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ABSTRACT

A discrete event system (DES) is a dynamical system whose evolution in time develops as the
result of the occurrence of physical events at possibly irregular time intervals. Although many
DES's operation is asynchronous others have dynamics which depend on a clock or some other
complex time schedule. Here we provide a formal representation of the advancement of time for
logical DESs via "interpretations of time", It is shown how these interpretations of time provide a
common framework to characterize deadlock, simultaneous events, and the advancement of time in
various DESs in the literature. We also show that the interpretations of time along with a "timing
structure” provide a framework to study principles of the advancement of time for hierarchical
DESs (HDESs). In particular, it is shown that for a class of HDESs the event occurrence rate is
higher at the lower levels. A relationship between event rate and event aggregation is shown. For
another HDES the event rate is shown to be higher at the higher levels but this depends on the
definition of the hierarchy.

1.0 INTRODUCTION

One feature of discrete events systems (DESs) that is used to distinguish them from
other dynamical systems is that they often operate in an asynchronous fashion. This is,
however, not always the case. Sometimes a DES may operate in a synchronous fashion
relative to a clock or according to some other complex timing schedule. The variety of
timing possibilities can lead to confusion in (i) understanding the dynamics of DESs, (ii)
determining how to separate the system timing characteristics from those physical
properties that must be modelled to study the design objectives, and (iii} the treatment of
deadlock and simultaneous events. Hence, there is the need to formalize the representation
and discussion of the advancement of time in DESs. This is the main topic of this technical
note which is a summary and extension of results obtained in [Passino 1989;Knight and
Passino 1989], including the first steps towards formalizing timing characteristics of
hierarchical DESs (HDESs). Comparisons to relevant literature are made throughout the
note.

We focus on timing characteristics of (controlled) DESs that can be accurately modelled
with

P=(X,U,Y,8,A,X0p) (1)

where if IP(X) denotes the power set of X,
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(i) X is the set of plant states x,

(11) U is the set of plant inputs u,

(iii) Y is the set of plant outputs y,

(iv) 8:UxX—-P(X) is the plant state transition function,

(v) A:X—Y is the plant output function, and

(vi) XpCX is the set of possible initial plant states.

The plant state transition function (a partial, point to set function) specifies for each current
input u and state x the set of possible next states x's 8(u,x). The output function specifies
for the current state x, the current output symbol y=A(x). Formally, P is equivalent to a
directed graph with node set X and edges x—x' l1abelled with u for each triple (u,x,x") such
that x'e 8(u,x). The states x are labelled with their corresponding output y=A(x). A run of
P is defined as a sequence of triples (ug,xg,y0),(u1,X1,¥1),(12,X2,¥2), ... such that xpe X,
ug is the initial input, xy.4.1€ 8(uk,Xk), and yrx=A(xy). Notice that since it is possible that
S(uk,xx)=0 for all uxe U at some xpe X a run may have a finite length. The model P can
be classified as being a "logical DES model" [Ramadge and Wonham 1989] since, often, it
is used to study logical DES properties. Next, we summarize the contents of this technical
note.

In Section 2, "index sets” and "index sequences" are shown to provide one possible
mathematical characterization of how real time evolves for the logical DES P. After
discussing how events can be used for DES synchronization, "interpretations of time" are
introduced and shown to be able to formally represent asynchronous, partially
asynchronous, and synchronous time. Utilizing our mathematical framework we discuss
deadlock and simultaneous events, and show how it can be used to formalize the timing
characteristics of a wide variety of DESs studied in the literature.

Motivated by the work of Gershwin [Gershwin 1987] and the observations in [Saridis
1983; Antsaklis, Passino, and Wang 1989] on timing characteristics of hierarchical
systems, in Section 3 we provide a study of timing characteristics of HDESs. We
introduce a "timing structure” composed of interpretations of time, and input and output
triggers to specify how various components of the HDES can influence (be influenced by)
the timing characteristics of other components of the HDES. As an example, we use this
framework to discuss the timing characteristics of a standard controlled DES. In
Proposition 1 it is shown that for a particular HDES if the lower levels have an
asynchronous (synchronous) interpretation of time then the higher levels will have an
asynchronous (general synchronous) interpretation of time. We propose a definition for
DES "event rate" for components of the HDES. Via Theorem 1 and Corrollary 1 it is
shown that for a particular HDES the event rate will be higher at higher levels in the HDES.
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In Theorem 2 we show a relationship between "event aggregation” and event rate, where as
events are more aggregated at the higher levels in the HDES we have lower event rates.
Finally, via Theorem 3 and Corrollary 2 we give an example of an HDES where the event
rate at the higher level is greater that the event rates at the lower levels. But then it is
explained how this depends on how the hierarchy is defined.

