P. J. Antsaklis, "Cyclicity and Controllability in Linear Time-Invariant Systems," I EEE T rans. A utomatic C optro I, Vol. AC-23, No. 4, pp. 745-746, Aug. 1978.

745

- C. A. Desoer, Notes for a Second Course on Linear Systems. New York: Van Nostrand, 1970. [3]
- C. T. Chen, Introduction to Linear System Theory. New York: Holt, Rinehart and [4] Winston, 1970.
- Z. Luo, "Transformations between canonical forms for multivariable linear constant systems," *IEEE Trans. Automat. Contr.*, vol. AC-22, pp. 252–256, 1977. [5] Z. Luo,

Cyclicity and Controllability in Linear **Time-Invariant Systems**

P. J. ANTSAKLIS

Abstract-A number of results, involving the notions of controllability (observability) and cyclicity in a linear time-invariant control system, are derived using a new basic theorem. New tests of cyclicity and controllability (observability), together with new algorithms to evaluate the controllable (observable) modes and the minimal polynomial are also presented.

I. INTRODUCTION

The controllability (observability) of a linear time-invariant system $\{A, B\}$ and the cyclicity of a square matrix A have been dealt with extensively in the literature in recent years, and many important properties have been shown using a variety of methods. In this paper, a basic theorem (Theorem 1) dealing with the linear independence of the Kmatrices $B, AB, \dots, A^{K-1}B$ is presented, and a combined simple test of controllability and cyclicity is given (Corollary 1). A method to evaluate the minimal polynomial of A_c , the controllable part of A, is then introduced (Theorem 2), and its use in evaluating the minimal (or characteristic) polynomial of A as well as the controllable modes of the system is indicated. Corollary 3 presents a new test for the cyclicity of A and in Section IV, a new simple proof to an important property of linear control systems, namely, the ability to reduce a multiinput system to a single input controllable system, is given.

II. PRELIMINARIES

Assume that the linear time-invariant system

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

is given where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, and x(t), u(t) are the state and the input vectors, respectively. It is known [1] that there exists an equivalence transformation matrix Q such that

$$\overline{A} \stackrel{\triangle}{=} QAQ^{-1} = \begin{bmatrix} A_c & A_{c\bar{c}} \\ 0 & A_{\bar{c}} \end{bmatrix}, \quad \overline{B} \stackrel{\triangle}{=} QB = \begin{bmatrix} B_c \\ 0 \end{bmatrix}$$
(2)

with $A_c \in \mathbb{R}^{\overline{n} \times \overline{n}}$, $B_c \in \mathbb{R}^{\overline{n} \times m}$, and $\{A_c, B_c\}$ completely controllable. Furthermore, $|sI - A| = |sI - \overline{A}| = |sI - A_c| \cdot |sI - A_{\overline{c}}|$ where $|sI - A_c|$ is the polynomial with roots the $\bar{n} \leq n$ controllable poles of the system. Clearly, if $\rho M \stackrel{\triangle}{=} \operatorname{rank} M$, then

$$\rho[B,AB,\cdots,A^{n-1}B] = \rho[\overline{B},\overline{A}\overline{B},\cdots,\overline{A}^{n-1}\overline{B}]$$
$$= \rho \begin{bmatrix} B_c & A_cB_c & A_c^{n-1}B_c \\ 0 & 0 & \cdots & 0 \end{bmatrix} = n. \quad (3)^1$$

Manuscript received January 16, 1978. This work was supported in part by the National Science Foundation under Grant ENG 76-10042. The author is with the Division of Engineering, Brown University, Providence, RI

02912. See also [2].

Let $q(\leq \bar{n})$ be the degree of the minimal polynomial of A_c ; note that q is uniquely determined by (2), since any other A_c , which results from an equivalent to (2) representation $\{A, B\}$ with the same structure will obey a relation of the form $\tilde{A}_c = \tilde{Q}A_c\tilde{Q}^{-1}$, which preserves [3] the minimal polynomial. Also let b_i , $i=1,2,\cdots,m$ denote the *i*th column of B and define

$$p_{i} \triangleq \begin{vmatrix} A^{i}b_{1} \\ A^{i}b_{2} \\ \vdots \\ A^{i}b_{m} \end{vmatrix}; \quad P_{AB}^{K} \triangleq [p_{0}, p_{1}, \cdots, p_{K-1}].$$
(4)

The main theorem of this paper can now be stated and proved.

