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Abstract 

A parameter learning method is introduced. It is then used to 
broaden the region of operability of the adaptive control system of a 
space structure. The learning system guides the selection of control 
parameters in a process leading to optimal system performance; the 
method is a form of leaming by observation and discovery. It is 
applicable to any system where performance depends on a number of 
adjustable parameters. A mathematical model is not necessary as the 
learning system can be used whenever the performance can be 
measured via simulation or experiment. 

1. Introduction 

Large flexible space structures pose unique control problems 
because of the complexity of their dynamic behavior, the limited 
knowledge of the model, the time-varying elements and the uncertainty 
of the environment in the types of disturbances that will be 
encountered. While adaptive umtrol has shown potential in effectively 
controlling such systems [14], and offers good disturbance rejection, 
the region of operability is defined by the adaptive controller, the 
parameters of which are typically decided based on convergence and 
stability analysis only. This may place severe limitations on the 
performance of the compensated system, here a space structure. 
Autonomous systems require a high degree of flexibility to adapt to 
situations which cannot be predicted. This requires the ability to adapt 
to significant changes affecting the region of operability. Adaptive 
behavior of this type is not offered by conventional adaptive control 
systems. Thus, this seems to be an area in which contributions made 
in the field of machine leaming may be applied effectively. 

The goal of the machine leaming method proposed in this paper is 
to broaden the region of operability of the adaptive control system by 
allowing the controller parameters to adapt to different plant and 
environmental conditions. These conditions cause the nominal 
adaptive system to exceed rhe tolerances of its design. The leaming 
methud uses knowledge of incremental changes in the conditions to 
make intelligent decisions regarding the best set of controller 
parameters to use when changes occur. The buildup of knowledge in 
the leaming system eliminates some of the uncertainty in the adaptive 
system, making the controller more robust. 

The leaming method proposed in this paper is applicable to any 
system where performance depends on a number of adjustable 
parameters. The mathematical relation between the performance and 
the parameters does not need to be known. Given particular values for 
the parameters, performance is evaluated via computer simulation or 
physical experiment; if the mathematical relation is known, the 
performance evaluation can be done directly. The leaming system 
determines the next set of parameters in a process leading to an 
optimum performance. In effect, the learning system guides the 
selection of parameters for optimization; this procedure is a fonn of 
leaming by observation and discovery. 

In this paper, the leaming system is applied to determine the best 
parameter values for an adaptive controller controlling a large space 
antenna. The antenna model is described in detail in [10,14,18]. 

Section II presents a brief overview of machine learning. Section 
I11 describes the general format of the parameter learning system and 
Section IV describes the particular antenna parameter leaming system. 
Section V presents the results of the "transient regulation experiment". 
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In this experiment, the leaming system determines the best parameter 
values to use when given different disturbances. Finally, Section VI 
contains conclusions and offers suggestions regarding future research. 

2. Machine Learning Methods 

We m interested in the abiity of man-made systems to learn f" 
experience and, based on that experience, improve their performance. 
Thus, we start with a working definition of such leaming. Leaming is 
the process whereby a system can alter its actions to perform a task 
more effectively due to increases in knowledge related to the task. "%e 
actions that a system may take depend on the nature of the system. 
For example, a control system may change the type of c o m l l e r  used, 
or vary the parameters of the controller. after leaming that the current 
controller does not perform satisfactorily within a changing 
environment. Similarly, a robot may need to change its visual 
representation of the surroundings after leaming of new obstacles in 
the environment. The type of action taken by the machine is 
dependent upon the nature of the system and the type of learning 
system implemented. 

The ability to l e y  entails such issues as knowledge, 
knowledee r e m  ntahon, and some level of inference caDa bility. 
Leaming, considered fundamental to inFlligent behavior, has been the 
subject of research in the field of 'n for over twenty 
years and has gained a renewed interest in the Artificial Intelligence 
(xxnmunity. 

Machine learning can be classified in two ways [15]. The first 
classification emphasizes the underlying leamine strategy. and 
considers the amount of reinforcement and the inference scheme used 
in the leaming algorithm. The existing leaming strategies, in order of 
increasing complexity of the inference capabilities are: 

1. RoteorhgramLeaming 
2. LeamingfmmInstrUction 
3. Leamingby Induction 
4. Leaming from Observation and Discovery 

. .. 

