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Absh.acf-Discrete event systems (DES) are dynamical systems 
which evolve in time by the occurrence of events at possibly 
irregular time intervals. “Logical” DES are a class of discrete 
time DES with equations of motion that are most often nonliiear 
and discontinuous with respect to event occurrences. Recently, 
there has been much interest in studying the stability properties 
of logical DES and several definitions for stability, and methods 
for stability analysis have been proposed. Here we introduce 
a logical DES model and define stability in the sense of Lya- 
punov and asymptotic stability for logical DES. Then we show 
that a more conventional analysis of stability which employs 
appropriate Lyapunov functions can be used for logical DES. 
We provide a general characterization of the stability properties 
of automata-theoretic DES models, Petri nets, and finite state 
systems. Furthermore, the Lyapunov stability analysis approach 
is illustrated on a manufacturing system that processes batches of 
N different types of parts according to a priority scheme (to prove 
properties related to the machine’s ability to reorient itself to 
achieve safe operation) and a load balancing problem in computer 
networks (to study the ability of the system to achieve a balanced 
load to minimize underutilization). 

I. INTRODUCTION 
ISCRETE event systems (DES) are dynamical systems D which evolve in time by the occurrence of events at pos- 

sibly irregular time intervals. Some examples include flexible 
manufacturing systems, computer networks, logic circuits, and 
traffic systems. “Logical” DES are a class of discrete time DES 
with equations of motion that are most often nonlinear and 
discontinuous in the occurrence of the events. Recently, there 
has been much interest in studying the stability properties of 
logical DES and several definitions for stability, and methods 
for stability analysis have been proposed. Here we introduce a 
logical DES model and define stability in the sense ofLyapunov 
and asymptotic stability for logical DES. Then we show that 
the metric space formulation in [I] can be adapted so that a 
conventional analysis of stability which employs appropriate 
Lyapunov functions can be used for logical DES. An important 
advantage of the Lyapunov approach is that it does not require 
high computational complexity (as do some of the other new 
approaches), but the difficulty lies in specifying the Lyapunov 
function. 
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We provide a general characterization of the stability proper- 
ties of automata-theoretic DES models such as the “generator” 
in [2], General and Extended Petri nets [3], and finite state 
systems. The approach is further illustrated on a manufacturing 
system that processes batches of N different types of parts 
according to a priority scheme and a “load balancing problem” 
in computer networks. It is shown that the manufacturing 
system is stable is stable in the sense of Lyapunov. Certain 
“fairness” conditions (constraints allowing fair access to the 
machine) are provided to ensure that the manufacturing system 
is asymptotically stable in the large (which illustrates its ability 
to reorient itself to a safe operating condition). For the load 
balancing problem we examine both the “continuous” and 
“discrete” load cases. For each case we provide results on both 
Lyapunov and asymptotic stability in the large which illustrate 
the ability of the network to achieve load balancing (in the 
discrete load case only imperfect balancing can be achieved). 
This paper is an expanded version of [4], [5]. 

It has been long known (as shown in e.g., [l]) that a stability 
theory can be developed in a very broad setting (e.g., a metric 
space) which is phrased in terms of motions of dynamical 
systems and which does not require the description of the 
system under investigation in terms of specific equations (e.g., 
differentiddifference equations, partial differential equations, 
etc.). Even though this theory is beautiful and powerful, it 
has thus far not found real-world applications in its most 
general form. We believe that the results in this paper on 
the use of Lyapunov theory for DES analysis constitute per- 
haps the first application of this general qualitative theory. 
Furthermore, we believe that the present results eliminate 
the need for ad hoc “stability definitions” made for specific 
applications as long as the DES under investigation can be 
described on a metric space. Thus, we demonstrate that it is 
possible to develop meaningful and useful qualitative results 
for DES which are phrased in terms of well-established and 
time-tested theories (e.g., Lyapunov and Lagrange stability 
theory). 

In summary, some of the contributions of the present paper 
include the following: 

1) perhaps the first application of the Lyanpunov theory in 
its most general form (developed, e.g., in [l]) to an interesting 
class of dynamical systems (DES); 

2) demonstration that DES (that can be described on metric 
spaces) can often by analyzed by means of well-established 
and time-tested theories (Lyapunov theory) and that ad hoc, 
tailor made, “stability definitions” are often not needed (i.e., 
the wheel need not be reinvented); 
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3) general characterization and analysis of the stability 
properties of automta-theoretic models, Petri nets, and finite 
state systems; and 
4) application of the results to a new manufacturing system 

example and an investigation into load balancing properties 
(as characterized by stability in the sense of Lyapunov and 
asymptotic stability) for both the continuous and discrete load 
cases. 

The foundations for the study of stability properties of 
logical DES lie in the areas of general stability theory (the 
approach used herein) and theoretical computer science (recent 
DES-theoretic research). In the following paragraphs, we 
provide an overview of the research from these areas that 
has focused on the stability of DES and related studies of 
invariant sets in DES 

The two (related) main areas in theoretical computer science 
that form the foundation for logical DES-theoretic stability 
studies are temporal logic and automata. Intuitively speaking, 
in a temporal logic or automata-theoretic framework, a system 
is considered in some sense stable if 1) for some set of initial 
states the system’s state is guaranteed to enter a given set 
and stay there forever, or 2) for some set of initial states, 
the system’s state is guaranteed to visit a given set of states 
infinitely often. 

In temporal logic, stability characteristics are most often 
represented with temporal formulas from a linear or branching 
time language (modal logics) and either a proof system or an 
effective procedure is used to verify that the temporal formula 
is satisfied. The fact that the above notions of stability could 
be studied using temporal logic in a control-theoretic setting 
was first recognized in [6]. The linear time temporal logic 
framework of [7], which uses a proof system, is adapted and 
used to prove stability properties in a DES theoretic framework 
in [8]. A linear time temporal logic framework where effective 
procedures are used to mechanically test the satisfaction of 
formulas describing stability properties is studied in [9], [lo]. 
Both a proof system and efficient algorithms for testing the 
satisfaction of “real time” temporal formulas are provided in 
[ 111. The branching time temporal logic approach in [ 121 is 
adapted to a DES theoretic framework, and efficient algorithms 
are used to perform some studies of stability properties in [13]. 

Stability concepts for logical DES such as finite automata 
have foundations in the study of, for instance, Buchi and 
Muller automata [14], [15] and how infinite strings are ac- 
cepted by such automata. This automata theoretic work in 
computer science has also been adapted for the study of 
stability of DES. In [la], the authors introduce a special DES 
model (finite automaton) and use a state-space approach to 
develop efficient algorithms for the study of the two types 
of stability described above. They also provide approaches to 
synthesize stabilizing controllers for DES ‘and to study several 
other characteristics of logical DES (for more details see [17]). 
Related studies are given in [18] and [19]. The construction 
of stabilizing controllers has also been studied in a Petri 
net framework in [20]. Krogh’s approach was based on the 
Ramadge-Wonham formulation [2]. Certainly, results in the 
Ramadge-Wonham framework can be utilized for the study 
of types of stability of logical DES. 