III. MAIN RESULTS

Theorem 1: The K matrices $B, AB, \dots, A^{K-1}B$ are linearly independent $(\rho P_{AB}^K = K)$ if and only if $K \leq q$.

Proof Necessity: If K > q, then, from the definition of the minimal polynomial, there exist reals a_i , $i=0,1,\cdots,K-1$ such that $\sum_{i=0}^{K-1} a_i A_c^i = 0$; this in turn implies that

$$\sum_{i=0}^{K-1} a_i A_c^i B_c = 0, \quad \sum_{i=0}^{K-1} a_i \begin{bmatrix} A_c^i B_c \\ 0 \end{bmatrix} = 0, \quad \sum_{i=0}^{K-1} a_i \overline{A}^i \overline{B} = 0, \quad \sum_{i=0}^{K-1} a_i A^i B = 0,$$

i.e., $B, AB, \dots, A^{K-1}B$ are not linearly independent. Thus, $K \leq q$ is necessary.

Sufficiency: Let $K \leq q$, but $B, AB, \dots, A^{K-1}B$ linearly dependent, i.e., there exist reals a_i , $i=0,\cdots,K-1$ such that $\sum_{i=0}^{K-1}a_iA^iB=0$ or $\sum_{i=0}^{K-1} a_i A_c^i B_c = 0$. If the last relation is premultiplied in turn by $A_c, A_c^2, \cdots, A_c^{\bar{n}-1}$, the relation

$$\left[a_{0}I_{\bar{n}}+a_{1}A_{c}+\cdots+a_{K-1}A_{c}^{K-1}\right]\cdot\left[B_{c},A_{c}B_{c},\cdots,A_{c}^{\bar{n}-1}B_{c}\right]=0$$

is obtained from which $a_0 I_{\bar{n}} + a_1 A_c + \cdots + a_{K-1} A_c^{K-1} = 0$, since $\{A_c, B_c\}$ is controllable. This clearly implies that $K-1 \ge q$ or $K \ge q$, i.e., $K \le q$ is also sufficient. Note that in view of (4), $\rho P_{AB}^{K} = K$ if and only if the matrices $B, AB, \dots, A^{K-1}B$ are linearly independent, which establishes the part in parentheses.

Corollary 1: The *n* matrices $B, AB, \dots, A^{n-1}B$ are linearly independent $(\rho P_{AB}^n = n)$ if and only if $\{A, B\}$ is completely controllable and A is cyclic.

Proof: From Theorem 1, $\rho P_{AB}^n = n$ iff $n \leq q$. Note, however, that $q \leq \bar{n} \leq n$ always. Consequently, $\rho P_{AB}^n = n$ iff $q = \bar{n} = n$.

Remark: Corollary 1 clearly suggests a new rank test (rank (P_{AB}^n)) to determine whether or not the given system (1) has two important properties, namely, if it is completely controllable, and if the state matrix A is cyclic. Note that this test can be easily carried out since, in view of the above, P_{AB}^n can be directly constructed from the controllability matrix of $\{A, B\}$ and the full rank of P_{AB}^n can also be tested using the determinant of the $(n \times n)$ Grammian matrix [4] $[g_{ij}]$ where $g_{ij} \triangleq p_{i-1}^T$ $p_{j-1}, i, j = 1, 2, \cdots, n.$ The following corollary is important in establishing Theorem 2.

Corollary 2: $A^{K}B + \sum_{i=0}^{K-1} a_i A^{i}B = 0$ $(A_c^{K}B_c + \sum_{i=0}^{K-1} a_i A_c^{i}B_c = 0)$ implies $A_c^K + \sum_{i=0}^{K-1} a_i A_c^i = 0$ if and only if $K \ge q$.

Proof: Note that the relation inside the parentheses is equivalent to the first relation, since it is derived from the equivalent to (1) representation (2). Clearly, in view of Theorem 1, $K \ge q$ is necessary for the linear dependence of $B, AB, \dots, A^{K}B$; it is also necessary for the existence of an annihilating polynomial of A_c of degree K. If the relation inside the parentheses is now premultiplied in turn by $A_c, A_c^2, \dots, A_c^{n-1}$, the relation $[A_c^K + \sum_{i=0}^{K-1} a_i A_c^i] [B_c, A_c B_c, \dots, A_c^{\bar{n}-1} B_c] = 0$ is obtained, or the desired $A_c^K + \sum_{i=0}^{K-1} a_i A_c^i = 0$ since $\{A_c, B_c\}$ is controllable. Thus, $K \ge q$ is also a sufficient condition.