The second classification.of.machine learning depends on the method 
used for b o w l e d n e w  How new knowledge is acquired by 
the machine directly affects the level of learning achieved. Knowledge 
acquisition can be approached by considering the system to belong to 
one or more of the following descriptive categories: 

1. ABlackBox 

3. An Evolutionary Process 
2. TheStruCtural~riplion 

It should be pointed out that the two classifications of machine 
leaming presented are not independent of each other, nor is one 
method used exclusively in a learning algorithm. Instead, learning 
systems use a combination of learning strategies and knowledge 
acquisition methods depending on the goals of the system. 

Learning strategies can be differentiated by the type of inference 
and reinforcement methods they use. Inference is the ability to draw 
new conclusions from given facts, while reinforcement, also called 
credit assignment, increases the probability that correct actions will be 
taken again when the same situation is encountered. By increasing the 
burden of inference on the student, less intervention is required of the 
teacher in providing reinforcement. Two extremes exist in this 
spectrum, totally supervised leaming, as in rote leaming. and 
unsupervised leaming, as in leaming by observation and discovery. 
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The other two methods, learning from instruction and learning by 
induction fall in between the first two. 

The simplest leaming strategy is Rote Leaming. This strategy has 
the simplest inference method, since no attempt is made to infer 
relationships between what is already known and newly acquired 
knowledge. There is also no reinforcement in the leaning strategy. 
Rote leaming is strictly a memorization process, where a teacher 
dictates facts to a student, who stores and retrieves the data without 
knowing their significance. 

Leaming from Instruction is the next level in the learning strategy 
hierarchy. Learning from Instruction is similar to rote learning, but 
with some inference capability added. The strategy depends on 
interaction between a student and teacher, but the student has a greater 
responsibility in the inference process. 

In Learning by Induction (also called learning by analogy, by 
simile or by example), the system aaempts to h i  generalized patterns 
from situations supplied by a teacher. This method builds on the last 
level, leaming from instruction. with the addition of the generaliiation 
procedure which examines the positive features of each case and 
determines a more general characteristic that relates to each situation. 

Learning from Observation and Discovery (also called learning 
from experience) is considered the highest form of learning, since it 
requires no teacher. The leaming algorithm performs the role of both 
teacher and student. This form of leaming is similar to learning by 
induction with the li”ental difference that no teacher is available to 
supply new information or cases. nor provide positive and/or negative 
reinfoFcement The leaming algorithm itself must attempt to determine 
when it is right or m g .  and correct itself. 

The ability to acquire new knowledge is fundamental to learning. 
Thus, the form of knowledge acquisition influences the capability of 
the leaming algorithm. As mentioned previously, the three approaches 
to learning based on acquisition depend on how the system is viewed, 
the black box approach. the structural description approach, and the 

The black box approach is concemed only with the input/output 
relationship of the system. The parameter adjustment method and the 
classification method are the two common methods available to 
implement this type of leaming algorithm. Parameter adjustment is a 
popular form of leaming because of its simplicity. Typically. the 
method uses a weighting function where the weights are adjusted 
based on a correct or incorrect response. Feature values are added or 
subtracted from the weighting function if the output is too high or low 
during the previous iteration [4.15]. A second method of black box 
learning is the classification method. This method quantizes features 
into clusters or ranges, reducing the amount of data that must be dealt 
with. From the quantized ranges, rules can be developed that relate 
specific actions to the occu”ce of a specific quantized featwe. 

The Structural Description Approach is based on learning 
descriptive relationships between objects as well as features of the 
individual objects. The implementation is more complex than the 
Black Box approach because of the requirement for a descriptive 
language and the ability to have a dynamic rulebase. 

The third method of knowledge acquisition is the Evolutionary 
process approach. The method, rooted in Darwin’s theory of 
evolution, or survival of the fittest, is applied to a population of 
structures rather than organisms. Procedures have been developed to 
simulate biological reproduction, including crossover, mutation, and 
inversion. 

evolutionary process approach 

use of all available information and its speed of response. This task 
appears plausible because the interest is in developing a learning 
method for a rather specific class of problems. Thus, the available 
information is rather well defined. It should be stressed that the more 
the system knows, the faster it can learn. 