The results in this note are preliminary. Some additions that need to be made to this
work include the development of conditions under which we are guaranteed to have lower
event rates at the higher levels for a wider class of HDESs and to examine different ways to
define and study properties of various hierarchies in a system. Also, there is a need to fully
illustrate the results with examples; certain manufacturing systems will probably best serve
our purposes.

2.0 CHARACTERIZING THE ADVANCEMENT OF TIME IN DESs

When a physical plant is modelled as above, the meaning of the advancement of time
must be defined. If Z is an arbitrary set then Z* denotes the set of all finite strings of
elements from Z. In order to discuss timing issues for P, an index set J and index
sequences o J*UIN are utilized similar to the approach in [Sain 1981]. The index set J is
thought of as a set of times. Let R™ denote the set of positive real numbers and
R.=R*u{0}, the set of non-negative reals and let N denote the natural numbers. Note
that N, R,, or R could be candidates for the set J. The index sequences oe J*UIN are
sequences of time instants that can be of finite or infinite length. If oie J*UIN let lodl denote
the number of elements in the string o.. An index sequence (function) oe J*UIN is said to
be admissible if

(i) it is order preserving, i.e.

(a) if ae JN for all ky,kpe N, k1<ks implies that oi(k1)<ou(ks) and
(b) if aie J* for all ky,koe N with ki ko€ [0,lal-1], k1<kj implies that
o(ki)<oks), and
Only admissible index functions will be used in the sequel but the possibility of using non-
admissible ones is considered in Section 2.3 simultaneous events are discussed.

Following [Sain 1981], the state of the plant xe X is associated with the index ou(k) for
some o.c J*UIN and is denoted with x(ou(k)), meaning "the state at time ou(k)". Similarly,
inputs ue U and outputs ye Y are associated with that same index and denoted with u{ci(k))
and y(ou(k)) respectively, The transition to a state in the set 8(u,x) can be thought of as
leading to the next state, with "next" quantified with the index sequence o as ci(k+1). With
this, the transition function is given as x(a(k+1))e d(u(o(k)),x(o(k))) which is often
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abbreviated as xy41€ 8(u,xk). The output is often denoted with yp=A(xx) for ke N.
Notice that if for some xge X and all uxe U, 8(uy,xyx)=3, then o(k+1) is undefined. Each
run of P (ug,X0,¥0),(111,X1,¥1).... has an associated index sequence o.(0),0t(1),...
specifying the time instants at which the triples are defined.

Consider Figure 2.1 which illustrates one possible index sequence o J*UIN which
specifies the time instants at which the inputs ue U, states xe X, and outputs ye Y of P are

defined.
! i ’N Number of
1 2 3 4 State Transitions
1 1 J=]
| I i ] : > ]R+ Real Time Line

1 2 3 4 5
Figure 2.1 Relationships Between State Transitions and Real Time

Intuitively, we think of the top line in Figure 2.1 as representing the number of state
transitions that have occurred since the system was started up. The bottom "real time line"
represents the index set J, where in Figure 2.1 J=IR,. For a given J, restrictions are put on
the allowable sequences of real time instants at which the variables can be defined by
requiring the oie J*UIN to satisfy the admissibility requirements. All oce J*UIN must be
order preserving. In terms of Figure 2.1 this means that the arrows specified by o pointing
from ke N to the real time line will not cross over one another and that time will progress in
a nonnegative direction. Also, the fact that & is required to be injective ensures that no two
arrows will point to the same time instant on the real time line so that time will advance in a
positive direction, i.e., for x(ou(k+1))e d(u(ouk)),x(ouk))), alk+1)>ak).

