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ABSTRACT

A discrete event system (DES) is a dynamical system whose evolution in time develops as the result of
the occurrence of physical events at possibly irregular time intervals. Although many DES's operation is
asynchronous, others have dynamics which depend on a clock or some other complex timing schedule. Here
we provide 2 formal representation of the advancement of time for logical DES via interpretations of time,
These interpretations of time provide a common framework to characterize deadlock, sirtultaneous events, and
the advancement of time in various DES in the literature. We show that the interpretations of time along with
a timing structure provide a framework to study principles of the advancement of time for hierarchical DES
(HDES). In particular, it is shown that for a wide class of HDES the evens rate is higher for DES at the lower
levels of the hierarchy than at the higher levels of the hierarchy. Relationships between event rate and event
aggregation are shown. We define a measure for event aggregation and show that there exists an inverse
relationship between the amount of event aggregation and the event rate at any two successive levels in a
class of HDES. These results for HDES constitute the main results of this paper since they provide the first
mathematical characterization of several fundamental timing characteristics of HDES. A manufacturing system
example will be provided to illustrate the results.

1.0 INTRODUCTION

We focus on timing characteristics of single DES or HDES which have as components DES that can
be accurately modelled with

P=(X,U.Y.51..X0) M

where if IP(X) denotes the power set of X,

(i) X is the set of plant states x,

(ii) U is the set of plant inputs u,

(iii) Y is the set of plant outputs y,

(iv) &:UxX—>P(X) is the plant state transition function,

(v) A:UxX—Y is the plant output function, and

(vi) XoCX is the set of possible initial plant states.
We introduce "interpretations of time" as a convenient characterization of the timing characteristics of
discrete event systems (DES), In our main results, we show that the interpretations of time along with a
timing structure provide a framework to study principles of the advancement of time for hierarchical DES
(HDES). It is shown that for a wide class of HDES the event rate is higher for DES at the lower levels of
the hierarchy than at the higher levels of the hierarchy. Relationships between event rate and event
aggregation are shown. We define a measure for event aggregation and show that a high amount of event
aggregaiion will resnlt in a much Inwer event rate at mgher levels in the HDES whiie 2 lnw amannt of
event aggregation will result in higher event rates. A manufacturing system example will be provided in
the full paper to illustrate the results.



2,0 CHARACTERIZING THE ADVANCEMENT OF TIME IN DES

When a physical plant is modelled via (1), the meaning of the advancement of time must be defined. If
Z is an arbitrary set, then Z" denotes the set of all finite strings of elements from Z. If Z and Z' are
arbitrary sets then ZZ' denotes the set of all functions mapping Z' to Z. In order to discuss timing issues
for P, an index set I and index sequences

aeJ*UIN
are utilized similar to the approach in [Sain 1981]. The index set J is thought of as a set of times. Let lR+
denote the set of strictly positive real numbers and 1R+=]R+U {0}, the set of non-negative reals and let N
denote the natural numbers. Note that N, R4, or R could be candidates for the set J. The index sequences
aeT*UIN are sequences of time instants that can be of finite or infinite length. If e J*UJ N et Il denote
the number of elements in the string a.. Note that 0:N—J or o:[0,a]—J where [0,a]< N, and o(k) stmply
denotes an element in J. An index sequence (function) oe F*UIN is said to be admissible if

(i) it is order preserving, i.c.,

(a) if aeJ N, then for all k1 ke N, k1<k2 implies that a(k1)<aks),
(b) if ce J¥, then for all ky.k2e N with k1.k2e [0,lal-1], k1<k2 implies that
aky)<a(k2), and

(ii) it is injective.

Following [Sain 1981]), the state of the plant xe X is associated with the index ou(k) for some
ae J*UIN ang is denoted with x(a(k)), meaning "the state at time a(k)". Similarly, inputs ue U and
outputs ye Y are associated with that same index and denoted with u(o(k)) and y(c(k)) respectively. The
transition to a state in the set &(u,x) can be thought of as leading to the next state, with "next" quantified
with the index sequence o as a(k+1). With this, the transition function is given as
x(ak+1))e 8(u(o(k)), x(c(k))) which is often abbreviated as Xk+1€ 8(uk,.xg). Similarly, the output is often
denoted with yk=A(uk,xk) for ke N. Each run of P (ug,x(,y0),(u1,X1,y1).... has an associated index
sequence e *us N, o=0t(0),(1).... specifying the time instants at which the triples are defined.