The role of the parameter leaming system is to determine the best 
set of parameters given changing conditions in the target system’s 
environment. Whether the parameter learning system is invoked 
depends upon the time restrictions placed on determining a new 
parameter set and whe r learning is necessary. This can be seen in 

the environmental conditions have been identified, the dictionary 
containing infomation about such conditions is consulted to determine 
if they are known by the system. If these conditions are known, the 
parameters can be set appropriately, and leaning is not required. If 
the conditions are unknown, a decision to enable learning must be 
made. If time allows, learning can be enabled. Otherwise, the 
parameter values can be estimated from known conditions or may be 
left unchanged. 

The functional diagram of the parameter learning system is given 
in Figure 2. The parameter learning system estimates an initial 
parameter set using the information from the dictionary or by some 
other method. This current set of parameter values, xk. is fed back to 
the target system and the performance of the system is evaluated by 
computer simulation or physical experimentation. The parameter set, 
Xk. and the performanp. J. ale re1ated by 

the functional diagram F or parameter setting given in Figure 1. When 

J = f ( X k )  (3.1) 
where the function f(.) is typically unknown. The performance of the 
system is evaluated using measurable quantities and is expressed as 

(3.2) 

where g(-) is a known function of the measurable quantities Yk. As 
x k  varies, the measurable quantities, Yk. reflect the changes in system 
performance. J is then evaluated from Yk via (3.2). The performance 
of the system is then judged to be adequate or inadequate. If 
inadequate, a new parameter set xk+1 is generated using some search 
algorithm. However, if the function f(-) is known, other methods 
may be used to generate x k +  1. This process continues until the 
performance is judged adequate. At that time, the best parameters 
found are stored in the dictionary for the given conditions and control 
is retumed to the target system. 

4 The Antenna Parameter Learning System (APLS) 

In the antenna parameter learning system (APLS), the input to the 
target system is a disturbance. The search p m d u r e  used to generate 
a new parameter set xk+l  is a modified version of the Hooke and 
Jeeves multidimensional search algorithm [a]. The estimation 
procedure is a grid search, or an interpolation routine using the 
information in the dictionary, if present. The performance of the 
system is evaluated using measurable system quantities and is defined 

(4.1) 
is: 

J = wl*RMS + w2*ME + w3*ST 

Machine learning is cumntly being applied in control systems to 

relationships between environmental effects and control system 
parameters [2.16]. Applied in these areas, machine learning is 
reducing modeling and emironmend and thus minimizing 
control energy. Alternate learning vehicles, in the form of expert 
system technology, and rule-based programming in W c u l a r ,  me 
providing new methods to implement leaming m g i e s .  Examples of 
machine learning in control include the inverted pendulum problem 
[ 11, a face milling control system [7]. rule-based learning for fault 
tolerant flight control [ 131 and a genetic laming algorithm for the 
control of a gas pipeline system [I21 . 

enhance plant modeling, select control parameters and determine with wl, w2 and w3 as In the simulationsl 1. 
w2 and W 3  are Chosen as 1 0 .  10 and 0.1 to equally weight each 
Parameter ofthe performance index so that no parameter is favored in 
the determination of the best solution. The RMS is defined as: 

(4.2) 

where N is the number of iterations in the simulation. The ME is the 
largest absolute value of the output error, ey. and ST is the time it 
takes the output to settle to 4% of its maximum value. 

The Grid Search Procedure; The grid search procedure is 
optional. The goal of the procedure is to characteb the performance 
surface and is typically done when searching for global instead of local 
minima. The grid search is only done once, when the disturbance 

3 The Parameter Learning System (PLS) 

A new learning method is introduced here for parameter laming. 
The main objectives in developing this method have been the effective 
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dictionary is empty. The procedure uses the initial parameters of S, 
given by the control design, to define the range of the search intervals. 
The grid search routine steps through the intervals to obtain an 
approximate mapping of the performance surface. The data collected 
during the evaluation process includes each parameter of S. the 
performance index, and all  components of the performance index 
(RMS. ME and ST). This data is stored in a collimated format and 
sorted. The three minimum performance indices and the associated 
controller parameters are then used by the optimization search 
procedure to determine an optimal set of controller parameters. The 
fmal three sets of the optimization search are then stored in the 
disturbance dictionary for future use. After this initialization, the 
disturbance dictionary is coflsulted for a starting point anytime a new 
disturbance is encountered. 