The manner in which we think of the timing characteristics of the real plant is
represented in the model P. Clearly physical plants with different timing characteristics
have, in general, different models P. Based on the characterization of time with index sets
and index sequences the meaning of certain logical DES properties can change. For
instance, if a certain order of changes in the plant variables is always known to occur
(proven in analysis) then when we reflect this information back to the real plant it takes on
special meanings depending on the timing characteristics. For example, the sequence of
changes may have occurred successively at time instants of one second apart; they may
have occurred at random time instants, one after another, etc. Clearly the meaning of
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logical DES properties depends in an important way on the timing characteristics of the
plant.

2.1 DES Synchronization

A DES P often activates or triggers other DESs to act. For instance, in the case where
P represents a plant, P may trigger a controller to generate an input to P. In this case, the
trigger often represents certain changes that occur in the plant. There are many different
possibilities for how to define the trigger. For instance, in some plants the controller may
act when there are changes in the plant output, while in others the controller may be
triggered by changes in the plant state. In still other systems the controller may be triggered
to act when certain patterns of changes occur. Here, we consider the case where events, to
be defined next, are used as the trigger. It must be stressed that other triggers are possible.
Some of them can be defined by re-defining an event.

Events are thought of as representing certain plant characteristics that change, for
instance, instantaneously, and asynchronously. Events could be given by pairs (x,x"),
where x'e 8(u,x). This is the sort of event used in [Ramadge and Wonham 1987] except
that the authors define a finite set of "event labels" ¢ (which are are also used as the outputs
of the plant) for the state transitions, and hence refer to events by triples consisting of event
labels, states, and next states. Many other definitions for "events" are possible. What is
considered an event is often a matter of taste which is dependent on the particular problem
at hand. (See, for instance, the discussion in [Ostroff 1986].) Moreover, for some
problems it may be convenient to think of events as taking a certain fixed amount of time to
occur, or as occurring at regularly spaced intervals, rather than just instantaneously and
asynchronously.

Here, we let ECX*X denote the set of events e, where

E={(x,x")e XxX: x'e 6(u,x)} )
An event (x,x") is said to occur if the state transition from x to x'e 8(u,x) takes place.
Hence, often we use the terms "event" and “state transition" interchangeably. The time
instant at which the event occurs is, in general, unspecified. Let cie J*UIN and ou(k) be the
time instant at which the current state xe X is defined. Let x'e X denote a possible next
state x'e 6(u,x), and cu(k+1) the time instant at which it is defined. The event e=(x,x') can
be thought of as occurring over the interval (ou(k),ou(k+1)], a segment of the time line. It is
not necessary to require that the event occur instantaneously at any particular time instant in
the interval (ou(k),ou(k+1)]. For convenience, however, we shall for the remainder of this
note, assume that the event occurs (is defined) at the time instant cu(k+1) where the next
state is defined.
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Based on the above formulation, in [Passino 1989] the author defines a discrete event
regulator system (DERS) and describes how time advances. Other discussions on the
timing of the DERS are provided in [Knight and Passino 1989]. The timing of the DERS
is similar to that which was set up in the Ramadge-Wonham framework in [Ramadge and
Wonham 1987]. In their "controlled generators” the finite set of events label state
transitions and are the outputs of the plant. As outputs, the events are used to "drive” the
state transitions in their controller, called a "supervisor”. In [Passino 1989] and [Knight
and Passino 1989] the events are used as a trigger but the outputs of the plant are not
necessarily the events.

2.2 Interpretations of Time

The pair I=(A,J) where J is an index set and ACJ*UIN will be referred to as an
interpretation of time since it specifies the meaning of the advances in time, i.e. it specifies
the time instants where the variables of P are defined. In general, a system P is said to
have a particular interpretation of time I1=(A,J) as long as the time instants associated with
the elements of the runs of P are elements of J and the index sequences associated with the
runs of P are elements of A. The admissible interpretation of time will be denoted with
Tad=(Aad.Jad) where J4q4 is an index set and

Agg={0e TUTY ot is admissible}. 3)

Notice that for any admissible interpretation of time after an event occurs another may not
eventually occur; hence deadlock can be modelled directly. Most often we can choose
Jag=IR; and this is what we will assume here. Next, different interpretations of time are
used to characterize different manners in which time can advance in DESs.