Remark: If $A^{K}B + \sum_{i=0}^{K-1} a_i A^{i}B = 0$ is written as

0018-9286/78/0800-0745\$00.75 ©1978 IEEE

$$P_{AB}^{K} \begin{bmatrix} a_{0} \\ \vdots \\ a_{K-1} \end{bmatrix} = -p_{K}$$
(5)

then it is clear that the set of K reals a_i , $i=0, \dots, K-1$ which satisfies (5) is unique iff $\rho P_{AB}^{K} = K$, or in view of Theorem 1, iff $K \leq q$. Consequently, in view of Corollary 2, a unique annihilating polynomial of A, of degree K is implied by the linear dependence of $B, AB, \dots, A^{K}B$ iff K = q. Note that this agrees with the well-known result of the uniqueness of the minimal polynomial (of A_c) and the nonuniqueness of any annihilating polynomial (of A_{c}) of higher degree.

An important theorem is now presented, which relates the columns of the controllability matrix $[B, AB, \dots, A^{n-1}B]$ to the coefficients of the minimal polynomial of the controllable part of (1). Namely:

Theorem 2: The minimal polynomial of A_c is $s^q + \sum_{i=0}^{q-1} a_i s^i = 0$ where $q \stackrel{\scriptscriptstyle \Delta}{=} \rho P_{AB}^n$ and $a_i, i=0, 1, \cdots, q-1$ is the unique set of reals which satisfy

$$P_{AB}^{q} \begin{bmatrix} a_{0} \\ \vdots \\ a_{q-1} \end{bmatrix} = -p_{q} \qquad \left(A^{q}B + \sum_{i=0}^{q-1} a_{i}A^{i}B = 0 \right)$$

Proof: In view of Theorem 1, it is clear that only the first q columns of P_{AB}^n (only $B, \dots, A^{q-1}B$) are linearly independent, i.e., $\rho P_{AB}^n = \rho P_{AB}^q$ = q. This implies that there exists a unique set of reals a_i , $i = 0, \dots, q-1$ such that $P_{AB}^{\dot{q}}[a_0, \cdots, a_{q-1}]^T = -p_q (A^q B + \sum_{i=0}^{q-1} a_i A^i B = 0)$. Corollary 2 together with its Remark directly now imply that $A_c^q + \sum_{i=0}^{q-1} a_i A_c^i = 0$, i.e., $s^{q} + \sum_{i=0}^{q-1} a_{i} s^{i}$ is the unique minimal polymonial of A_{c} .

Remark: Theorems 1 and 2 are quite general and perhaps their generality obscures their usefulness and applicability, which is best shown through some special cases. Observe that if $\{A, B\}$ is controllable, then Corollary 1 provides a new rank test for the cyclicity of A, and Theorem 2 suggests a direct method of calculating the minimal polynomial of A (or the characteristic polynomial if A is cyclic). Furthermore, if A_c is cyclic (or A is cyclic in which case, as it can be easily shown, A_c will be cyclic as well), Theorem 2 gives the part of the characteristic polynomial of the state matrix A which contains the controllable modes of the system, i.e., $|sI_{\bar{n}} - A_c|$.

Corollary 3: $\rho P_{AI}^n = n$ if and only if A is cyclic. Furthermore, the minimal polynomial of A is $s^q + \sum_{i=0}^{q-1} a_i s^i$, with $q \triangleq \rho P_{A_i}^n$ and a_i , i = $0, \cdots, q-1$ the unique set of reals which satisfies

$$P_{\mathcal{A}I}^{q} \begin{bmatrix} a_{0} \\ \vdots \\ \vdots \\ a_{q-1} \end{bmatrix} = - \begin{bmatrix} A^{q}e_{1} \\ \vdots \\ A^{q}e_{n} \end{bmatrix}$$

where e_i is the zero column vector with unit at the *i*th position.

Proof: Corollary 3 is Theorem 2 for the case $B = I_n$ and $A_c = A$. Note that $\{A, I\}$ is completely controllable for any A.