The oaimization search orocedure ; The optimization search 
procedure is implemented using a variation of the Hooke and Jeeves 
multidimensional search algorithm [6]. Formulated as an 
unconstrained, nonlinear optimization problem, the search for the 
optimal parameters of the adaptive controller is based on the 
performance index presented in (4.1). 

In the optimization search procedure, as is typically the case, it is 
assumed that the performance surface is strictly quasiconvex. The 
local versus global minimum problem is not addressed at this level. It 
is also assumed that there is no magnitude c o n s "  on the values of 
the parameters, although precautions are taken in the rules of the 
knowledge-based system to guard against expanding the search too 
fast, thus keeping the system in a stable parameter region. The 
kmwledge-based system alternates between an exploratory search and 
a multidimensional pattem search of the performance surface until an 
optimal controuer paramem set is obtained according to pmletermined 
criteria. It is important to note, however, that the mathematical relation 
between the parameters of the adaptive control system and the 
performance index is unknown. Furthermore. the optimization 
method does not ditectly utilize the gradient, which is also unknown. 

The knowledge-based system contains the rules for changing the 
parameters of the adaptive u-mtr0lle.r. During the optimization process, 
the knowledge-based system monitors the control system performance 
by keeping track of the parameter currently being varied, the current 
step size and direction, and the next parameter of the search pmcess. 
The Hook and Jeeves algorithm was chosen for the parameter search 
because it has shown faster convergence than a cyclic search [61. 

The results obtained by the search methods are very dependent on 
p t ia l  step se, stat.ting points, and stopping cxiteria. If the 

mitial step size is mcreased, a larger pomon of the performance 
surface is explored. However, this may lead to unstable behavior of 
the closed-loop adaptive system. 'Ihe effect of the stopping criteria is 
similar. When made too large, the search for the minimum 
performance index will be cut shon Too small a stopping criteria, 
however, does not yield a significant decrease in the performance 
index, wasting search energy. Starting points also affect the relative 
coverage of the performance surface. It is possible with a different 
starting point to find a better minimum on the performance surface 
since the global minimum problem is not being addressed this level. 
This is the reason for implementing the grid search procedure. While 
an exhaustive search of the entire performance surface is unwieldy, it 
is possible to get a general impression of the performance surface to 
namw the searchspace. 

It should be noted that the Hooke and Jeeves method has been 
used for similar purposes in [89] to auto-tune control parameters of a 
robotic arm. The method presented here, although similar to some 
aspects of the Chen's work, differs in the addition of the grid search 
procedure.and&distw"e dictionary to assist in the selection of 
initial staning points fp'!he oprimization search pnx+ure. 

The disturbance dictlonary is initially 
empty and is gradually built from training data consisting of pulses of 
various magnitudes and durations. In the leaming system, it is 
assumed that the capability of identifying the disturbance by these 
measurable quantities is present. When it has been determined that an 
extemal disturbance is causing poor performance, the dictionary is 
used to determine a starting set of controller parameters for the 
optimization search procedure. based on the magnitude and duration of 
the disturbance. For a certain operating region (reference model, initial 
conditions and inputs) the optimization search procedure finds an 
optimal set of parameters, So t. Once the optimal set of parameters is 
found, information related to QK disturbance and the optimal parameter 

set, Sopt. is added to the disturbance dictionary for future use. 

5 The Transient Regulation Experiment 

h this experiment, the reference model of the adaptive system is 
set to zero throughout the simulation, i.e. it has zero input and zero 
initial states. The plant takes the form; 

xp&+l, = (@p + rpG)xpck) + rppw (5.la) - Y p c k ) = ~ p o c ) *  (5.lb) 

where the state feedback gain matrix G is obtained originaUy by using 
the LQR routine in CTRL-C, and then changed to a minimum state 
configuration while maintaining stability and the shape of the open 
loop response. Further details of the plant model are found in [5,11, 
141. 