It is common to consider the timing characteristics of DESs relative to a clock. By a
"clock" we mean a device which has a fixed interval Te R* between ticks and which does
not stop ticking.

Definition 1: The asynchronous interpretation of time is Iz=(Ag,J3) where J;=IR, and
Aa={ae Ayg : 0(0)=0).

According to convention J,=Ja4=IR; with the time instant of zero corresponding to the case
where no state transitions have occurred. I represents the situation where the plant P is
asynchronous (out of sync, not synchronous) with a clock. For I, the time instants at
which the plant variables are defined are at non-uniform (irregular) distances from one
another along the time line R,. Notice that AgC Ayq if Jag=Ta.
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Definition 2: The partially asynchronous interpretation of time is Ipa=(Asp,Jpa) With
Jpa=R, and Ayg={ae A, : a(k)+y<ok+1)<o(k)+B} for v,Be R*
where B2y.

Ipa represents the case where we know that the time instants where the next state is defined
is constrained to occur at least ¥, and no more than 3 time units later. Notice that ApCA,

if ] pa=J as

Definition 3: The general synchronous interpretation of time is Ig=(AT,J5) with J=IR,
and AT=(t € A, : o(k+1)=0i(k)+nT where ne N-{0} } with Te R*.

For the general synchronous interpretation of time, the time instants at which the plant
variables x, u, y are defined are at distances nT, for ne N- {0}, from one another along the
time line IR, Notice that, in general, a state transition may not occur between any two
particular ticks of the clock (since n>0), and that after each state transition occurs another
may not eventually occur. When n=1 we shall refer to I simply as the synchronous
interpretation of time. For the synchronous interpretation of time if is not necessarily the
case that |Arl=1 since any finite length index sequence is possible. Notice that ATCAqg
provided that y<T<p.

Also notice that for asynchronous time if oze A, and the current time is o,(k), then the
next time is op(k+1)=0,4(k)+r where re R*. On the other hand, for general synchronous
time if olge At the current time is og(k) then the next time is og(k+1)=04(k)+r' where
reR; and Ry={nT:ne N-{0}} for a given Te R*. Since R; is equinumerous with N-{0},
a proper subset of R, it is the case that card(IR")>card(R1). Hence, no matter what the
time interval T, the number of possible "next" time instants is always greater if an
asynchronous interpretation of time is used rather than a synchronous one. This helps to
clarify the intuitions we have about the relationships between the synchronous and
asynchronous interpretations of time. Itis clear that synchronous time cannot be used if the
underlying system can only be accurately represented with an asynchronous interpretation.
However, it is possible that the synchronous interpretation of time with T very small may
result in an accurate model for some asynchronous systems. This will depend on the
particular plant to be modelled and the design objectives to be studied.

It is not, in general, required that the timing characteristics of the plant be defined
relative to a clock although they are often treated as such. In general, in a manner similar to
that with the clock, the plant may be in sync (out of sync) with changes in other systems.
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The knowledge of this fact may influence the meaning of certain logical DES properties in a
manner similar to how it did for the clock. Intuitively, the representation of the timing
characteristics with the interpretations of time (i) clarifies how to go about modelling
physical systems because it separates complex timing characteristics from the physical
characteristics of the plant which must be represented with P, and (ii) helps to show how
the timing characteristics of the physical plant can change and still have a valid model P.
The model P will always reflect the particular manner in which the timing characteristics of
the real plant are understood so analysis performed using the model P is performed
independent of the interpretation of time. The results of the analyses, however, often have
a special meaning based on the interpretation of time.

2.3 Timing Characteristics of Various DESs

In this Section we discuss several timing issues encountered in DES studies. First, the
issue of deadlock and simultaneous events is discussed; then examples of places where
these timing issues have been addressed in the literature are given. It is also shown how
the interpretations of time can be used to discuss the timing characteristics of a wide variety
of DESs found in the literature.