Remark: Corollary 3 gives a simple new rank test for the cyclicity of A, and at the same time, provides an algorithm for the evaluation of the minimal (or the characteristic in case A is cyclic) polynomial of A. Note that this algorithm is similar to Krylov's algorithm² for the evaluation of the minimal polynomial, although it does not depend on the choice of a vector x such that $x, Ax, \dots, A^{q-1}x$ are linearly independent (a drawback of the method). Similarly, contrary to the existing methods, the above test for cyclicity depends strictly on the matrix A.

IV. A New Proof to an Important Property

The above results can also be used to provide a simple new proof to a known important property of linear control theory, namely:

Corollary 4: Given $\{A, B\}$ there exists a column vector g such that $\{A, Bg\}$ is controllable if and only if $\{A, B\}$ is completely controllable and A cyclic. If this is the case, then almost any g will suffice. (It should

²Krylov's method of transforming the secular equation [3].

be noted at this point that this useful property was first shown by Wonham [5, Lemma 3] in a complicated manner. The following proof is completely different and much simpler.) [81]

Proof: Let
$$g = \begin{bmatrix} \vdots \\ \vdots \\ g_m \end{bmatrix}$$
 and premultiply P_{AB}^n by the $(nm \times nm)$ matrix
$$S \triangleq \begin{bmatrix} g_1 I_n & g_2 I_n & \cdots & g_m I_n \\ 0 & I_n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I_n \end{bmatrix}.$$

If there exists a vector g such that $\{A, Bg\}$ is controllable, then the $(mn \times n)$ matrix product SP_{AB}^n will have full rank n. This follows from the fact that the first n rows of the SP_{AB}^{n} will be linearly independent since, as a simple calculation shows, they are the *n* rows of the $(n \times n)$ controllability matrix $[Bg, ABg, \dots, A^{n-1}Bg]$. But the rank of a matrix product is always less than or equal to the rank of the factors, which implies that $\rho P_{AB}^n = n$ and in view of Corollary 1, that $\{A, B\}$ is completely controllable and A is cyclic. Assume now that $\{A, B\}$ is completely controllable and A is cyclic, i.e., $\rho P_{AB}^n = n$. Then, the first n rows of SP_{AB}^{n} , i.e., $[Bg, ABg, \dots, A^{n-1}Bg]$, will be linearly independent for almost any g, since $|Bg, \dots, A^{n-1}Bg|$, which is the sum of the products of all the *n*th order minors of $[g_1I_n, g_2I_n, \cdots, g_mI_n]$ multiplied by the corresponding *n*th order minors of P_{AB}^n (at least one of which is nonzero), is actually a multivariable polynomial in g_1, g_2, \dots, g_m and becomes zero only when g_1, g_2, \cdots, g_m take on values equal to the roots of this polynomial.

Remark: Using duality, similar results involving observability instead of controllability can be directly derived.

V. CONCLUSIONS

In this paper, it has been shown that a number of important results involving the notions of controllability (observability) and cyclicity can be derived from a basic, simple theorem (Theorem 1). A new proof has been given to a useful property (the reduction of a multiinput system to a single-input controllable system), tests for cyclicity and controllability have been presented, and methods to evaluate the controllable (observable) modes of the system and the minimal polynomial have been shown.

References

- W. A. Wolovich, Linear Multivariable Systems. New York: Springer-Verlag, 1974. [1] [2]
- H. H. Rosenbrock, State-Space and Multivariable Theory. London: Nelson, 1970.
 F. R. Gantmacher, The Theory of Matrices, vol. 1. New York: Chelsea, 1960.
 G. E. Shilov, An Introduction to the Theory of Linear Spaces. New York: Dover,
- [3] [4]
- 1974

W. M. Wonham, "On pole assignment in multi-input controllable linear systems," IEEE Trans. Automat. Contr., vol. AC-12, pp. 660-665, Dec. 1967. [5]

Some Properties of the Value Matrix in Infinite-Time Linear-Quadratic Differential Games

M. PACHTER

Abstract-The null space (and range space) of the value matrix in an infinite-time linear quadratic differential game is characterized.

Manuscript received July 13, 1977. The author is with the National Research Institute for Mathematical Sciences, CSIR, Pretoria, South Africa.

0018-9286/78/0800-0746\$00.75 ©1978 IEEE