A DES often activates or triggers other DES to act. For instance, in the case where P represents a
plant, P may trigger a conwroller to generate an input to P. In this case, the trigger often represents certain
changes that occur in the plant. Here, we consider the case where events, to be defined next, are used as the
trigger. Similar to (Ramadge and Wonham 1987], we let ECXxX denote the set of events e, where

E={(xx)e X*X: x'e §(u,x})} 2)
An event (x,x') is said to occur if the state transition from x to x'e 8(u,x) takes place. For convenience, we
shall assume that the event occurs (is defined) at the time instant o(k+1) where the next state is defined.

The pair I=(A.T) wkere T is an index set and AT UIN wii te 10feiied WO as aii interpretation of time
since it specifies the meaning of the advances in time for the occurrence of state transitions, i.e. it specifies
the time instants where the variables of the DES P are defined. In general, a system P is said to have a

particular interpretation of time I=(A,J) as long as the time instants associated with the elements of the runs



of P are elements of J and the index sequences associated with the runs of P are elements of A. The
admissible interpretation of time will be denoted with Ing=(Aad Jad) where Jad is an index set and
Aag={oeT3aUr 0. is admissible}. ®
Most often we can choose Jad=IR+ and this is what we will assume here.
It is common to discuss the iming characteristics of DES relative to a clock. By a "clock” we mean a
device which has a fixed interval Te R™ between ticks and which does not stop ticking (if there is deadlock,

the clock keeps ticking but no events occur).

Definjtion 1: The asynchronous interpretation of time is Iq=(A4.Ja) where Ja=IR,. and
Ag={0E Agg:(0)=0}.

According to convention Ja=Ja4=1R+ with the time instant of zero corresponding to the case where no state

transitions have occurred.

Definition 2: The partiaily asynchronous interpretation of time is Ipa=(AyB.Jpa) with Jpa=R4.
and AyB={a€ Ay : a®)+y<ak+1)<ak)+B) for v,8e R where B>y,

Definition 3: The general synchronous interpretation of time is ls=(ATJs) with Jg=R4
and AT={c € Ag : ak+1)=a(k)+nT where ne N-{0} } with Te R”.

When n=1 we shall refer to I simply as the synchronous interpretation of time.

3.0 TIMING CHARACTERISTICS OF HIERARCHICAL DES

Whereas in Section 2 we represented the timing characteristics of a single DES P, here we shall
consider the timing characteristics of many interconnected DES. Our study of the timing characteristics of
these HDES was motivated by the work in [Gershwin 1989). The formation of a control theory for HDES
is just beginning [Zhong and Wonham 1988,1989,1990] even though such systems occur quite frequently.
Some principles of the evolution of time in hierarchical systems have been postulated but not fully
investigated in [Albus, Barbera, and Nagel 1981; Saridis 1983; Valavanis 1986; Mesarovic, Macko, and
Takahara 1970; Antsaklis, Passino, and Wang 1989; Passino and Antsaklis 1988]. As with Gershwin what
these researchers have recognized is that "systems usuaily operate at the higher rates at the lower levels in a
hierarchical system”. We shall verify this intuition for one class of HDES here.



3.1 A Hierarchical DES Model

We shall focus on HDES that have as components two types of DES, Gj, 1<j<m, and Pj, 1<i<n, all
defined via (1) except with different timing characteristics. We introduce what we caii 3 timipg structure
which will define how the various components of the hierarchical system influence (are influenced by) the
timing characteristics of other components of the HDES. The definition of the timing structure is based on
the interpretations of time defined in Section 2.0 and what will be called input and output triggers. Each
Pj, 1<i<n, in the HDES has timing characteristics that are simply specified via their own interpretation of
time denoted with Ipi=(ApiJpi)- Roughly speaking, each Gj, 1<j<m, has timing characteristics that depend
on Pj, 1<i<n, and G for k#j via the timing structure as we now discuss in more detail.