Deadlock and Simultaneous Events

A DES P is said to deadlock if P enters any state xe X such that for all ue U,
S(u,x)=@. It is important to note that the interpretations of time defined above allow for the
direct modelling of deadlock since the index sequences can have finite length. Deadlock
issues are addressed in most of the work on logical DES in one way or another. For an
introductory treatment in a Petri net framework see [Peterson 1981]. Another notable study
on deadlock in DES is given in [Li and Wonham 1988].

Next, the issue of simultaneous events is discussed. Let I;a=(Aag,Jaqd) be the admissible
interpretation of time. Due to the injective part of the admissibility requirement for all
o Ay, the variables x, u, and y are defined at time instants which are distinct from one
another. For instance, if x(oi(k)) is the current state and x(ou(k+1))e &{u(o(k),x(c(k))) is
the next state then o(k+1)>0u(k). Since the time instants are distinct, when state transitions
occur it is guaranteed that time will advance (although it may be a very small amount). The
other important implication is that using the definition of events E it is automatically
assumed that events occur at distinct times, i.e., simultaneous events are not allowed
because the index sequences are required to be admissible.

Suppose that the injective part of the admissibility requirement is omitted so that for
oe J*UTN it is possible that ou(k+1)=0i(k) for any ke N such that ct(k) and ct(k+1) are
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defined. This will allow events to occur simultaneously at a particular time instant. In fact,
for oie JN it will allow even an infinite number of events to occur at one time instant
resulting in the possibility that time will not advance. Normally, to treat simultaneous
events, only a finite number are allowed to occur at a single time instant; hence, other
events representing the case that "several events occur at once” can often be defined. So
the problem of dealing with simultaneous events is often transformed to the case where
only a single event occurs at each time instant so that time is guaranteed to advance and the
admissible interpretation of time as defined in (3) above can be used. Examples of DES
studies where (a finite number of) simultancous events are allowed can be found in [Krogh
1987], [Li and Wonham 1987], and [Ichikawa and Hiraishi 1987).

Interpretations of Time in DES Studies

The asynchronous interpretation of time, as formalized above (Definition 1), agrees
with the standard interpretation of time used in most logical DES studies. (Sometimes,
however, it is known that P will not deadlock so it is known that all index sequences
oe JN)) For instance, the work that has evolved from the Ramadge-Wonham formulation
[Ramadge and Wonham 1987], research on Petri nets (See, for instance the references in
[Peterson 1981]), and many studies in temporal logic all depend on this asynchronous
interpretation of time. Indeed, the asynchronicity of a DES is often quoted as one of the
characteristics that distinguishes them from other dynamical systems such as those
modelled with differential equations. The partially asynchronous interpretation of time is
used in [Bertsekas and Tsitsiklis 1989] in the study of computer networks.

The synchronous interpretation of time has also been used in certain DES studies.
Indeed, this is often thought to be the normal way of thinking about time for automata-
theoretic models [Hopcroft and Ullman 1979] since such models are often thought to
operate in a conventional computer driven by a clock. It is important to note that the
knowledge that a particular plant is synchronous can be exploited in DES studies because in
this case another characteristic of the DES is known. For instance, in [Ostroff 1986] an
"extended state machine"” is shown to be able to model a wide variety of DES including a
clock. From this, the author defined a useful "real time temporal logic" for studying "hard"
time constraints in DES.

Another notable study where time is thought of as being synchronous is given in
[Gershwin 1987]. There, Gershwin defines a hierarchy where at each level i, events occur
at different frequencies, say faj=1/Te; where the Te; are fixed positive intervals. Inherent in
this, is the assumption that time is synchronous at each level i. At the higher levels of the
hierarchy he defined the frequency of the events as smaller while at the lower levels, the
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frequency of event occurrence is higher. He thinks of the hierarchy as being split
according to its "spectra” of event frequencies. The timing characteristics of each specific
level of Gershwin's hierarchy of events can be formalized using the interpretations of time
defined above. At each level i, the synchronous interpretation of time (n=1) can be used
with time interval Te;.

Gershwin's work is also valuable in that it highlights an important property of the
timing of event occurrences in HDESs: that events seem to occur more often at higher
levels in the hierarchy. In the next Section we verify this timing principle for a wide class
of HDESs.