Certain general formulations for the study of stability are 
relevant to the study of stability properties of logical DES. For 
instance, there have been studies of stability of asynchronous 
iterative processes in [21]. Tsitsiklis defines a model that can 
represent logical DES, and, assuming that the DES has certain 
timing characteristics, he gives constructive methods to study 
stability of a class of DES. Tsitsiklis identifies the relationship 
between his work and the use of Lyapunov functions and 
provides some efficient procedures for testing stability. For 
an introduction to general stability theory and an overview 
of such research, see [22]. Finally, in other DES studies, there 
have been significant advances recently in the study of stability 
properties of manufacturing systems in [23], [24]. 

In Section 11, we introduce a logical DES model, and 
in Section III we define stability in the sense of Lyapunov 
and asymptotic stability for DES and give necessary and 
sufficient conditions for stability of invariant sets of DES in a 
metric space. In Section IV, we provide a characterization of 
the stability properties of systems represented by automata- 
theoretic models, Petri nets, and finite state models. The 
manufacturing system and computer network applications are 
also given in Section IV, and some concluding remarks are 
given in Section V. 

11. A DISCRETE EVENT SYSTEM MODEL 

We will consider stability properties of discrete event sys- 
tems that can be accurately modeled with 

where X is the set of states, E is the set of events, 

for e E € are operators, 

g : x - - ( E )  - (0) (3) 

is the enablefunction, and E, C E’ is the set of valid event 
trajectories. Here, for an arbitrary set 2, - (Z)  denotes the 
power set of 2. We only require that fe(z) be defined when 
e E g ( s ) .  The inclusion of = ( E )  - (0) in the codomain of 
g ensures that there will always exist some event that can 
occur. If, for some physical system, it is possible that at some 
state there are no events to occur, this can be modeled by 
appending a null event (when it occurs the state stays the same 
and time advances). In this way systems that can “deadlock” 
or “terminate” at a state can also be modeled via G and studied 
in the Lyapunov stability theoretic framework developed here. 

We associate “time” indexes with the states and events so 
that Z k  E X represents the state at time IC E A and e k  E E 
represents an enabled event at time k E A if ek  E g ( Z k ) .  If at 
state z k  E X, event e k  E E occurs at time k E A (randomly, 
not necessarily according to any particular statistics), then the 
next state Z k + l  is given by application of the operator fe, , i.e., 
z k + l  = f e , ( Z k ) .  Note that since E, c E’, if the system is 
at a state z E X and events g ( z )  are enabled, then eventually 
one of the events must occur. Events can only occur if they 
lie on valid event trajectories as we now discuss. 
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Any sequence { X k }  E X’ such that for all k, ik+l  = 
f e k ( z k )  where ek E g ( z k ) ,  is a state trajectory. The set of 
all event trajectories denoted with E (E c E’) is composed 
of those sequences { e k }  E E’ such that there exists a state 
trajectory {zk}  E 2’ where for all k, e k  E g ( z k ) .  Hence, 
to each event trajectory, which specifies the order of the 
application of the operators f e ,  there corresponds a unique 
state trajectory (but, in Feneral, not vice versa). Define the 
set of valid event trajectories E,, so that E, C E’. The 
valid event trajectories represent the event trajectories that 
are physically possible in G. Hence, even if X k  E X and 
ek E g ( z k )  it is not the case that e k  can occur unless 
it lies on valid event trajectory that ends at Zk+l, where 
zk+l = f e h ( z k ) .  Hence, using G one normally first models 
the physical system via X, E ,  f e ,  and g .  Then E, is added 
to indicate which trajectories are and are not possible in the 
physical system. When we study the applications we shall see 
that the use of E, can facilitate the modeling of many DES 
and provide flexibility in the study of stability properties. The 
use of E, also makes the model G much more flexible than a 
standard state machine in the sense that it effectively combines 
the so called “state-based models” with the “path models” of 
DES. 

Let E,(xo) c E, denote the set of all possible valid 
event trajectories that begin from state xo E X .  Below, we 
shall also utilize a special set of allowed event trajectories 
denoted with E,, where E, c E,, and allowed event 
trajectories that begin at state 20 E X denoted by E,(xo). 
Note that since E,(zo) c E, c E c €’ all such event 
trajectories must be of infinite length. If one is concerned 
with the analysis of systems with finite length trajectories, 
this can be modeled with a null event as it is discussed 
above. 

Let Eh, for fixed k E A, denote an event sequence of k 
events that have occurred (by definition EO = 0, the empty 
sequence). If Ek = eo, e l ,  . . . , eh-1 we let EkE E E,(ZO) 
denote the concatenation of Ek and (the infinite sequence) 
E = ek ,ek+ l , - . . ,  i.e., EkE = e0,el,...,ek-llek,ek+1,.., . 
The value of the function X ( z o ,  E h ,  k) will be used to denote 
the state reached at time k from 20 E X by application of 
event sequence Ek such that EkE E E,(zo). (By definition, 
X ( z 0 , 0 , 0 )  = xo for all 20 E X.) For fixed xo and E k ,  
X ( z 0 ,  Ek, k) shall be called a motion (which is a function 
of k). For our model G, we assume that for all zo E X, 
if E E,(zo) and &E’ E E, (X(zo ,Ek ,k ) )  then 
EkEktE” E E,(zo); consequently, for all z o  E X ,  

for all k,k’ E A. This is the standard semigroup property 
for dynamical systems. (In Remark 2 it is explained how 
this assumption can be lifted and our results still hold.) This 
DES model provides a general enough framework to study the 
stability properties of automata-theoretic models, Petri nets, 
finite state systems, and a wide class of DES applications (see 
Section IV). 

111. NECESSARY AND SUFFICIENT CONDITIONS FOR 
THE STASILITY OF INVARIANT SETS OF 

DES IN A METRIC SPACE 

The following adapts the formulation developed in [l] to 
the study of stability properties of systems represented by 
the logical DES model introduced above. Note that stability 
of systems defined on normed linear spaces is treated in 
detail in [25]; however, this framework is inadequate due 
to the fact that the state spaces for the DES to be studied 
here cannot even be assumed to be vector spaces (e.g., for 
automata-theoretic models, Petri nets, and the applications 
in Section IV). Theorems 1 and 2 show that the stability 
framework in [l] can be extended to the case where for any 
state there can be an infinite number of possible next states 
(nondeterminism), and the case where local properties relative 
to event trajectories need to be studied. 

Let p : X x X + 5 denote a metric on X, and { X; p }  a met- 
ricspace. Let X, c X and p ( z ,  X,)  = inf(p(a, z’) : z/ E &} 
denote the distance from point x to the set X,. By afunctional 
we shall mean a mapping from an arbitrary set to 5. 

Dejinition 1: The r-neighborhood of an arbitrary set X, C 
X is denoted by the set S(X,; T )  = {z E X : 0 < p ( ~ ,  Xz) < 
r} where r > 0. 

Dejnition 2: The set X ,  c X is called invariant with 
respect to (w.r.t) G if from 50 E X ,  it follows that 
X ( z o , E k , k )  E X ,  for all ,??k such that E &(SO) 
and k E A where E is an infinite event sequence. 