Let Epj denote the set of events for Pj, and Egij, the set of events for Gj both defined in a similar
manner to the events E for P in (2). In this paper we focus on the case where the output triggers for Pj,
1<i<n, and Gj, 1<jsm, are simply defined by the events Epi and Egj respectively. With this choice, the
input triggers for the Gj are defined by the Tj maps (or restrictions of the Tj) for j, 1<j<m, where

Tj:EDleIﬁx pranglegZ" ngk" ngm—){O,lj ()]
where k#j and Tj(-)=1 (=0) indicates that an event egj(a(k+1))e E gj where
egj(oz(k+l))=(xg(a(k)),xg(a(k+ 1))} is forced (not) to oceur in Gj. Since we require k+#j, event occurrences
in Gj cannot directly force other events in G;j to occur via the input trigger Tj- In fact, we consider here
only timing structures that are "tree structured”. Let each DES component of the HDES represent a node of
a directed graph and let the 7j define the arcs that connect the P; and G; to other Gy, k=, in the following
manner. If there exists £ and kej such that Tj:Ep1* - XEg g% -~ EpnXEg]* - XEgg* - *Egm—{0,1)
then there exists an arc pointing from Py to Gj and one from Gy to G;. For an HDES to have a tree
structured timing structure it must be the case that in this directed graph there does not exist a closed cycle.
In this way we eliminate the possibility that some Gj can directly force its own events to occur via the
timing structure. Notice that the P;, 1<i<n, are the "leaves” of the iree structured iming structure,

Whereas the interpretation of time is always specified for the Pj, 1<i<n, the interpretations of time for
the Gj are specified in terms of the other G, k#j and the P; via the timing structure as we now define. Let
apj(k+1) and agk(k+1) denote the time instants at which events epi€ Epi and egke Egy (k#j) occur
respectively. Suppose that at some time instant adk+1), 75()=1 so that egj(a(k+1))e Egj occurs. This
time instant at which egj(ak+1)) occurs is given by

a(k+1)=max[ozpi(k+l),agk(k+l):lSiSn,ISkSm,katj} {5
and corresponds to the time instant at which the last event occurred which caused Tj(-}=1. Each time an
event occurs which forces rj(-):l, an event occurs in Gj; hence the "1" represents a pulse sent to Gj via T
which forces an aven: = coour. Heneg, if Tj() is set equal to 1 at some time jusiciil, ai cveii in Gj musi
occur at that time instant (unless Gj is deadlocked); if every event in a sequence of events all cause tj(-)=1
then there is one event occurrence in Gj for each event in the sequence. The interpretation of time for any
Gj is found by executing all possible runs (in all possible orders) of the Pj, 1<i<n, and hence Gk, 1€k<m,



where k=j. Then via equations (4) and (5), the time instants and hence index sequences and interpretations
of time for the G;j are specified. We shall study HDES where there is at least one Pj and the interpretations
of time for the Gj can be uniquely defined in terms of the P;j.

Note that although we consider only tree structured timing structures we place no restrictions on the
manner in which the DES inputs and outputs are connected. This allows our results to apply to a relatively
large class of HDES with a wide variety of input/output connecting structures. Tree structured timing
structures allow us to study properties of what has been called a "time scale hierarchy”. In this hierarchy a
DES component is "higher in the hierarchy” than another DES component if its timing characteristics can
be influenced by the other DES (i.e., there exists a directed path from one to the other).

3.2 Timing Characteristics of HDES with Multi-Level Timing Structures

To analyze the timing characteristics of HDES we study two fundamental components of interconnected
DES. Consider the HDES shown in Figure 3.2 which we will call 2 HDES with a "muiti-level timing
structure” (the other one that we study is shown in Figure 3.4). Let the admissible interpretation of time
for Pt be Ip1=(Ap1.Jp1) with Jp1=R4 and for Gj, 1<j<m, be Igi=(AgjJgj).
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Figure 3.2 Hierarchical DES with m+1 Levels

We begin by studying the case where there are no particular restrictions placed on the timing structure
s0 long as it is multi-level. If ae J*UIN, then (o] will be used to denote the set of elements that make up
ihe sequence . For any possible run made by P} with an index sequence op1€ Ap1, the coresponding
runs in Gj, 1<j<m, have index sequences denoted by Ugi€ Agj.