3.0 TIMING CHARACTERISTICS OF HIERARCHICAL DESs

Motivated by the work of Gershwin described in Section 2.0, in this Section we shall
study the evolution of time in HDESs. The formation of a control theory for HDESs is just
beginning [Zhong and Wonham 1988,1989] even though such systems occur quite
frequently. Some principles of the evolution of time in hierarchical systems have been
postulated but not fully investigated in [Albus, Barbera, and Nagel 1981; Saridis 1983;
Valavanis 1986; Mesarovic, Macko, and Takahara 1970; Antsaklis, Passino, and Wang
1989; Passino and Antsaklis 1988]. What these researchers have recognized is that "things
usually occur at the higher rates at the lower levels in a hierarchical system". We shall
verify this intuition for one class of HDESs here.

We shall focus on HDESs that have as components two types of DESs, Gj, for
j=1,2,....,m and P; for i=1,2,...,n all defined via (1) except with different timing
characteristics. We introduce what we call a timing structure which will define how the
various components of the hierarchical system influence (are influenced by) the timing
characteristics of other components of the HDES. The definition of the timing structure is
based on the interpretations of time defined in Section 2.0 and what will be called inpur and
output triggers. Each Pj for i=1,2,...,n in the HDES has timing characteristics that are
specified via their own interpretation of time Ipi=(Api,Jp;j). Each G;j for j=1,2,...,m has
timing characteristics that depend on P;j for i=1,2,...,n and G for ksj as we now discuss.

Let Epj denote the set of events for Pj, and Egij, the set of events for Gj both defined in
a similar manner to the events E for P in (2). The output triggers for P; i=1,2,...,n and G;
j=1,2,...,m are defined by the events Ep; and Egj respectively. The inpur triggers for the
G; are defined by

Tj:EplepQ,x pranglegzx ngkx ngm_)[(),l ) @
where k#j and 7j(-)=1 (=0) indicates that an event egj(a(k+1))e Egj where
egjlalk+1))=(xg(a(k)),xg(a(k+1))) is forced (not) to occur in Gj. Let apitk+1) and



K. M. Passino and P. J. Antsaklis, "Timing Characteristics of Discrete Event Systems,” Control Systems
Technical Note #68, Dept. of Electrical and Computer Engineering, University of Notre Dame, June 1989;
Revised November 1989.

11

Ogk(k+1) denote the time instants at which events epje Epj and egke Egk (k#j) occur
respectively. The time instant at which egj(au(k+1)) occurs (is defined) is given by

a(k+1)=fiﬂc§}[api(k+l),agk(k+1) ). S)
This time instant corresponds to the time instant at which the last event occurred which
caused Tj(-)=1.

Whereas the interpretation of time is always specified for the P;, the interpretations of
time for the G; are specified in terms of the other Gy, k#j and P;. The interpretation of time
for any G; is found by executing all possible runs (in all possible orders) of the P; for
i=1,2,...,n and Gk for k=1,2,....m where k#j. Then via equations (4) and (5) the time
instants and hence index sequences and interpretations of time for the G; are specified. We
shall study HDESs where there is at least one Pj and the interpretations of time for the G;
can be defined in terms of P;. The following example will serve to clarify how the
interpretation of time for a Gj can be specified via a P;.

Consider the controlled DES shown in Figure 3.1.

ue U eY
G » B P>

T’ L]

Figure 3.1 Discrete Event Control System

We have 71:Ep1—{0,1} and for the standard control configuration it is most often assumed
that T1(ep1)=1 for all ep1€ Ep) so that each time an event occurs in Py, G is forced to act
by having an event in G occur (it is assumed that one always exists). Clearly, then if
Ip1=(Ap1,Jp1) is the interpretation of time for P; and Ig1=(Ag1.Jg1) for G; where Jg1=Ip1,
then Ag1=Api. The interpretation of time for the plant and controller are the same. In this
way we think of specifying the interpretation of time for G by Ip1 and Py via 1.
Intuitively, for general T3 we see that we can expect fewer events to occur in Gy than in Py,
This timing characteristic is treated in some detail next.