"he adaptive u " l  action is provided by 

up=ky (5.2) 

where YT = [ey xTm um 1, up E R, um E R, ey E R xm E Rr, kT 
E R(r+2), and r is the dimension of the modelled system. The gain 
matrix k has the form 

where kI and kp, the integral and proportional gains, respectively, 
are given by; 

k = kp+ kI (5.3) 

4 = dlkI+Ley vTT (5.4) 

k p = q k p t  i 9 y T ?  (5.5) 

The controller parameters in the set (01, 02, L, IT.?) are to be 
chosen in the design process to optimize system performance. 
However, there is no systematic, analytical method available for 
designers to make the best possible choice. Stability and convergence 
analysis could possibly provide a stability bound on these values, but 
due to the complexity of the transient response analysis of this 
nonlinear system, the analytical relation between performance and the 
actual parameter values is exmmely difficult to determine. Here we 
shall determine the optimal performance via a non-analytical, 
systematic method. 

Without loss of generality, T and ? are fixed and set to 0.05. The 

parameters 01.02, L, and i are then optimized. For the remaining 

discussion, S will denote the parameter values (01.02, L, i) and 
Sop will denote the values of the parameters that optimii the system 
performance. Using the initial parameters given in the design of the 
adaptive control system [14], 01 = 0.5, 02 = 21.99, L = L = 
1 .O+ 104, and introducing a pulse disturbance with a magnitude of 2.0 
and duration of two seconds, the closed-loop adaptive control system 
is enabled to track the zero reference model output. The plant input 
and output are presented in Figure 3a and 3b. The performance index 
of the original adaptive control system and the components of the 
performance index, are given in Table 1. 

Next, the simulation of the closed-loop adaptive control system is 
performed using the optimization search procedure of the parameter 
leaming system. The plant input and output, after the optimization 
search procedures have found Sop,, are shown in Figure 4a and 4b. 
The performance improves using the modified Hooke and Jeeves 
algorithm by 20% in 82 iterations. The performance index, and the 
components of the performance index are given in Table 1. The 
optimal parameter set Sopt. is 01 = 0.0063, q = 0.086 and L = i = 

The second part of the parameter leaming system, the grid search 
procedure, is then added to characterize the performance surface. The 
results of the grid search are coupled with the modified Hooke and 
Jeeves optimization search pmceduse to obtain a new Sopt. The plant 

1.0*104. 
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input and output of this system are shown is Figure 5a and 5b. The 
performance index, and the components of the performance index, are 
given in Table 1. 'Ihe optimal parameter set SON is 01 = 0.093,q  = 

10.05, L = 49,000 and i = 119,703 providing 30% improvement 
over the original system design and 11.6% improvement in 100 
iterations over only the modified Hooke and Jeeves algorithm. The 
number of total iterations required is 8,812, which includes the grid 
search procedure. The grid search does add considerable 
computational time to find the optimal parameter set, and the number 
of iterations of the modified Haoke and Jeeves algorithm has increased 
as well. However, it does increase the confidence of the parameter set 
found as being near optimal. In addition, the grid search is run only 
once, if needed, when the disturbance dictionary does not contain 
knowledge about the performance of the system. 

After training the parameter leaming system with the disturbances 
listed in Table 2, different distu~ances known to cause instability in 
the original adaptive control system are introduced. These disturbances 
are listed in Table 3. The resulting optimal parameter sets, Sop found 
by the antenna parameter leaming system are also presented m Table 
3, along with the respective performance indices. Figures 6through 9 
show the plant input and output for each of these disturbances both 
before the assistance of the parameter learning system, using the 
original controller parameters, and after the parameter leaming system 
is added to assist the adaptive controller using the information leamed 
from training. Note that the system always settles within 4% of its 
maximum value after leaming. Additional unstable disturbances may 
also be controlled as long as the the parameter leaming system is 
trained to handle them. 

