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summary 

This paper summarizes recent results in the development of 
optimal design of direct model reference adaptive controllers. 
Two methods have been developed: one employs an analytic 
averaging technique for solving a constrained nonlinear 
optimization problem yielding a close-form solution; the other 
method uses a numerical optimization approach with high-level 
learning capability. These two approaches are outlined below. 
A mathematical model of a flexible structure experiment facility 
was employed for testing the two design approaches. Numerical 
results are discussed and comparative analysis is performed to 
show the merit of these methods. 

An Averaging Approach to Optimal Adaptive . 
Control of Large Space Structures 

Averaging methods applied to analyze the transient 
response associated with the adaptive control of large space 
structures. Using a dominant mode approximation to the plant, 
an analytical bound is found for the envelope of the adaptive 
response, which characterizes many of the features of the 
response useful for control design (e.g., peak values,and 
settling times). An optimal adaptive design methodology is then 
formulated based on these expressions. In particular, the 
product of the settling time and peak torque requirement is 
chosen to be minimized, since both are required to be small in 
practice. This leads to a constrained nonlinear optimization 
problem which, somewhat surprisingly, can be solved in closed- 
form to give the optimal adaptive design. Several interesting 
properties of the optimal adaptive solution are discussed 
including a threshold adaptation gain (TAG) principle. The 
TAG principle states that there exists a natural threshold beyond 
which the adaptation gain weight acts to increase the peak toque 
requirement without improving the settling time. Interestingly, 
the optimal adaptive design corresponds to setting the adaptive 
gain weight precisely to its threshold value. Explicit design 
formulas are given for these threshold values, and the TAG 
principle is verified by simulation. Further details of the method 
are presented below. 

To date, adaptive systems have been designed almost 
exclusively using stability-based criteria. the reason for this is 
essentially due to the availability of analytical tools, (e.g., 
Lyapunov stability theory, Hyperstability, etc.) for studying the 
asymptotic portion of the adaptive response. The main results 
from such investigations are typically adaptive designs which 
guarantee stability of the closed-loop system in the presence of 
some prescribed degree of parameter uncertainty. However, 
such designs make no guarantee as to the transient performance, 
even when additional plant knowledge is available to the 
designer. This leads one to wonder whether such a-priori 
knowledge can be systematically incorporated into the adaptive 
design process to assure designs which not only are stable, but 
which provide optimal performance with respect to some 

specified criteria. 
In contrast to stability based approaches to adaptive 

design, optimality based approaches must focus on analyzing the 
transient portion of the adaptive response. This task is 
inherently more difficult since it involves characterizing and 
optimizing the transient solution of a highly nonlinear differential 
equation. Using the adaptive algorithm for control of large 
space structures, several results have been obtained along these 
lines. In [6], averaging methods were developed to characterize 
the envelope equation which is generally much simpler to work 
with than the original system dynamics; also its solutions are 
generally much smoother. Furthermore, the envelope 
characterizes many of the "features" of the response useful for 
optimal control design (e.g., peak values, quadratic costs, 
settling times, etc.). Using the envelope equation, closed-form 
expressions were developed for the peak toque requirement and 
settling time in [7]. 

Using averaging methods, an optimal adaptive design 
methodology was established based on the solution to a 
particular constrained nonlinear optimization problem. The 
optimization criteria is to minimize the product of the settling 
time and peak torque requirement. The constraints on the 
optimization problem arise naturally due to stability 
considerations and to ensure accuracy of the averaged 
expressions. Using an approximation to the error function and a 
judicious change of variables, the global optimal solution is 
found in closed-form. This gives rise to a systematic optimal 
adaptive design methodology and several insights into properties 
of the optimal design. (See also [SI). Note that this method has 
also been extended to the multivariable case [9]. 

Averaging methods have been around for a long time. 
These methods were developed in Russia by Kryloff and 
Bogoliuboff [ 141 for application to nonlinear oscillator equations 
and the theory was subsequently extended and enhanced [ 15- 
181. The application of averaging methods to adaptive control is 
not new. In fact, there is presently an entire book dedicated to 
the subject 1191. To date, however, averaging methods have 
been used only to characterize the asymptotic properties of the 
adaptive response with respect to stability properties. The 
application of averaging methods to analyze and optimize the 
transient portion of the response appears to be novel. 
Furthermore, the approach taken here is somewhat different than 
the time-scale decomposition methods of 1191, and is more in 
line with earlier treatments of averaging arising in the theory of 
nonlinear oscillations 114-161. 

Parameter Learning for Performance Adaptation 

The goal of the machine learning method discussed here, 
as applied to the flexible space antenna, is to broaden the region 
of operability of the adaptive control system by allowing the 
controller parameters to better adapt to different plant and 
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environmental conditions. These operating conditions may 
cause the nominal adaptive system to exceed the tolerances of its 
design. The parameter learning system determines parameter 
values for optimal performance for given operating conditions 
and then stores them in memory. In this way, the controller is 
able to operate effectively over a wider region. It should be 
noted that, at the local level, the parameter learning system 
performs parameter auto-tuning; the overall system, however, 
does more than this as it learns and it uses the results of auto- 
tuning to expand the region of operability of the control system. 

It is very difficult to control the transient response and the 
performance of an adaptive control system. This is so because 
of the mathematical complexity of the nonlinear relationship 
between the design parameters in the adaptive controller and the 
output of the compensated system, even for quite simple plants 
and only recently progress has been made [6,7,8,9]. The 
parameter learning approach introduced here is general and it 
offers a viable alternative to analytical approaches and can be 
used when either no such methods exist or existing methods are 
too cumbersome. Details of the method are given below. 