Consider the HDES shown in Figure 3.2. Let the admissible interpretation of time for
P1 be Ip1=(Ap1,Jp1) with Jp1=IR+ and for Gj, j=1,2,...,m be Igj=(Agj.Tgj).

Proposition 1: If Py has the asynchronous (synchronous) interpretation of time then G;j for
j=1,2,...,m has an asynchronous (general synchronous) interpretation of
time.



K. M. Passino and P. J. Antsaklis, "Timing Characteristics of Discrete Event Systems,” Control Systems
Technical Note #68, Dept. of Electrical and Computer Engineering, University of Notre Dame, June 1989;
Revised November 1989.

12

Figure 3.2 Hierarchical DES with m+1 Levels

Proof: Choose Jgj=Jp1 for all j. Assume that a run is made in P and that its
corresponding index sequence is op1€ Ap). The corresponding runs in Gj have index
sequences Ogje Agij for all j. Clearly, the I are admissible if we choose 0g(0)=0 and the
result for the asynchronous case follows immediately. For the synchronous case, the map
Tj may mask certain events (ep1€ Ep or egje Egj) from forcing events to occur at the next
level up (eg1€ Eg) or egj+1€ Egj+1) so events may not occur between every two ticks of the
clock (but still only at the ticks) resulting in a general synchronous interpretation of time for
each G;. ¥

Notice that even if all of the runs in P are of infinite length there may be a deadlock at the
higher levels of the hierarchy (particularly at Gy). If Gj for j=1,2,...,m deadlocks then Gx
for k>j will also deadlock.

Theorem 1: For any possible run made by Py with an index sequence Gip1€ Api, the
corresponding runs in Gj for j=1,2,....,m have index sequences Qgj€ Agj
where agj is a subsequence of both gk where k<j and oy .

Proof: The input trigger 71 for G; may mask event occurrences in Py. If event epi€ Epg
occurs in Pj at time op(k) and T1(ep1)=0, but later another event ep1€ Ep1 occurs at time
ap1(k+1) and Tj(ep1)=1 then the index sequence 0igy will contain ap1(k+1) but not ap1(k).
Since this is true for all ke N, 0] is a subsequence of cp;. A similar argument holds for
the higher levels. 8
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Define #(Pj,Ty) and #(Gj,Ty) to be the number of events that occur per unit time
Tu=(r1,r2] where (r;,rn]<R* for P; or G; respectively. We shall refer to #(P;,T,) or
#(G;,Ty) as the event occurrence rate or event rate in P or Gj respectively. Notice that if P;
has a synchronous interpretation of time with time interval Te R* and we choose T, such
that Irp-r1|1=T then #(P;,T,,)=1, i.e., there is 1 event occurrence in the time interval Ty. In
the case where there is deadlock we also take #(P;,Ty)=1 so our definition of event rate
only pertains to P; when it is not deadlocked and the possibilities for Ty must be chosen
accordingly. If Pj has an asynchronous interpretation of time then no matter how Ty is
chosen it is possible that #(P;, Ty)=0, since we cannot guarantee that an event will occur in
the time interval Ty. In fact, we do not know how many events will occur in Ty, It would
appear that our definition of event rate is too restrictive. This is, however, not the case
since the focus here is on comparing the event rates of different DESs and this comparison
is made relative to Ty, an interval of the real tirne line.

Corollary 1: #(P1, Ty)2#(G1,Ty)2#(G2, Ty)2 - 2#(Gm,Tw)20 for all T,

Proof: Assume that a run is made in Py and that its corresponding index sequence is
Op1€ Ap); the corresponding run in G has index sequence atgj€ Agy. Each time instant
ap1(k) and agy(k) for k>0 corresponds to an event occurrence. For any T,
#(P1,Ty2#G1,Ty) since the map ) may mask events. A similar argument holds for the
higher levels. B

This means that the event rate is lower at the higher levels of the HDES shown in
Figure 3.2. In the case where Ip] is synchronous the above results support the studies in
[Gershwin 1987] where the author assumes that the event rates can be split into "spectra”
according to the level in the hierarchy. A similar split can be made for the HDES of Figure
3.2.