Lemma 1: It is the case that [ogm]C[ogm-11€ - C [og11<(op].



Lemma 1 states the clear fact that the multi-level timing structure can mask events and hence remove

time instants at which events occur in the hisher levels of the hierarchy.

Definition 4: The event occurrence rate (event rate) in Pj or Gj is the number of events that occur in the
time interval Ty=(r] 2] where (r1,r2]CR+ and it will be denoted with #(P;,T) and #(Gj,T\) respectively.

Notice that if Pj has a synchronous interpretation of time with Te R* and we choose Ty such that
Ir2-r1I=T then #(Pj,Ty)=1, i.e., there is 1 event occurrence in the time interval Ty no matter what the
particular values of r] and r are. If Pj has an asynchronous interpretation of time then no matter how Ty
is chosen (so long as Irp-ry! is bounded) it is possible that #(Pj,Ty)=0, since we cannot guarantee that an
event will occur in the given time interval Ty. In fact, we do not know how many events will occur in Ty,.
It would appear that our definition of event rate is too restrictive. This is, however, not the case since the
focus here is on comparing the event rates of different DES components in the HDES and this comparison
is made relative to Ty, an interval of the real time line. We begin by comparing the event rates of the DES
in the multi-level HDES of Figure 3.2.

Theorem 1: #(P1,Tu)2#(G1,T2#(G2, T2 - 2#(Gm, T20 for all T,

In the case where Ip1 is synchronous the above results support the studies in [Gershwin 1989] where
the author assumes that the event rates can be split into "spectra” according to the level in the hierarchy. A
similar split can be made for the HDES of Figure 3.2 for the synchronous case. In the more general case,
for an asynchronous P for instance, the event rates in DES at the higher levels are also greater than or
equal (o the event rates at the lower levels.

Jev i Vi
In this Section we focus on the case where the Tj perform event aggregation and study how this affects
the timing characteristics of the components of the multi-level DES. For convenience we shall first
consider the case where m=1. Let Ea1<Ep) and 7'1:E31—{0,1} denote a restriction of Tj. In this Section
the maps t'; for j, 1<j<m, will be used for event aggregation maps in the muiti-level timing structure of
Figure 3.2 rather than the Tj. IfeeEp), ek E,; then 1'; is said to ignore (rather that mask) the occurrence
ofe. Let BCN-{0}.

Definition 5: P1=(X,U.Y,3,1,X0) and ' satisfy the xj-event aggregation property if
(i) There exists a family of sets X;<X, ie B such that
() XiNXk=@ for all i=k, and XoNXj=@ for i B,



(b) If P first enters a state xe X; for some i€ B, it will take (for all possible runs} at least 710
state transitions before the state of P, say x', is such that x'e Xj, and
(ii) T'1:Eq1—(0,1) where Ejp={ee Epy:if e=(x x"), for some i€ B. xe X; and x'¢ X;}.

Such a definition for 71 results in a type of "event aggregation” between P1 and G} since some
sequences of events in P can be ignored by the higher level G and others can be masked. The number 1

provides a measure for the amount of aggregation.

Theorem 2: If P1 and 7'q satisfy the m]-event aggregation property and Ty=(r1.r2] where irp-r1l is
sufficiently large, then

#(P1,T
(PTllu_)+ 12 #G1,Ty. 6)

Notice that if P1 and 7'} satisfy the 7] -event aggregation property and Ty=(r1,r2] where r1=0 then for all
>0,

,T
#—a:-i—“)a#((} 1.Tu). )]

Hence if Ty is chosen appropriately then we get a tighter bound on the number of events that occur at the
higher level Gy than in (6).