Definition 3: A closed invariant set X ,  C X of G is 
called stable in the sense of Lyapunov w.r.t. E ,  if for any 
E > 0 it is possible to find a quantity 6 > 0 such that when 
p ( z 0 ,  X m )  < 6 we have p ( X ( Z 0 ,  Ek, k ) ,  X,) < & for d l  Ek 
such that EkE E Ea(zO) and k E A where E is an infinite 
event sequence. If, furthermore, p(X(e0 ,  Ek, k ) ,  X,) + 0 for 
all Ek such that EkE E E,(zo) as k -+ 00, then the closed 
invariant set X, of G is called asymptotically stable w.r.t. E,. 

Notice that the invariant set X ,  is automatically closed 
(with respect to { X ; p } )  due to the definition of invariance, 
As always these properties are local stability properties, i.e., 
with respect to some r-neighborhood. It follows directly from 
Definition 3 that if the closed invariant set X, c X of G is 
stable in the sense of Lyapunov (asymptotically stable) w.r.t 
E, then it is stable in the sense of Lyapunov (respectively, 
asymptotically stable) w.r.t all EL such that EL c E,. 

A closed invariant set X, c X of G is 
called unstable in the sense of Lyapunov w.r.t. E ,  if it is not 
stable in the sense of Lyapunov w.r.t E,. 

Definition 5: If the closed invariant set X ,  c X of G 
is asymptotically stable in the sense of Lyapunov w.r.t. E,, 
then the set X ,  of all states xo E X having the property 
p(X(a0,  Ek, k ) ,  X,) + 0 for all Ek such that EkE E E,(x~) 
as k --+ 00 is called the region of asymptotic stability of X ,  
w.r.t E,. 

Dejinition 6: The closed invariant set X, c X of G 
with region of asymptotic stability X ,  w.r.t. E, is called 
asymptotically stable in the large w.r.t. E,  if X, = X. 

The above definitions provide a conventional characteriza- 
tion of stability for logical DES. Some more recent studies of 

Dejinition 4: 
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various types of stability for logical DES are surveyed in the 
Introduction. 

Remark I :  Let XO denote a set of possible initial states and 
let X ,  contain the elements of all the motions X ( z 0 ,  Ek, k )  
such that 20 E XO and Ek satisfies EkE E E,(zo) where 
E is an infinite event sequence. Studying the stability of this 
invariant set X, is similar to the study of “orbital stability” in 
[25]. For this invariant set X ,  it could also be assumed that 
each of these motions visits some prespecified set X,  c X ,  
infinitely often or that the motions satisfy some other property. 
This shows one connection between the work in temporal 
logic and automata-theoretic studies [lo], [16] and Lyapunov 
stability analysis. 

The following theorems, which can be deduced from ex- 
isting theory (e.g., in [l]), provide necessary and sufficient 
conditions for Lyapunov and asymptotic stability of the DES 
defined in (1). 

Theorem I: For a closed invariant set X, c X of G to be 
stable in the sense of Lyapunov w.r.t. E,, it is necessary and 
sufficient that in a sufficiently small neighborhood S(X,; r )  
of the set X ,  there exists a specified functional V with the 
following properties: 

i) For all sufficiently small c1 > 0, it is possible to find 
a c2 > 0 such that V ( z )  > cz for z E S(X,; r )  and 

ii) For any c4 > 0 as small as desired, it is possible to 
find a c3 > 0 so small that when p ( z ,  X,) < c3 for 
z E S(X,;r) we have V ( z )  5 c4. 

iii) V ( X ( z 0 ,  Ek, k)) is a nonincreasing function for k E 
A, for zo E S(X,;r), for all k E A, as long 

P(z,Xm) > c1. 

as X ( z o , E k , k )  E S(X,;T) for d l  Ek such that 
EkE E Ea(z0). 

Proofi (Necessity) Let the closed invariant set X ,  c 
X be stable in the sense of Lyapunov w.r.t. E, for some 
r-neighborhood of 2,. We show that the conditions of The- 
orem 1 are satisfied. We choose a certain E > 0. According 
to Definition 3 there corresponds to a certain S > 0 such that 
when p ( z 0 ,  X,) < 6 we have p(X(z0 ,  Ek, k), X,) < E for 
dl Ek such that EkE E Ea(zo) and k E A. Let 

V ( z 0 )  = SUP{ p (X(z0 ,  Ek, IC), Xm) : 

v &,&E E &(so) and k E A} ( 5 )  

This defines the functional V ( z 0 )  for 20 E S(Xm; 6). 
1) The functional V ( z o )  satisfies i) since V(z0) >_ 

p(z0 ,  X,).  from which it follows that when p ( z 0 ,  X,) > cl ,  
p(zo,X,) < S, and c1 = czr we obtain V ( z 0 )  > cg. 

2)  For the c4 > 0 one can find c3 > 0 such that for 
p(z0,  X,) < c3 we have p(X(z0 ,  Ek, k ) ,  X,) < c4 for all 
Ek such that EkE E &(zo) and k E A. Hence, 

sup{p(X(zO,Ek, k),Xm) : 
V Eh, EkE E E,(zo) and k E A} 5 c4 (6) 

so V ( z 0 )  5 c4 for p ( z o , X , )  < c3; hence condition ii) is 
satisfied. 

I 
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3) Let 20 E S(Xm;6), then for all k ~ ‘ r , s u c h  that 
k E [O,T) (T is the time that the motion.escapes.the 6- 
neighborhood and it can be that T = 00) and for all Ek 
such that EkE E E,(zo) we have X ( z o ,  Ek, k )  E S(Xm; 6). 
Consequently, the value of the functional is defined at any 
point X ( z 0 ,  Ep,k’ ) ,  where k’ E A and k’ E [O,T) for all 
Ek‘ such that EklE E &(so). Notice that 

v(x(X0, Ek’t IC’)) = suP(p(X(x(z0 ,  Ek’, k‘), Ek, k), Xm) : 

v Ek, EkE E Ea(X(z0 ,  Ekr, k’)), 
V k E A }  (7) 

for k’ E [O,T) so that X ( z 0 ,  Ek1,k’) E S(Xm;6). Hence, 
for the 6 > 0 that exists for every chosen E > 0, V is a 
nonincreasing function of k on an r-neighborhood of X,. 