Next we study the case where certain restrictions are put on 7; and characterize different
properties of the HDES shown in Figure 3.2. For simplicity consider the case where m=1.
Assume that the state set X of P can be partitioned as

X=X;0%0%30--- (6)

(where U denotes a disjoint union) so that if P enters a state xe X it will take more than
ne N-{0} state transitions before the state of P, say x', is such that x'e Xj where j#i. Let

L (m)={X1,X2,X3,...}. @
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We shall study the case where events occur if Py switches states from being one in Xj to
another in X; where X;#X; and tj will be defined accordingly. Such a definition for T;
results in a type of "event aggregation” since some sequences of events will be ignored by
the higher levels.

Theorem 2: Let T(e)=1 where e=(x,x’), x,x'e X, and there exists Xj,Xje L (m) such that
x€ Xj and x'e Xj where Xj#X; (11(¢)=0 otherwise). In this case,
#(P1,Tp)2#(Gq, Typ)+m if Ty=(r1,r2] and Irp-r1l is sufficiently large.

Proof: Assume that a run is made in P) and that its corresponding index sequence is
Op1€ Apy; the corresponding run in Gy has index sequence Qgie Agy. Let og1(k) and
Og1(k+1) be two elements that make up Og) such that logy (k+1)-0tg1 (k) is a maximum for
all k. Let Ty=(r1,r2] such that Ir-r1/>2lotg) (k+1)-0tg1(k)l. In this case the time interval Ty
will always contain 2 event occurrences in Gj. By the definition of t;, between any two
event occurrences in Gj there must be at least T event occurrences in Py; therefore
#(P1,T)2#(G, Ty)+m. B

For the case where there are multiple levels, i.e., m>1, if the t; for j>1 are defined as T}
is in Theorem 2 (via (6) and (7)), then #(G;,Ty)2#(Gj41,Tu)+®; (provided Ty is chosen as
in Theorem 2) where 7; is the number of events that must occur in Gj before one can occur
in Gj+1. The Tj can be viewed as maps that cause event aggregation; consequently,
Theorems 1 and 2 provide a relationship between event aggregation and event rate for one
class of HDESs: as events are aggregated to the higher levels in the hierarchy, fewer events
occur. In general hierarchical systems researchers have observed a similar inverse
relationship between “time scale density"” ("time granularity") and "model abstractness"
[Saridis 1983; Antsaklis, Passino, and Wang 1989]. This type of relationship does not,
however, hold in general. Next, we provide a HDES where the event rate is higher at a
higher level in the hierarchy, but this depends on the definition of the hierarchy. For the
moment assume that if a system's timing characteristics are influenced by another's, it is at
a higher level in the hierarchy (this is what is assumed for the above results).

Consider the HDES shown in Figure 3.3. In this case T1:Ep1* - XEpp—{0,1}.
Assume that T1(epi1,ep2,-...epn)=1 for all epje Epj. If any Pj has the asynchronous
interpretation of time then G has a asynchronous interpretation of time. To get deadlock in
G; there will have to be deadlock in all the lower level DESs P;.
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Theorem 3: For any possible run made by any P; for i=1,2,...,n with an index sequence
Clpi€ Api, the corresponding run in Gy has index sequence g€ Ag) where
each oipj is a subsequence of 0.

Proof: The proof is similar to the proof for Theorem 1. 3

Figure 3.3 Hierarchical DES

Corollary 2: F#(P;, Ty)2#(G1,Ty)2#(P;, Ty for all Ty and i=1,2,...,n.
1

Proof: It follows that #(G1,Ty)2#(P;,T) for all Ty and i=1,2,...,n in 2 manner similar to
the proof of Corollary 1. Since it is possible that an two events in different P; occur at the
same time, the greatest number of events that can occur in Gj in one time interval T, is
given by the sum of all the events that occur in the Pjin T),. ¥

Hence the event rate is higher for G1 than for any of the other DESs Pi. This shows one
case where a DES at a higher level has an event rate that is higher than the event rate for a
DES at a lower level. This of course assumes a rather narrow definition for what it means
for a system to be at a higher level in the hierarchy. In a "time scale hierarchy"” one could
define systems that operate with higher event rates to be at lower levels, then the above
results (Theorem 3, Corrollary 2) agree with the intuition that at higher levels, event rates
are lower.
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