships are 
being recorded at this stage and organbed into a system, or a rule 
base. 

Type 3. Associating units of "stimulus-response", labeling the 
associations. Generalization upon the set of labels. 

Type 4. Associating labels (words): unifying the results of 
learning of Type 1 through 3 into a set of consistent models (e.g., 
mathematical models, analogical models, computationd algorithms, 
and others). These models form a hierarchical system. 

Type 5. Discriminating objects with the same labels (i.e., be- 
longing to the same class). It is expected that the rules of discrimi- 
nation can be formulated as generalized des and can be applicable 
at each level of the hierarchy of labels. 

Type 6. Concept learning: recognition of the general units 
existing within the joint system of world representation, and the 
causal relationships discavered within the system of world repre- 
sentation. 

Type 7. Rule learning: judgments concerned with control are 
being stated. According to the system of representation and the 
concepts associated with this system, the system of rules can also 
be organized as ?a  hierarchy. 

Type 8. Problem solving using the rules collected within the 
system (see Type 7). 

It would be instrumental to consider also the following def- 
inition of containing a condensed representation of the processes 
characteristic for Learning Control Systems. 

Definition 2. Opemtion of Learning Control System is defined 
as a system of nested hiemmhiarl genemlizations performed over 
the redundant stored information about the current and/or prior 
ezperience of opemtion. This system ofgenemlizations changes the 
world representation as well as  the algorithms of control available 
for selection during the problem solving. 

Problems with the conventional control theory pamdigm. Con- 
ventional control was dealing with a broad variety of problems in 
a spectrum of devices starting with a speed regulator in the early 
steam engines, and ending with stabilizing a goal oriented group of 
the spacecrafts. However, the following problems are unequivocally 
considered to be difficult for solving in the paradigm of conventional 
control theory: 

a). optimum control of nonlinear systems, because the models 
of the nonlinear systems are traditionally inconvenient for using the 
well established paradigm of linear control theory, nonlinear control 
theory is perpetually in its embryonic state, optimum control solu- 
tions cannot typically be found for important nonlinear systems; 

b). optimum control of stochastic systems, because the models 
of stochastic systems presume knowledge of probabilistic parame- 
ters and characteristics of the systems which cannot be provided in 
practice of design; 

c). control of multilink manipulators (either 6-DOF, or re- 
dundant ones), because the models of plants turn out t o  be so 
huge, so unencompassible that even the off-line solutions can make 
a predicament to  a control engineer, not to talk about the on-line 
control which is really required; 

d). control of redundant systems, or any other type of systems 
that lead to 80 called "ill-posed" problems, because in order to solve 
them one has to  introduce a regularizing functional which is usually 
done based upon wishful assumptions rather than on information 
known about the system; 

~ 
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e). control of autonomous robots, because most of the infor- 
mation to be taken into account is not known at the beginning, 
cannot be supported by off-line solutions, require the on-line inter- 
pretation; 

f). control of systems with multi-sensor feedback information, 
because the multi-sensor information must be integrated, which 
means that some conceptualizing activities are presumed; 

g). on-line control of systems with incomplete initial knowledge 
of the model, and/or of the environment, because we do not know 
how to incorporate new knowledge of the world within the model 
of the plant, and/or the model of the controller. 

In all these problems, neither the knowledge assumed at the 
stage of design could be considered complete and satisfactory, nor 
the process of design could be completed unless new knowledge 
would be additionally supplied. An opportunity to view all these 
systems in a different, unconventional way as systems with never 
ending design stage, has appeared as a result of the broad applica- 
tion of computers, and in particular, industrial computer systems 
equipped with a variety of transducers-sensors (see Meystel, 1985). 