(Sufficiency) Let there exist a specified functional V with 
properties i), ii), and iii) in a certain neighborhood S(X,; r )  
(assume that S(X,;r) is nonvoid, for if it is void then the 
result holds trivially). We now show that the closed invariant 
set X ,  c X is stable in the sense of Lyapunov w.r.t. E,. 
,Take E > 0 and E < T and let 

x = inf{V(z) : 2 E S(X,; r ) ,  p ( z ,  x,) 2 E }  

(Since S(X,;r) is nonvoid, it can be assumed that E is 
chosen so that {V(z) : z E S(X,;r),p(z,X,) 2 E }  is a 
nonvoid set so that X is well defined.) By i) we have X > 0. 
From ii) it is possible to find for A, 6 > 0 such that for 
p(zo,X,) < 6, V ( z 0 )  < X for zo E S(X,;r). We show 
that 6 > 0 thus found corresponds to the chosen E > 0, i.e., 
when p ( z o , X , )  < 6 we get p(X(zo ,Ek,k) ,X, )  < E for 

opposite, namely that there exists a point 20 E S(Xm;6) 
such that for a finite k’ > 0 and Ekj such that EkjE E 
E,(zo), the inequality p(X(z0 ,  Ekr, k’), X,) 2 E holds. 
We know that p(X(z0 ,  Ekt, k’), X,) 5 r by condition iii) 
so that V is defined at X ( z 0 ,  E p ,  k’) and by definition of 
A, V ( X ( z o , E k ~ , k ’ ) )  >_ A. But by iii), V ( X ( z o , E k , k ) )  5 
V ( z o )  < X for all Ek such that E& E Ea(zo) and k E A 
which is a contradiction; hence the assumption is incorrect, 
and X ,  is stable in the sense of Lyapunov w.r.t. E,. H 

dl Ek Such that EkE E E,(zo) and k E A. Assume the 
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T h e m 2 :  For a closed invariant set X ,  C X of G 
to be asymptotically stable in the sense of Lyapunov w.r.t. 
E,, it is necessary and sufficient that in a sufficiently small 
neighborhsod S(X,; r ) ,  of the set X ,  there exists a specified 
functional V having properties i), ii), and iii) of Theorem 1 
and, furthermore, V ( X ( z 0 ,  Ek, k ) )  + 0 as k + 00 for all 
Ek such that EkE E E,(zo) and for d l  k E A as long as 
X ( z 0 ,  Ek, k) E s(Xm; r ) .  

Pro08 (Necessity) Let X ,  c X be asymptotically stable 
w.r.t. E,. Then X ,  is stable in the sense of Lyapunov w.rf 
E, and, consequently, in a sufficiently small neighborhood 
S(Xm;r ) ,  it is possible to construct a functional V(z0) (as 
in Theorem 1) which satisfies i), ii), and iii) of Theorem 1. 
By virtue of the asymptotic stability of X ,  w.r.t. E,, all 

and 20 E S(X,;6), remain in S(Xm;6) for all k E A for 
some 6 > 0. Let X ( z 0 ,  Ek, k) be one of these motions. Let 

EkE E E,(zo) where k -+ 00. For E’ > 0 we can find 

such that EkE E Ea(zo) for k 2 T. The existence of such T 
follows from the asymptotic stability. It is clear that 

the motions ~ ( z o ,  Eh, k )  with Ek such that EkE E E,(zo) 

us show that v ( x ( ~ o , E k , k ) )  -+ 0 for d l  Ek such that 

T > 0 such that p(X(z0 ,  Eh, k), X,) < E’ and for d l  Ek 

V ( X ( z o , E k , k ) )  = SUP{P(X(zo,EkEk~,k + k’),&) : 

VEk‘,EklE E Ea(X(zO,Ek,k))l  
VEki E A}. 

It follows from p(X(z0 ,  Ek+T, k + T ) ,  X,) < E’ for k E 
A that V ( X ( z o , E k , k ) )  5 E’ for k 2 T; consequently, 

(Sufficiency) Let the conditions of Theorem 2 be satisfied. 
Let us prove that the invariant set X ,  is asymptotically 
stable w.r.t. E,. From the satisfaction of the conditions of 
Theorem 2, it follows that in the neighborhood S(X,;r) 
there exists V(z0) satisfying conditions i), ii), and iii) of 
Theorem 1. Consequently, the set X ,  is stable in the sense 
of Lyapunov w.r.t. E,, i.e., for any E > 0 it is possible 
to find a 6 > 0 such that when p(z~,X,) < 6, we have 

for all k E A. Let us show that this 6 can at the same 
time be chosen so as to make p(X(zg ,Ek ,k ) ,X , )  + 0 
as k + +00 and for p ( z g , X m )  < 6. In fact, for the value 
of 6 > 0 obtained, we construct by means of the process 
indicated in the proof of Theorem 1 (as for E )  a 61 such that 
when p(x0 ,  X,) < 61, we have p(X(z0 ,  Ek, k), X,) < 6 for 

that V ( X ( z o , E k , k ) )  is defined for k E A and for all Ek 
such that EkE E E,(zo) for any 20 E S(Xm;61). Let us 
show that 61 is the one sought. We assume that this is not so, 
i.e., that there exists at least one point 20 E S(Xm;61) such 
that p(X(z0 ,  Ek, k), X,) > c1 > 0 for some c1 > 0 for some 
Ek such that E& E E,(zo) for infinitely many k E A. 
We then have V ( X ( z 0 ,  Ek ,k ) )  > cp > 0 in accordance 
with property i) for some cz > 0 for this Ek such that 
EkE E E,(zo) for infinitely many k E A which contradicts 

Remark 2: Although Theorems 1 and 2 rely on assuming 
that the semigroup property (4) holds, it is possible to prove 

V ( X ( z o , E k , k ) )  + 0 as k + +CO. 

p(X(z0 ,  Ek, k ) ,  X,) < E for d l  Ek such that EkE E Ea(zo) 

d l  Ek such that EkE E E,(zo) for d l  k E A. It is Clear 

the condition V ( X ( z 0 ,  Ek, k ) )  -+ 0 as k -+ +00. 

exactly the same results without this assumption. The basic 
approach follows along the same lines as the above proofs 
and is based on the results in [I ,  ch. 41. 

Iv. DISCRETE EVENT SYSTEM &PLICATIONS 

In this section, we explain the relevance of the Lyapunov 
framework to automata, Petri nets, and finite state systems. 
Then we show how to perform conventional Lyapunov stabil- 
ity analysis for two types of DES applications: 1) a manufac- 
turing system that processes batches of N different types of 
parts according to a priority scheme, and 2) a load balancing 
problem in computer networks. In each case we specify the 
logical DES model G and the invariant set X,, pick the 
metric p ,  choose the Lyapunov function V(z), then show that 
V(z) satisfies the appropriate properties. Detailed compari- 
sons to similar applications found in the literature are given 
throughout. 

A. Automata, Petri Nets, and Finite State Systems 
In this section, we show how the results of Section 111 can 

be used to characterize and analyze the stability properties 
of systems represented by automata-theoretic models like 
the “generator” in [2], General and Extended Petri nets [3], 
and finite state systems. This analysis helps to show 1) the 
relevance of Lyapunov stability to general logical DES models, 
and 2) some limitations of the proposed stability analysis 
approach. 

Assume that we have a DES model G& = ( Q ,  C, 6, E )  
where Q is the set of states, C is the set of events, 6 : 
C x Q + Q is the state transition function, and we allow all 
event trajectories (denoted by E) to occur. We emphasize that 
for Gaut we focus on general logical DES models where the 
state and event sets Q and C are nonnumeric, i.e., “symbolic,” 
and there are no particular assumptions about 6. In this general 
case, even though the “state space” of G& is completely 
unstructured, one can still metricize Q with the discrete metric 
p d  (pd(q,q’) = 0 if q = Q’, and p d ( q , q ’ )  = 1 if q = q‘). 
Relative to the metric space { Q ;  p d }  any closed invariant 
set Q ,  c Q for Gaut is stable in the sense of Lyapunov 
w.r.t. E and asymptotically stable w.r.t. E. This is the case 
since there are local properties. For asymptotic stability in the 
large w.r.t. E, we can let V(q)  = pd(q,Q,). Proving that 
Pd(qk,Qm) -+ 0 as k + 00 for all possible initial states 
and event trajectories involves showing that for all possible 
event trajectories and initial states there exists k’ > 0 such 
that P d ( Q k ‘ ,  Q m )  = 0. Hence the Lyapunov framework (for a 
metric space) offers little in the way of analysis in such general 
cases (the analysis reduces to the study of invariant sets). 