This learning approach is applicable to any control system 
where performance depends on a number of adjustable 
parameters. The mathematical relation between the performance 
and the parameters does not need to be known. Given particular 
values for the parameters, a performance index is evaluated via 
computer simulation or physical experiment; if the mathematical 
relation is known, the performance evaluation can be done 
directly. The learning system determines the next set of 
parameters in a process leading to an optimum performance. In 
effect, the learning system guides the selection of parameters for 
optimization; this procedure seems to be a form of learning by 
observation and discovery rather than learning by example since 
the experiments are generated by the system itself. After the best 
parameter values have been discovered, they are stored in 
memory along with the corresponding operating conditions. 
This provides the memory which is a necessary element for 
learning. When the same operating conditions recur, (here it is 
assumed that the information about the type of operating 
conditions is provided to the learning system) the system selects 
the appropriate controller parameter values it has learned. 
Interpolation is used to select values when similar, but not the 
same, conditions occur. A more detailed description of the 
method is now given. 

The role of the parameter learning system described here is 
first to determine the best parameter values given certain system 
3perating conditions, and then to store these values in memory 
for future use. This approach incorporating learning has been 
discussed in [1,3,10,11,12,13]. This parameter learning 
method is applicable to any system where performance depends 
on a number of adjustable parameters; furthermore, a 
mathematical model is not necessary as the learning system can 
be used whenever the performance can be measured via 
simulation or experiment. A particular application of this 
learning system to the control of a space antenna is described in 
[13] and will be discussed in the presentation. 

The functional diagram of the parameter learning system is 
given in Figure 1. First, initial parameter values are assigned; 
these values can be assigned randomly or using information 
about the system's behavior, which can be accomplished by 
utilizing data stored in memory or by some other method such as 
a systematic procedure over a grid to determine an approximate 
map of the performance surface; this grid search is not necessary 
but it helps determine global instead of local minimum. This 
current set of parameter values, Xk, is sent to the system and the 
performance of the system is evaluated by computer simulation 
or physical experiment. Here the performance is measured via a 
performance index J and it is assumed that the parameters x k  
and the performance index Jk are related by 

Jk = f ( x k )  (1) 

where the function f(.) is typically unknown. The performance 
of the system is actually evaluated using measurable quantities 
Yk via 

where g(.) is a known function. This is accomplished as 
follows: as x k  vary, the measurable quantities Yk reflect the 
changes in system performance and Jk is then evaluated via (2). 
To illustrate, in the antenna parameter learning system, Yk are 
measurable quantities such as settling time and maximum output 
error, while g(.) of (2) is chosen to be a weighted sum of these 
quantities. It should be stressed that in a particular problem, 
given the adjustable parameters Xk, typically there are many 
appropriate choices for Yk and Jk; it is up to the designer to 
select Yk so that they are good measures of the changes in 
performance and at the same time easy to determine. In the 
parameter learning system of Figure 1 the performance of the 
system is then judged to be adequate or inadequate. If 
inadequate, a new set of parameter values Xk+l is generated to 
improve the performance. Since the function f(.) in (1) is not 
known, an optimization method that does not require a 
mathematical model is used to generate Xk+l. Here a modified 
version of the Hookes-Jeeves algorithm was used. If of course 
the function f(.) is known, other optimization algorithms may be 
used and (2) may not be necessary. This process continues until 
the performance is judged adequate. At that time, the best 
parameter values found are stored in memory, which here is 
taken to be a dictionary containing, in each entry, the given 
system operating conditions and the corresponding best 
parameter values. 

The main objectives in developing this approach and 
applying it to the space antenna control problem have been the 
effective use of all available information and its speed of 
response. This task appears plausible because the interest is in 
developing a learning method for a rather specific class of 
problems where the available information is well defined. 

Whether the parameter learning system is invoked will 
depend upon the time restrictions placed on determining a new 
parameter set and whether learning is necessary. After the 
operating conditions have been presented to the learning system, 
the dictionary containing information about such conditions is 
consulted to determine if they are known by the system. If these 
conditions are known, the parameters can be set appropriately, 
and learning is not required. If the conditions are unknown, a 
decision to enable learning would be made. If time allows, 
learning could be enabled. Otherwise, the parameter values 
could be estimated from known conditions in the dictionary 
using for example an interpolation method or they may be left 
unchanged. The decision making mechanism for determining 
whether the learning system will be invoked is beyond the scope 
of this work and thus has not been implemented. 

The learning method presented here provides performance 
adaptation for adaptive systems and it appears to be a novel 
approach to this problem. The method also deals with the 
question of boundedness of adaptive control systems. While 
analytical tools, based on stability analysis, do exist to determine 
whether a system variable will be bounded, typically the analysis 
does not indicate how large this bound will be. It is possible to 
exceed the system tolerances and yet be analytically stable. The 
learning method can be used to determine this bound and use 
this information in the process of controlling the system. 

This method is general and it can be used in any system 
where performance depends on a number of adjustable 
parameters. As a matter of fact, the method was also 
successfully applied for verification purposes to determine the 
optimum gain in an LQR problem [ 1,113. However, specialized 
methods, when they exist, are obviously more efficient to solve 
specialized problems. General methods, like the one presented 
here, are recommended to be used in complicated problems 

Jk= g ( y k  ) (2) 
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when traditional methods fail. The method presented is also 
modular, as both the functional evaluation and the optimization 
search procedures can be modified to match the particular 
problem at hand; alternate methods using, for example, the 
gradient can be used when possible. In addition, functional 
evaluation can be performed via computer simulation, physical 
experiment or mathematical calculation. 

It is noted that the learning method presented here uses a 
priori information of what is known about the system. This is in 
contrast to many machine learning applications where learning is 

usually accomplished with little a priori information. In 
engineering applications it is recommended to pay particulnr 
attention to utilizing all available information, as the more the 
system knows, the faster it can learn. 
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