The results show that, besides learning the values of optimal 
contmller parameters that improve system performance, the parameter 
leaming system is able to extend the region of operability through 
training. Training is required to be incremental, building upon 
previous knowledge. Since the relationship between the performance 
index and the controller parameter set in non-linear, the learning 
process needs to take steps small enough to determine the effects of 
different size disturbances on the  plan^ 

6 Conclusions 

This method is general and was also successfully applied for 
verification purposes to determine optimum gain in an LQR problem. 
However, specialized methods are obviously more efkient  to solve 
specialized problems. General methods. like the one presented here, 
arerecommendedtobeusedincomplicatedproblemswhentraditional 
methods fail. The method presented is also modular, both the 
functional evaluation and the optimization search procedures can be 
modified to match the particular problem. In addition, functional 
evaluation can be performed via computer simulation, physical 
experimentation or mathematical calculation. The generality of the 
method also allows it to be extended to different types of systems, 
such as multi-input multi-output (MIMO) systems, or to learn different 
system inputs, such as command inputs for second order reference 
models [16]. 

Future research directions include the expansion of the dictionary 
used in connection with the leaming system to include different plant 
models and controllers so that it can be used as a scheduler in an 
autonomous control system [3]. In addition, an Associative Memory 
structure implemented via neural networks is proposed to map new 
environmental and plant conditions to the control parameter values. In 
this way, already acquired knowledge can perhaps be used to 
characterize the c o w l  and plant environment more effectively. 
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Intelligent Control, Arlington. VA. August %-26, 1988. 
Antsaklis, PJ., Passino, K.M., and Wang, SJ., "Towards Intelligent 
Autonomous Control Systems: Architecture and Fundamental Issues", 

[3] 

TABLE 2: Training Disturbances and Parameter Sets 
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D i i  Sopt performance 

Amplitude Duration 01 02  L i I n d e x  

8.0 2 23.06 19.1 41567.48 88573.15 10.81 
9..0 2 1383.5 11.33 48450.71 77923.24 11.526 

TABLE3 UnsrableDhhvox and Resulting Parame.tex Sets 

*, ai-- 

& 

0 5 0 1 0 0 1 5 0 m 2 5 0 3 0 0 3 5 0 1 0 0 ~ 5 0 0  

Time (loo= 5 seconds) 

(b) 

FIGURE 3: Plant Input and Output of original Control System 

0 so 100 I50m ZM 300350 400 450 ma 

Time (loo= 5 seconds) 

(a) 

1 

FIGURE 4: plant Input and Output after M o d i f i  
Hoolre and Jeeves Algorirhm 
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. . . . . . . . . . . . . . . . .  
o XI 1 m i s o x m a m u o m u m 4 s o s m  

Tim0 (loo - s .cEopd.) 

E 
a! 

II 

FIGURE 6: plant Input and olltplt with Disturt#nce 
Magnitude = 8.0 Duration = 2s with original Controller 

. . . . . . . . . . . . . . .  . I  
o so I m l s o z m w m J s o r m r s o m  

-l-kUE(100-5.Osmd.) 

(a) 

FIGURE 7: Plant Input and Output with Disturbance 
Magnitude = 8.0 Dutation = 2s with Lcamed Paramem 

. . . . . . . . . . . . . . .  - I  
o ~ 1 0 m r ~ p o u o ~ o u o u m 4 ~ m  

Tim0 (loo -s seomds) - 
(b) 

FIGURE 7 plant InputandOutput with Dishubance 
Magnitude = 8.0 Ihwtion =2s with Leamed Wrametas 

Timc(1oo- 5 mecoods) 

(b) 
FIGURE8 Piant lnptand~wi thDiStmbance  
Magnitude = 9.0 I)metiar = 2s of Original CmmIle~ 

-0.34.. . . . . . . . . . . . . . . . . .  I 
0 M la, 110 a00 uo 300 3% 400 4M 500 

T i  (loo = 5 waonds) 

(b) 

FIGURE 9 Plant Input and Output with Disuubance 
Magnitude = 9.0 Duration = 2s with Leamed Parameters 

594 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 15:07 from IEEE Xplore.  Restrictions apply. 

M. Peek and P. J. Antsaklis, "Parameter Learning for Performance Adaptation in Large Space Structures" 
(Invited), P roc. o f t he 4 th I EEE I nternational S ymposium o n I ntelligent C ontro l , Albany, NY, 
Sept. 25-27, 1989.