Any system that can be represented with the General and 
Extended Petri nets [3] can also be represented with our DES 
model (1). For the Petri net X = A~ and if z = [XI . . . z,It 
and z’ = [zi ...zilt then pl(z,z’) = Er=, 1zi is a 
valid choice for a metric. While any invariant set X ,  c X is 
stable in the sense of Lyapunov w.r.t. E and asymptotically 
stable w.r.t. E (relative to the metric space {X; p l } ) ,  the use of 
V = p1 can sometimes be useful in the analysis of asymptotic 
stability in the large w.r.t. E (see the results and Petri net 
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e,i, ed i  “type” of event we mean an event epi,  eai, and edi for 
any “ p i ,  a n i r  and a d i .  respectively. It is assumed that jobs are 
infinitely divisible so that, for example, a batch of 5.23 jobs 
can be placed into buffer B;, 2.01 of these jobs can be placed 
into the machine for processing, then 1.999 of these can be 
processed. Note, however, that results similar to those below 
also hold for discretejobs as it was shown in [4], 151. Let $+ 
denote the set of nonnegative reals and $+ = $+ U (0). Let 
y E (0,1] denote a fixed parameter. According to the above 
specifications, the enable function g and event operators fe 

i) If xi  < bi for some i, 1 5 i 5 N, then epi E g(zk) 
Pl-Bin P2-Bin ... &-Bin for e E g(zk) are defined below. 

and fe,, (Zk) = [ 2 1 2 2  . . . S i  a p i  . . . x ~ x ~ + i x ~ + 2  . . . 2 2 N l t ,  
Fig. 1. Manufacturing system with priority batch processing. 

applications in [26]). For finite state systems defined on a 
metric space, it is the case that for all x,x’ E X there exists 
y > 0 such that p(x,x’) > y. Hence, all G such that 1x1 is 
finite are stable in the sense of Lyapunov and asymptotically 
stable as in the automata model case. As for the Petri net 
case, the analysis of asymptotic stability in the large can, 
in some cases, be facilitated with the Lyapunov framework. 
For example, in [5] the authors use the Lyapunov framework 
of Section III to analyze asymptotic stability in the large for 
Dijkstra’s self-stabilizing distributed system [27, 281 that has 
been studied via a temporal logic framework in [8]. 

B. Manufacturing System 

Consider the manufacturing system shown in Fig. 1 that 
processes batches of N different types of jobs according to a 
priority scheme. Here we use the term “job” in a general sense. 
For us, the completion of a job may mean the processing of 
a batch of 10 parfs, the processing of a batch of 5.103 tasks, 
etc. There are N producers Pi. where 1 5 i 5 N, of jobs of 
different types. The producers Pi place batches of their jobs in 
their respective buffers Bi, where 1 5 i 5 N .  These buffers 
Bi have safe capacity limits of bi where bi > 0, 1 5 i 5 N .  
Let xi, 1 5 i 5 N, denote the number of jobs in buffer Bi. 
Let xi for N + 1 5 i 5 2N denote the number of P ~ - N  type 
jobs in the machine. The machine can safely process less than 
or equal to M (where M > 0) jobs of any type, at any time. 
As the machine finishes processing batches of Pi type jobs 
they are placed in their respective output bins (Pi-bins). The 
producers Pi can only place batches of jobs in their buffers B; 
if xi < b;. Also, there is a priority scheme whereby batches of 
Pi type jobs are only allowed to enter the machine if xj = 0 
for all j such that j < i 5 N, i.e., only if there are no jobs in 
any buffers to the left of the B; buffer. Next, we specify the 
DES model G for the manufacturing system. 

k t  x = S z N  and zk E x, where zk = [ X i x z . . .  

Z N Z N + l x N + 2 . .  . Z 2 N I t  (t denotes transpose) denote the state 
at time k. Let the set of events E be composed of events epi for 
1 5 i 5 N (representing the case where producer Pi places 
a batch of api jobs in buffer Bi), events e,i for 1 5 i 5 N 
(representing the case where a batch of a,i Pi jobs, from 
buffer Bi, arrive at the machine for processing), and events 
e d i  for 1 5 i 5 N (representing the case where a batch of a,; 
Pi jobs depart from the machine after they are processed and 
are placed in their respective output bins). When we say a epi, 

where api E $+, api 5 Ixi - b;I. 
ii) If C;zNfl < M, and for some i, 1 5 i 5 N ,  xi  > 0, 

and xl = 0 for all 2, 2 5 i 5 N, then e,i E g(zk) and 

a,; - . . x 2 N ] t ,  whereyxi 5 a,i 5 m i n { z i l C ~ z N + , z j - ~ } .  
iii) If xi > 0 for any i, 1 5 i 5 N ,  then edi  E g(zk) and 

fe,, (zk) = [E122 ’ * ’ xi - a,i ’ ’ . x N x N + l x N + 2  . * xN+i + 

fed, (zk) = [ 2 1 2 2  ‘ . * x N x N + l x N + 2  ’ ‘ ’ x N + i  - a d i  * ’ . x 2 N I t *  
where y x ~ + i  5 a d i  5 X N + ~ .  

For i) each time an event epi occurs, some amount of jobs 
arrive at the buffers but the producers will never overfill the 
buffers. For ii), the e,* are enabled only if the machine is 
not too full and the ith buffer has appropriate priority. The 
number of jobs that can arrive at the machine is limited by 
the number available in the buffers and by how many the 
machine can process at once. We require that yxi 5 aQi so 
that nonneglible batches of jobs arrive when they are allowed 
to. The constraints on a d i  in iii) ensure that the number of jobs 
that can depart the machine is limited by the number of jobs 
in the machine and that nonegligible amounts of jobs depart 
from the machine. We let E, = E, i.e., the set of all event 
trajectories is defined by g and fe for e E g(zk). The system 
operates in a standard asynchronous fashion. 

This manufacturing system is a generalization of computer 
systems often used in the study of a simple “mutual exclusion 
problem” in computer science [3], [7] and similar to several 
applications studied in the DES literature. For instance, if 
20 = 0 and (Ypi = a,; = a d ,  = 1 for d l  2, 1 5 5 N ,  for d l  
times then our manufacturing system is similar to the “Two 
Class Parts Processing” example in [8] (except they allow an 
arbitrary finite number of parts to enter their machine and 
consider only two producers), and the manufacturing system 
example in [9], [lo] (they also consider only two producers). 