COMMON CHALLENGES 

Antsaklis Learning and the autonomous control system. There 
are needs today that cannot be successfully addressed with the ex- 
isting conventional control theory. They mainly pertain to the area 
of uncertainty. Control systems must perform well under signifi- 
cant uncertainties in the plant and the environment and thy must 
be able to compensate for system failures. To achieve this, the 
capacity for certain degree of autonomy is necessary. Such au- 
tonomous, intelligent behavior is a very desirable characteristic of 
the future, advanced control systems. To accomplish this, decision 
making abilities should be added to  conventional control systems 
to meet the increased control requirements. The controller's capac- 
ity to learn from past experience clearly is an integral part of such 
autonomous intelligent controllers, as the ability to  learn is one of 
the fundamental attributes of intelligent behavior. The study and 
computer modeling of learning processes in their multiple manifes- 
tations constitutes the subject matter of Machine Learning. The 
research area called Machine Learning developed quite indepen- 
dently from the control area in the past twenty years. 

Where can learning be used in the control of systems? As 
it was already mentioned, learning plays an essential role in the 
autonomous control of systems (see Antsaklis, 1989). It appears 
that several types of learning, from rote learning to learning from 
observation and discovery, can be utilized there. My research group 
is reporting at this conference some interesting initial results in 
(Gar, et. al.), where learning is introduced to enhance the adaptive 
control of a space antenna. There are of course many areas in 
control where learning can be used to advantage and these needs 
can be briefly classified as follows: 

1. Learning about the plant. That is learning how to in- 
corporate changes and then how to derive new plant models. 

2. Learning about the environment. This can be done 
using methods ranging from passive observation to active experi- 
ment ation. 

3. Learning about the controller. For example, learn- 
ing how to adjust certain controller parameters to enhance perfor- 
mance. 

4. Learning new design goals and constraints. 

Meystel This list can be enhanced by adding one synthetic 
domain which can include all of the above and more: 

5.  Learning t h e  control algorithms. \ \e always Prf's"Ir1e 
that conceptually we are capable of prescribing what to do and how 
to control. In practice, however, it turns out that our concepts 
evolve, and later we can see better the set of control rules to be aP- 
plied. We can imagine a controller which learns autonomous[Y how 
to  control, is capable of arriving with new concepts of operation, 
and develops better algorithms of control which can better address 
the problems it encounters in the reality. 

Fundamental Problems in the Area of Learning Control SYS- 
terns, The area is somewhat different from the area of adaptive 
control systems. The usual goal of adaptive control systems is to 
achieve good performance when changes emerge either in the con- 
trol system, or in the environment. The underlying premise of the 
adaptive control can be formulated as follows: any System is de- 
signed based upon a number of assumptions, and these assumptions 
do not take into account all realities of operation. The deviations 
from our assumptions are possible. So, the system should be ca- 
pable of trimming itself properly to a realistic course of events, it 
should adjust to the deviations that emerge. 

Finally, a desire appears t o  gradually improve the Performance 
based upon the whole experience of operation: from task to task, 
taking into account the actual experience of operation. This is 
the first problem of the area of learning control Systems evolving 
from the usual circle of problems in adaptive control: learning 
control system parameters from the repetitive operation. 
Certainly, from a simple memorization of the changes expected we 
quickly arrive to the set of techniques for the world modeling, 
which means that generalization and concept formation are the 
possible tools for solving the first fundamental problem of the area. 

The Internal Model Principle (Wonham, 1976) states that con- 
trol system must incorporate the model of the plant as well as the 
model of the external world, in order to provide a consistent opera- 
tion of the system. This principle yields for a priori representation 
of the plant within the controller memory (or it implies the need for 
learning this representation). This representation should be con- 
trol oriented: it should describe the plant only to a degree which 
is required by a particular control operation. Different operations 
require different models. This is why for Albus (1975) learning con- 
trol meant collecting in the memory of the controller all available 
plant's experiences relevant to the set of procedures performed by 
the controller and eventually serving as a world representation. 