Next, we state the result analogous to Theorem 2 for the higher levels of the HDES. For m>1 we
shall use the mj-event aggregation property of Gj and 7'j+.1 where mj and T'j+1, the families of states, and

initial states at each level are defined in a similar manner to that for Definition 5 above,

Corollary 1: If Gj and T'j4] satisfy the wj-event aggregation property and Ty=(r1,r2] where Irp-rql is
sufficiently large, then for j, 1<j<m,

#HG;, T,
L;‘cj—‘ﬂ+ 12 #Gj+1.Ty). ®

A result similar to (7) holds for m>1 if T is chosen as in (7). The 't'j can be viewed as maps that cause
event aggregation; consequently, Theorem 2 and Corollary 1 provide a relationship between event
aggregation and event rates for one class of HDES: As events are aggregated to the higher levels in the
hierarchy, fewer events occur. If there is a high measure of aggregation at level j (large 7;) then there will
be a lot fewer events occurring at level j+1 (#(Gj+1,Tw<#(Gj,Ty)/rj + 1). This illustrates that there is an
inverse relationship between event aggregation and event rate between two levels of a HDES. In general,
hierarchical systems researchers have observed a similar iniveise relationship between "time scale density”
(“time granularity") and "model abstractness” [Antsaklis, Passino, and Wang 1989; Saridis 1983). The
above results provide the first mathematical validation of these researcher’s intuition about relationships
between event aggregation and event rates for a class of HDES,



3.3 Timing Characteristics of HDES with Single-Branch Timing Structures

The other fundamental component of a HDES with a tree structured timing structure is what we vl
call a "single-branch timing structure” and it is shown in Figure 3.4, Results analogous to Theorems 1 and
2 will be developed for this HDES.

In this case T1:Ep1* -~ XEpn—(0,1}. Notice that even though we consider only P;j at the lower level,
it requires only a simple modification to consider a mix of P; and Gj at the lower level and our results that
follow still hold. For any possible runs made by Pj, 1<i<n, with index sequences Cpi€ Apj, the
corresponding run in G| has index sequence denoted by ogle Agl.

n
Lemma 2: It is the case that logll < U[api].
i=1
Lemma 2 states the clear fact that 71 can mask events in any Pj, 1<i<n. This basic result can be used

to compare the interpretations of time and event rates of the DES in the HNES of Figure 34,
n

Theorem 3: 3 #(Pj, Tu)2#(G1,Ty) for all Ty.
i=1

For this basic hierarchy we see that it is also the case that the event rate for the lower level is greater
than or equal to the event rate at the higher level. Next, we highlight the importance of using an
appropriate definition of what it means for a DES to be at a certain level in a hierarchy. Assume that
T1()=1 in all cases for the HDES in Figure 3.4 so that no events will be masked. In this case, if any Pj
has the asynchronous interpretation of time then G has a asynchronous interpretation of time. For any
possible run made by any Pj, 1<i<n, with an index sequence aipje Apj, the corresponding run in G has
index sequence Ogle Ag] where each oipj is a subsequence of ogl; hence #(G],Tu)z#(Pj,Tu) for all T and
each j, 1<j<n. The event rate is higher in Gy than in any single one of the other DES P;.

Figure 3.4 Hierarchical DES with Single-Branch
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Next we consider the case where 11 performs event aggregation for each Pj, 1<j<n, Let Eaj<Ep;i for
all j, 1sjsn, and 1'1:Eq) XEg2%++%Ean— (0,1} denote a restriction of the 71 used in Lemma 2 and Theorem
3. We use this t'; in place of 1 in Figure 3.4 for event aggregation. Hence, as above, 7' ignores events
e€ Epj, & E,j and can mask others. Let BiCN-{0} for j, 1<j<n.

Definition &: [Pj=(Xj,Uj,Yj,6j,Aj,Xoj):lstn} and 7') satisfy the (2!, 72.... 2%")-event aggregation property
if for each j, 1<j<n,
(i) There exists a family of sets XjjCXJ, ie Bj such that
(a) XjjNXg=9 for all i=k, and X0jNXij=@ for ie Bj,
(b) If P; first enters a state xe Xijj for some ie B j» it will take (for all possible runs) at least >0
state transitions before the state of Pj, say X', is such that x'e Xij»

(ii) T'1:Ea1 XEg9%-XEgn—{0,1} where Egj={eeEpj:e=(x,x") and for some ie Bj, xe Xjj, x'¢ Xij}-

Theorem 4:If [Pj:(Xj,Uj,Yj,ﬁj,Aj,Xoj):lsjsn} and 1'1 satisfy the (nl,x2,....x%)-event aggregation property
and Ty=(r1,r2] and ir2-r1l is sufficiently large, then

n

E{%;r_u) + 1} 2 #(G1,Tw. 5

i=1
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