Let 

Z E  X : x i  5 b; V i , 1 5  i 5 N ,  

2N 

and xj 5 M 
j = N + l  

which represents all states for which the manufacturing system 
is in a safe operating mode. It is easy to see that X ,  is invariant 
by letting z k  E X ,  and showing that no matter which event 
occurs it is the case that the next state z k + l  E X,. The 
invariance of X ,  is the property of the manufacturing system 
that has been studied extensively in similar manufacturing 
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system examples [8]-[lo]. Also, if M = 1, N = 2, zo = 0, 
a p i  = crai = adi = 1 for all i, 1 5 i 5 N, for all times, and 
the priority scheme is removed, then the proof of the invariance 
of X,,, is equivalent to proving the mutual exclusion property 
often studied in the computer science mentioned above. 

Here, we provide a new study of the stability properties 
of the above manufacturing system. Intuitively this will, for 
instance, show that under certain conditions, if the manufac- 
turing system starts in an unsafe operating mode (too many 
jobs in a buffer or in the machine, or both), it will eventually 
retum to a safe operating condition. This is more carefully 
quantified in the following propositions and their proofs. Let 

and Z‘ = [T;.-.T/~~]~ (we often omit the w’). For this 
manufacturing system example we assume that 

zk = [E1 * .  ’ x 2 N l t ,  Z k + l  = [dl * ’ . x / 2 N l t ,  f = [31 * * “F2N]ty 

Proposition I :  For the manufacturing system, the closed 
invariant set X,,, is stable in the sense of Lyapunov w.r.t E,. 

Proof: Choose V l ( z k )  = p ( z k , X m ) .  We will show that 
V l ( z k )  satisfies conditions i), ii), and iii) of Theorem 1 for all 
Z k  # X,. Conditions i) and ii) follow directly from the choice 
of V l ( z k ) .  For condition iii), we show that V I ( Z ~ )  2 V l ( z k + l )  

for all z k  6 X,, no matter what event e E g(zk) occurs 
causing zk+l = fe(zk), as long as it lies on an event trajectory 
in E,. 

a) For Z k  # X,,, if e p i  occurs for some i, 1 5 i 5 N, then 
we need to show that 

It suffices to show that for all Z E A’, at which the inf is 
achieved on the left of (7), there exists E’ E X,,, such that 

j = 1  j = l  
j#1  

If we choose Zi = Zl for all 1 # i then it suffices to show that 
for all Z i ,  0 5 Zi 5 b i ,  at which the inf on the left side of 
(12) is achieved there exists TE;, 0 5 5 b i ,  such that 

where &pi 5 Ixi - bil. Choosing 3; = xi + api so that 
0 5 2: 5 bi, results in Z’ E A’,,, and the satisfaction of (14). 

b) For z k  # X,,, if e,i occurs for some i, 1 5 i 5 N, then 
following the above approach it suffices to show that for all 
f E Xm at which the inf is achieved there exists Z’ E Xm 
such that 

Choosing 
for all Ti, Z N + ~  there exists T;, ?t?&+i such that both 

= Ti for all 1 # i, N + i it suffices to show that 

and 

For (16), if xi 5 b; then the inf is achieved so that 12; - Ti I = 

at ~i = bi so clearly 1xi - biI 2 [ x i  - a , i  - T J  since either 
T i  = bi or E; = xi - a , i .  The case for (17) is similar to case 
a) above. The case for edi  is similar to the case for (16). H 

Proposition 2: For the manufacturing system, the closed 
invariant set Xm is not asymptotically stable in the large 
w.r.t. E,. 

Proof: We show that for some zo # X,,, there exists 
E k E  E E, such that it is not the case that 
V l ( X ( z o , E k , k ) )  --$ 0 as k + +W. In fact, we show 
two reasons why asymptotic stability is not achieved: 
1) Consider the case where xi > bi for all 1 5 i 5 N 
(but where the machine is in a safe operating zone) and 

allowable event trajectory represents the case where PI 
type jobs enter the machine for processing (and possibly 
are processed and output) until B 1  is well within in a safe 
operating zone (x1 < b l )  then each time a PI job is produced 
and put in B 1 ,  it is placed in the machine from B 1  and the 
machine processes and outputs it, PI puts another job in B1 
and repeats the process. For this E k E  E E,, for all k E A 
there exists a k-I 2 k for which X(z0 ,  E k t  , k’) $! X,. By the 
satisfaction of condition i) of Theorem 1, it is not the case that 
V ’ ( z k )  + 0 for the chosen E k E  E E,(zo). 2) Let xi > bi 
for all i, 1 5 i 5 N .  Assume that X N + ~  > 0 for some i and 
that e d i  occurs to process Pi type jobs and puts them into the 
Pi-bin. If for each successive time a& = y x ~ + i  it can be the 
case that E = e d i e d i e d i  (a constant string) where E E E,. 
Hence the remainder of the events that occur are to reduce 
the number of Pi parts in the machine and no events occur to 
reduce the number of jobs in the buffers resulting in the lack 

H 
Notice that for the counterexamples to asymptotic stability 

provided in the proof of Proposition 2, case 1) essentially 
results from the priority ordering of the buffers and 2) results 
from the fact that jobs are infinitely divisible. Next, we provide 
an added assumption from which asymptotic stability in the 
large can be achieved. Let E, c E, denote the set of event 
trajectories such that each type of event e p i ,  e , i ,  and e d i ,  

Ixi - a,i - --I xi I - - 0, whereas if xi > bi, the inf is achieved 

E k E  = ea17 e a l , .  . ., e a l ,  e p l ,  ea19 e d l ,  e p l ,  e a l ,  e d l ,  * * * *  This 

of asymptotic stability in the large w.r.t. E,. 
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1 5 i 5 N, occurs infinitely often on each event trajectory 
E E E,. If we assume for the manufacturing system that only 
events which lie on event trajectories in E, occur, then it is 
always the case that eventually each type of event (ep; ,  e,;, 
and edi, 1 5 i 5 N) will occur. 

Proposition 3: For the manufacturing system, the closed 
invariant set X ,  is asymptotically stable in the large w.r.t. E, 
where E, c E, as defined above. 

Proof: By Proposition 1, X, is stable in the sense of 
Lyapunov w.r.t. E,. To show asymptotic stability we show 
that & ( Z k )  + 0 for all E k  such that EkE E E,(zo) as 
k -+ +CO for d l  Z k  $? X,. Since aai 2 y X ;  and a d ;  2 yxN+i 
where 7 E (0,1] if e,; and ed; where i, 1 5 i 5 N occur 
infinitely often as the restrictions on E, guarantee, 2; and 
X N + ~  will converge so that V ~ ( z k )  -+ 0 as k -+ +m (of 
course it could be that v ( Z k )  = 0 for some finite k). Hence, 
if the manufacturing system starts out in an unsafe operating 
mode, it will eventually enter a safe operating mode. 

The use of the set E, for the manufacturing system imposes 
what is called a “fairness’ constraint in computer science (in 
our example we require that each producer P; get fair use of 
the machine) [29]. One can guarantee that the faimess con- 
straint can be met via the use of a mechanism for sequencing 
access to the machine. Such fairness constraints are also used 
in the study of temporal logic [7], [12], the mutual exclusion 
problem in computer science [28], and in [21] when the author 
studies conditions under which the Lyapunov function can be 
constructed mechanically for a class of logical DES. 