This means that the learning controller can reflect only our cur- 
rent view of the plant's model (and the ezosystem model). Either 
we know this model, or we assume it to be known. But what if a t  
the beginning of the operation we did not know the model of the 
plant at all? At first, it sounds as an idle question. Why should we 
not know the model of the plant? Firstly, we never can know the 
real model of the plant, we are dealing always with approximations 
commensurate with our knowledge of the plant and with the ap- 
paratus of analysis a t  hand. Secondly, some plants have different 
models at different time. Thirdly, some models are so complicated 
that on-line communication is either impossible, or very expensive. 

From the engineering point of view, it would be much better 
to have a universal modular controller which does not require any 
prior knowledge of the plant and allows for using it with any plant. 
It will incorporate the model of the plant after some initial working 
together with the plant: it will learn it. Learning the model of 
the plant and the model ofthe exosystem is the second major 
problem of the learning control systems area. 
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Learning control algorithms also can be improved from memo- 
rizing the results of repetitive operations and inferring upon these 
results. Indeed, the decision making scheme can be improved by 
observing how it operates in a multiplicity of cases (which could 
have been forgotten or otherwise overlooked at the stage of control 
algorithm design). Unlike in the previous case, not the external 
factors are to be analyzed and modeled, but the concepts of deci- 
sion making in dealing with these external factors. Here we face the 
th i rd  problem of the area of learning control systems: learning 
control concepts (and algorithms) from- t h e  repeti t ive op- 
eration. We can see that the tools of generalization and concept 
formation are expected to be valid in dealing with this fundamental 
problem as well. 

The fourth problem is looming in a multiplicity of applications. 
This problem is concerned with learning the goals of operation 
which are unknown at the beginning of the operation. It would 
be prudent, however, to address this problem in the framework of a 
separate analysis concerned with the situation in the area of control 
systems for unmanned intelligent machines. 

S u t t o n  We now turn to those areas of AI and Control where 
the common problems are more striking than the common results, 
and where an interdisciplinary approach might help. 

The Symbol Gmunding Pmblem. It is commonplace in AI sys- 
tems to have symbols such as CLYDE, ELEPHANT, and GREY, 
and to represent knowledge as propositions over these symbols, e.g., 
(IS-A CLYDE ELEPHANT), (COLOR CLYDE GREY). Like the 
definitions in a dictionary, the knowledge in these systems is typ- 
ically entirely self-referential; there is no sensor that can tell the 
system that an object is GREY. GREY in fact has no meaning 
to  the system except insofar as it is a COLOR property of certain 
objects. Such a symbol is said to  be ungrounded. Often, much 
higher level symbols are left ungrounded in AI systems, such as 
shape, functional descriptions, e.g., THING-THAT-CAN-BESAT- 
UPON, or structures, e.g., SUPPORTED-BY in the blocks world. 
Ungrounded symbds are perfectly adequate for some kinds of re& 
soning processes. However, for other purposes, for relating to the 
real world and real world problems, and particularly for connecting 
with introspections which are still a critical part of the AI method- 
ology, the presence of so many ungrounded symbols has come to be 
recognized as a critical problem. Intelligent control approaches are 
complimentary here as they begin completely connected to  the real 
world, with sensors and actuators, and only build up symbols from 
there. In AI systems there is often reasoning with symbolic labels 
for sensory properties, but no way of sensing then; in intelligent 
control systems it is often exactly the reverse. 

Ron Rivest has coined this term 
to describe an "illness" that AI (and, t o  a lesser extent, control 
theory) has had for many years and is only now beginning to re- 
cover from. The illness is the assumption and reliance upon having 
a perfect model of the world. In toy domains such as the blocks 
world, puzzle solving, and game playing this may be adequate, but 
in general of course it is not. Without a perfect model, everything 
becomes much harder-ar at least much different-and so we have 
been reluctant to abandon the perfect model assumption. The al- 
ternative is to accept that our models of the world will always be 
incomplete, inaccurate, inconsistent, and changing. We will need 
to maintain multiple models, a t  multiple levels of abstraction and 
granularity, and at multiple time scales. It is no longer adequate to 
view imperfections and inconsistencies in our models as transients 
and to perform steady-state analysis; we must learn to work with 
models in which these imperfections will always be present. This 
means certainty equivalence approaches are not enough and dual 
control approaches are needed. 