C. Computer Network Load Balancing Problem 
Consider a network of computers described by an directed 

graph ( C , A )  where C = {1,2 , . . . ,N} represents a set of 
computers that are numbered with i E C,  and A c C x C is 
the set of connections between the computers. We require that 
if i E C then there exists ( z , j )  E A or ( j , i )  E A for some 
j E C (i.e., every computer is connected to the network). 
Also, if (i,j) E A then ( j , i )  E A and if ( i , j )  E A i # j. 
Each computer has a buffer which holds tasks (load), each of 
which can be executed by any computer in the network. Let 
the load of computer i E C be given by xi; hence, x ;  2 0. 
Each connection in the network (i, j) E A allows for computer 
i to pass a portion of its load to computer j. It also allows 
computer i to sense the size of the load of computer j (for any 
two computers i and j such that ( i , j )  $? A, i may not pass 
load directly to j or sense the size of j’s load). 

We assume that initially the distribution of the load across 
the computers is uneven and seek to prove properties relating 
to the system, achieving a more even distribution of tasks so 
that the computers in the network are more fully utilized. For 
convenience, we assume that the computers will not begin 
working on any of the tasks or receive any more to process 
until the load has been balanced. (Under certain conditions 
this assumption can be lifted, and our analysis still applies as 
we discuss below in Remark 4.) 

Below we will consider two different cases: 1) continuous 
load: when the load is infinitely divisible (sometimes called 
“fluid load”), and 2) discrete load: when the load is in the 

form of fixed uniform-sized blocks that cannot be subdivided. 
The two cases are significantly different since, as it is ex- 
plained below. In the discrete load case there are more severe 
restrictions on what can be passed so that it is only possible 
to achieve less than perfect balancing. 

Continuous Load: First, we specify the model G. Let X = 
$ N  denote the set of states and Zk = [ X ~ Z ~ . . . Z N ] ~  and 
Z ~ + I  = [xixk . . . X L ] ~  denote the state at time k and k + 1, 
respectively. Let e?k denote the event that represents the 
passing of a k  amount of load from computer i to computer 
j at time k (often we omit the subscript k). If the state is 
Z k ,  then for some ( i , j )  E A, ezk  occurs to produce the next 
state Zk+l. Let € = {e: : (z,j) E A,.? E $+} denote the 
(infinite) set of events (notice that all e: such that ( i , j )  E A 
are valid events). Below, when we say “an event of type e?” 
we mean any event e? (or e:) that represents the passing of 
load between i and j (i.e., for any a 2 0). For the specification 
of g and fe for e E g ( z k )  let y E (0, f]: 

a) If for any ( i , j )  E A, xi > xj, then e: E g(zk) 
and fe(Zk) = zk+l where e = e:, x: := z; - a, x;  := 
x j  + ff, x i  := xk for all k # i , j ,  and ylxi - x j I  5 5 
(1/2)121 - X j l .  

b) if for any ( i , j )  E A, 2; = x j  then e$ E g ( Z k )  and 
fe(zk) = Z k  where e:’. 

Let E, = E and X,  = {z E X : xi = x j  for all (i, j )  E A} 
(representing perfect balancing) which is clearly invariant. Let 
E, c E, denote the set of event trajectories such that events 
of each type e: occur infinitely often on each E E E,. This 
fairness constraint is used to ensure that each pair of connected 
computers will continually try to balance the load between 
them. 

This load balancing problem is similar to the one in [30] 
except the conditions for load passing here are different: at 
each time where load is passed from computer i to one of its 
neighbors j, such that (i,j) E A, it is not required here to 
pass load to the lightest loaded neighbor. Also, as we shall 
see below, we guarantee that the load will eventually balance 
only under a fairness assumption given by E, and not the 
“partial asynchronism assumption” in [30]. However, in [30], 
they allow for the possibility that a computer’s information 
about the load of adjacent computers is outdated and when load 
is sent to a neighboring computer, there may be a delay in its 
arrival, and achieve geometric convergence with their partial 
asynchronism assumption when simultaneous load passing is 
possible. Various forms of the load balancing problem have 
also been studied in the DES literature [31] and extensively 
studied in the computer science literature (See [30]-[321 and 
the references therein). 

The following Proposition and subsequent Remarks provide 
a new characterization and analysis of the Lyapunov and 
asymptotic stability of the computer network load balanc- 
ing problem described above. Let Z = [TI . . . : N ] ~ ,  Z’ = 
[Ti. .  .-’ x N ]  , and choose 
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Proposition 4: For the computer network load balancing 
problem with continuous load, the closed invariant set X ,  is 
asymptotically stable in the large w.r.t. E, where E, C E, 
as defined above. 

Pmo$ Choose 

W Z k )  = P ( Z k ,  Xc)  (18) 

so that conditions i) and ii) of Theorem 1 are satisfied. For 
condition iii) of Theorem 1, we must show that for all zk $2 X,  
and all e? E g(zk) when e? occurs V~(zk)  2 VZ(ZS+I), i.e., 
that 

for 1 # m, 1x1 - 2 Ixi - T[l. Hence, each time e; occurs 
(a > 0), definite progress is made towards balancing the load 
between i and j. Due to the restrictions on E,, events of each 
type e? will be enabled and occur for all k 2 0 so that from 
(21) the load that deviates most from balancing (as measured 
by Vz) must be reduced eventually. Hence, it must always 
be the case that there exists k such that for some k’ 2 k, 
V , ( Z ~ ) )  > Vz(zk’+~) as long as Zk 6 X,  so VZ(zk) + 0 as 
k + 00 for all Ek such that EkE E E,. Hence, the system is 
asymptotically stable in the large w.r.t. E,. 

Proposition 5: For the computer network load balancing 

i) is stable in the sense of Lyapunov w.r.t. E,. 
ii) is not asymptotically stable w.r.t. E,. 

problem with continuous load X,  

Proo$ For i), notice that with E,, we are still guaranteed 
that &(zk) 2 Vz(zk+l) for all k 2 0. For ii), without the 
fairness restrictions imposed by E, some ( i , j )  E A may try 
to balance at each time instant so that no other load imbalances 
can be reduced. 

Remark 3: If simultaneous events are allowed (i.e., i and j, 
(i, j )  6 A can pass load at the same time instant), Proposition 
4 is still valid and this can be shown using 

Xc denote the set Of points at which the inf On the 
left of (19) is achieved. It suffices to show that for all Z E X *  
there exists & E X,  such that 

max(Ix1 - ~ 1 1 , . . - , 1 z N  -ENJ} 2 max(Ix1 -%{I, 
. . . ,[xi - a - $ 1 ,  
* * * ,  1xj + a  -?til, 
‘ ’ * , IxN - . N j=1 

N 

&(z) = maxi{ c x j  -xi} (23) 

as the Lyapunov function (of course appropriate events that 
(20) 

_ _  - 

represent the simultaneous occurrence of several of the above 
events must be defined) [331. 

Discretebad: In [4], [5], the authors study a load bal- 

Choose ?F[ = Tl for all 1 # i , j .  It suffices to show that for all 
Z E X* there exist Ti ,  ??j such that 

For each Z E X *  there exist x*, x* E 5: such that 
Ti = 3j = x* and T i  = G j  = x*. Therefore, it suffices to 
show that for all x* there exists z* such that 

m u {  [xi - x*1, Jxj - x*I} > m a {  Ixi - a - x*1, 
Ixj + a  - x*l}. (22) 

The validity of (22) is shown by considering all xi, xj such 
that x; > z j :  

a) If xi 2 x* and xj 2 x* or xi 5 x* and xj 5 x* then 
choosing x* = x* results in the satisfaction of (22). 

b) If I; > x* and xj < x* then again choose x+ = x*: 
i) Since 2a 5 [xi - xjl, it is the case that xj + a 5 

xi - a,  so that [xi - a - x*I 2 Ixj + a - x*I. 
ii) Since a 2 rlsi - xjl, it is the case that xi > xi - a,  

so that 1xi - x*1 > 1xi - a - x*1 resulting in the 
satisfaction of (22). 

This completes the proof that X,  is stable in the sense 
of Lyapunov w.r.t. E,. Next, we must show that X,  is 
asymptotically stable in the large w.r.t. E,. Notice that from 
the proof of (21) each time e? occurs (a > 0), 15, - T,l > 

- TA1 where m = i or m = j (or in both cases), and 

ancing problem where the load is discrete. In this case, it is 
assumed that any task can be executed on any computer, but 
that the tasks cannot be infinitely subdivided. The same graph 
(C, A) is used to describe the computer network. Discrete 
loads are quite common in computer networks since it is often 
the case that “jobs” in such networks can at most be broken 
down into bits, bytes, or some other finite block. 

It is important to note that the discrete load case is not 
a special case of the continuous load case for the following 
reasons: 1) the fairness constraint imposed by E, can be 
lifted, 2) for the continuous load case there are, in general, an 
uncountably infinite number of different events that can occur 
at each state where the load is not balanced whereas, in any 
state where the load is not balanced for the discrete load case, 
there are only a finite number of possible events that can occur, 
and 3) since the testing of whether or not the load is balanced 
can only be performed locally, and there may not be the proper 
number of load blocks to achieve perfect balancing, it is the 
case that only an imperfect type of balancing is possible in 
the discrete load case. Essentially, since the load is discrete, 
the system does not have as many ways to perform redistribu- 
tion so that only imperfect load balancing can be achieved. The 
exact nature of this problem is more carefully quantified with 
the following model for the discrete load balancing problem 
and the subsequent stability analysis. 

For the model for the discrete load case we use G‘ = 
( X ’ , € ‘ , f & g ’ , E L )  where X ’ =  AN and E ’  = {e? : ( i , j )  E 
A,a E A - (0)) U {e’} is the set of events for G’ where 
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e? is defined similar to above (including “types” of e?) and 
eo is a null event. Let M E A - (0) be the amount of load 
imbalance tolerated between any two computers i and j where 
( i , j )  E A. Next we specify g’ and f,‘ for e E g’(zk): 

i) If for any ( i , j )  E A, Izi - xjl > M then if xi > zj, 
then e? E g’(zk) and f,‘(zk) = zk+l where e = e:, 
xi := xi - a, xi := xj + a, xh := Xk for all IC # i , j ,  
and 0 < a 5 (1/2)(xi - zj) for a E A. 

ii) If for all ( i , j )  E A, Izi - zjl 5 M ,  then eo E g(zk) 
and fe(zk) = z k  where e = eo. 

Let E: = E’ and X d  = {z E X ’  : lzi-zjl 5 
M for all ( i , j )  E A} which is clearly invariant and which 
represents less than perfect balancing. 

Note that as in Section 1V.A in the study of automata, 
Petri nets, and finite state systems, for the discrete load 
balancing problem Xd is trivially stable in the sense of 
Lyapunov and asymptotically stable w.r.t. E:; but these are 
only local properties. The following result shows the utility of 
the Lyapunov approach for DES stability analysis for systems 
with a discrete metric space by studying asymptotic stability 
in the large, i.e., a nonlocal stability property. 

Proposition 6: For the computer network load balancing 
problem with discrete load, the closed invariant set X d  is 
asymptotically stable in the large w.r.t. E:. 

Proof: For stability in the sense of Lyapunov, the proof 
is similar to that of Proposition 4 except that an extended case 
analysis is needed to show the validity of (21). We omit the 
proof in the interest of saving space. The same metric and 
Lyapunov function can be used and the details are given in 
[ 5 ] .  Next, we must show that X d  is asymptotically stable in 
the large w.r.t. E:. The proof is similar to that for Proposition 
4 but now we are always guaranteed that the lightest loaded 
computer will receive more load to process in a finite amount 
of time until the load is balanced. 

Proposition 6 shows that the use of discrete load restricts 
the passing of load (there are fewer enabled events at each 
state) so that, in general, less than perfect balancing can be 
achieved. It is important to note that the necessary use of M 
to quantify the tolerable imbalance between i and j ,  (i, j )  E A 
can propagate through a large network (C, A). Hence, when the 
load is balanced in the discrete load case there may be a large 
difference between the loads in two unconnected computers 
(e.g., each successive set of arcs in a path in (C, A) can allow 
for another M amount of imbalance). Also note that due to the 
discrete load assumption no restrictions are needed on E: (as 
for the continuous load case for E,) to ensure that asymptotic 
stability in the large is achieved. 

Remurk4: If, for either the discrete or continuous load 
cases, tasks enter the computer network or get processed by 
one of the computers i E C we let a new initial state zo 
reflect the increased or decreased load, and the above stability 
analysis shows that the load will still eventually balance 
provided that new tasks arrive and tasks depart sufficiently 
slower than the load is balanced. (This characteristic was also 
discussed in [30].) In fact, for the discrete load case, if the 
total amount of load is finite then it will take a finite amount 
of time for the load to become balanced. 

V. CONCLUSIONS 
It has been shown that it is possible to define and study 

Lyapunov stability of a wide class of logical DES by adapting 
the metric space formulation in [ 11. Hence, logical DES, which 
have recently received much attention in the literature, are 
amenable to conventional stability analysis via the choosing 
of appropriate Lyapunov functions. Other notions of stability 
and more recent stability analysis techniques based on methods 
from theoretical computer science (surveyed in the Introduc- 
tion) are often prohibitive due to problems with computational 
complexity. Here, we avoid these problems with computational 
complexity but instead rely on the specification of Lyapunov 
functions that satisfy certain properties. We have provided a 
general characterization of the stability properties of automata- 
theoretic models such as the “generator” in [2], General and 
Extended Petri nets, and finite state systems. Furthermore, 
we have shown that it is not difficult to specify Lyapunov 
functions for two types of DES applications: a manufacturing 
system that processes batches of N different types of parts 
according to a priority scheme and a load balancing problem 
in computer networks, Our characterization and analysis of 
stability of DES in a traditional stability-theoretic framework 
will, in the future, allow researchers to use the vast body of 
concepts from the field of Lyapunov stability theory to study 
properties of DES. 
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