The Perfect Model Disease. 

Control toithout Reference Signa&. The dogma in control is t o  
assume that some outside agency specifies a desired trajectory for 
the plant outputs in such a way that controls or control adjustments 
can be determined. For many problems, however, this is simply not 
appropriate. Consider a chess game. The goal is clearly defined, 
but in no sense does one ever have a desired trajectory for the game 
or the moves to be made. Suppose I want a robot to learn to  walk 
bipedally. Producing target trajectories for the joint angles and 
velocities is a large part of the problem, a part which needs to  be 
addressed by learning, not just by analysis and a priori specification. 
In my opinion, most real control problems are of this sort - in most 
cases it is natural to provide a specification of the desired result 
that falls far short of the desired trajectories usually assumed in 
conventional and adaptive control. This problem will become more 
and more common aa we begin to consider imperfect and weak 
models, and particularly for systems with long-delayed effects d 
controls on goals. Rcinfonvment learning represents one a p p d  
to  this problem (Mendel & McLaren, 1970; Sutton, 1984). 

Finally, both AI and control are 
stumbling on the difficult problem of how to create higher-level rep 
resentations of their environments and actions. In pattern recogni- 
tion, a form of this is called feoture eztmction, and in AI is called 
the new terms problem. Broadly speaking, the standard approach 
in both fields has been for the knowledge representation problem to 
be solved by the researcher, not the machine. That is a substantial 
barrier for intelligent control. 

Knowledge Representation. 

COMMON RESULTS 

S u t t o n  There are a number of existing results in AI and 
control theory with immediate relevance for the other field. 

Dynamic Programming and A' Seamh. These two techniques 
have long been known to be closely related, if not identical. Nev- 
ertheless, the complete relationship remains obscure. More impor- 
tantly, many results have been obtained independently for each 
technique. How many of these results wry over to the other 
field? Amazingly, such inter-relations remain almost completely 
unexplored, at least in the open literature. There are almost cer- 
tainly important additional insights to be obtained for either of 
both fields by simply organizing their results from a unified per- 
spective. 

Back-propagation is a connectionist (neu- 
ral net) learning technique for learning real-valued nonlinear m a p  
pings from examples, that is for nonlinear regreasion (see Rumei- 
hart, Hinton & Williams, 1986). Such a function has many possible 
uses in control - for learning nonlinear control laws, plant dynamics 
and inverse dynamics. The important thing is not back-propagation 
as a particular algorithm - it's clearly limited and will probably be 
replaced in the next few years  - but the idea of a general structure 
for learning nonlinear mappings. This will remain of relevance to 
intelligent control. 

This is a kind of learning spe- 
cialized for predicting the long-term behavior of time series. It was 
first used in a famous early AI program, Samuel's checker player 
(Samuel, 1959), and since has been used in Genetic Algorithms 
(Holland, 1986) and in adaptive control in the role of a learned 
"critic" (Barto, Sutton & Anderson, 1983; Wehos, 1987). The b* 
sic idea is to use the change of temporal difference in prediction 
in place of the error in standard learning processes. Consider a se- 
quence of predictions ending in a final outcome, perhaps a q u e n c e  
of predictions about the outcome of a chess game, one made after 
each move, followed by the actual outcome. A normal learning 
process would adjust each prediction to look more like the final 
outcome, whereas a temporal-difference l d g  process would ad- 
just each prediction to  look more like the prediction that follows 
it (the actual outcome is taken as a final prediction for this pur- 
pose). If the classic LMS algorithm is extended in this manner to 
yield a temporal-difference algorithm, then, surprisingly, the new 
algorithm both converges to better Predictions and is significantly 
simpler to implement (Sutton, 1988). 

Back-pmpagation. 

TempomCDiflerence Learning. 
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