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111. AN ExAhrpLE 

To itlustrate  the  preceding let us consider the following example 
which  is  given in [2, Sec. 7.31: In  particular, suppose 

We note  that R(s) and P(s) are relatively right prime and  that P(s) is 
column proper. Furthermore, since T,(s) is strictly proper, R(s) is of 
lower  column degree than P(s). As is shown in [2], if 

then IP(s) - F(s)l= (s + l)(s2 + 2s + 2); i.e., all 3 (controllable and observ- 
able) poles of the system can be arbitrarily positioned in Re(s)<O, at 
s= - 1 and - 1 +j, by employment of the Luenberger observer given  in 
[2]  with  (see Theorem 1) 

and 

K ( s ) = [  - 5  -1 01 0 . 

In view  of Theorem 2, therefore, if  we employ the proper feedfonvard 
compensator 

r 3s2+6s 0 1  

T g ( s ) = [ Q ( s ) - K ( s ) ] - ’ H ( s ) =  
L2s2+12s+10  2s2+14s+20] 

s2+7s+ 10 

in series with T,(s) in the e t y  feedback configuration of Fig. 2, the 
overall closed-loop system SC will be asymptotically stable with poles 
given  by the zeros of I Q(s)l =s2 + 2s + 5  (Le., s = - 1 +j2) as well as those 
of JP(s)- F(s)l. 

IV. REMARKS 

In conclusion, it  might again be noted that  the stabilization scheme of 
Fig. 2 is based directly on the observation that  linear variable feedback, 
as implemented by a Luenberger observer, can be  used to  arbitrarily 
position all of the  unstable poles of a closed-loop stabilmble system, 
and we have  merely  shown that  a Luenberger observer (C) has an 
“equivalent” feedforward/unity feedback representation (C) .  Strictly 
spealung, the P o  configurations are  not equivalent since the zeros of 
IQ(s)l in the SC, Fig. 2 configuration are not “canceled” as they are in 
the SC, Fig. 1 configuration. 
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Stable Proper nth-Order Inverses 
P. J. ANTSAKLIS 

Abstrcrct-A  stable proper right (left) nth-order  inverse of a given linear 
time-invariant system of order n can always be constructed, via a  simple 
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algorithm, if a proper right (left) inverse exists and the zeros of the given 
system are stable. Furthermore, it is sbown that all of the poles of this 
inverse cau be arbitrarily assigned except those which equal the zeros of 
the  given  system. 

I. INTRODUCTION 

This technical note deals with the  important problem of obtaining a 
stable  proper right (left) inverse of a given nth-order system. As it was 
shown in [l], there is no  guarantee (it rather  depends on the particular 
system) that  a minimum-order stable  proper inverse exists, even  when all 
the zeros of the given system are stable. Furthermore, the problem of 
finding a  stable proper inverse of the lowest possible order generally 
requires extensive searching (increasing the order of the proper inverse 
and testing for stabilizability), and therefore, the need for a  simple 
method which guarantees  a  stable inverse if one exists. Although recent 
work [ I ]  has provided a technique to  obtain  a  stable  proper solution to 
the more general exact model matching problem, this method involves 
extensive manipulation of polynomial matrices and can be quite 
cumbersome even in the special case of the right (left) inverse, where, in 
addition, an inverse of order generally higher than  n is obtained. 

A simple algorithm in the state-space is presented in this note which 
,garantees a  stable  nth-order  proper right (left)  inverse if a proper right 
(left) inverse of a given nth-order system  exists and the zeros of the given 
system are  stable. In particular,  a method is presented to construct  a 
proper right inverse using an equivalent to linear state feedback feed- 
forward compensation scheme (Lemma 3); using now a  property of the 
zeros of the given  system  (Lemma 4), it is shown (Theorem 1) that, if a 
proper inverse of a system  with stable zeros exists, then an  nth-order 
stable  proper inverse can always be found with all of its poles arbitrarily 
assignable except those  which equal  the zeros of the gven system 
(Algorithm). 

11. PRELIMINARIES 

Assume that  a controllable and observableL  linear time-invariant sys- 
tem ( A , E , C , E }  is  given,  where A E R n X ” ,  B E R n X m ,  C € R p x n ,  E €  
R p x m ,  and let the ( p  Xm) rational matrix T(s) be its proper transfer 
matrix; i.e., 

T ( s ) = C ( s Z - A ) - ’ E + E .  (1) 

A system is a right (left) inverse of { A , B ,  C , E )  if its transfer  matrix 
TR(s)( TL(s)) satisfies 

T ( s ) T R ( s ) = z p  ( T L ( s ) T ( s ) = l m ) .  (2) 

It should be noted  at this point  that since the left  inverse can be written 
as T T ( s ) T ~ ( s ) = Z m ,  i.e., as a right inverse of the dual of the given 
system, only the right inverse problem needs  to be studied. 

The linear state-variable feedback (lsvf) compensation plays an im- 
portant role in the following and  it is defined as the control law: 

u( t) = Fx(r) + &( t) (3) 

where F E R m X n ,  G E R m x q ,  u(r) and x(r)  the vectors of the input and 
the state of the given  system (I), and o(r) an external vector input. Note 
that if (1)  is compensated by (3), the closed-loop system  is ( A  + 
BF, BG, C + EF, EG) with transfer matrix 

TF,G(~)=(C+EF)[~Z-(A+BF)]-’BG+EG. (4) 

111. M m  RESULTS 

Before establishing the main theorem of this paper, some important 
lemmas are in order. Namely: 
Lemma I :  Given system (l), a right  inverse  exists if and only if rank 

T(s)=p; a proper right  inverse  exists if and only if rank E = p ;  further- 
more, an inverse system can be stable only if the zeros of ( I )  are  stable. 

mnimum order n of the given  system. 
‘These  assumptions, although  not essential to the method. are belng made to ensure 
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Proof: These  results are well  known and their  proofs can be found 
in a number of references,  e.g., [1]-(41. 

The following  lemma  provides a way of representing any linear 
state-variable  feedback (lsvf) compensation  scheme  via a feedforward 
compensator. In particular: 

Lemma 2: Any lsvf compensation  scheme can be  represented  via 
feedforward compensation through a system  with a proper  transfer 
matrix. This feedforward compensator will be called  "the  equivalent to 
lsvf feedforward compensator T,(s)." 

Proof: Let 

T , ( s ) = F [ s I - ( A + B F ) ] - I B G + G .  ( 5 )  

Then,  calculations show that 

T(s)T,(s)=[C(sI-A)-'B+E][F(sI-A-BF)-'BG+G] 

= ( C + E F ) [ s I - ( A  +BF)] - 'BG+EG= TF.G(s). (6)' 

In view of Lemma 2, it is  now  clear that the system 

{ A + B F , B G , F , G }  (7) 

which is a state-space representation of T&) of (5), represents the 
equivalent to lsvf feedforward  compensation  scheme. 

The importance of Te,(s) in the right  inverse  problem is illustrated  by 
the following  lemma: 

Lemma 3: If a proper right  inverse  exists,  then  it can always  be 
constructed using the equivalent to lsvf feedforward compensation 
scheme. 

Proof: Choose the gain matrices F and G so they  satisfy 

EF= - C; EG= I,. (8) 

Then, in view of (6), TF,,(s)= I, and the right  inverse  system is gven by 
(5) or (7), where F and G satisfy (8). Note  that there always  exists  such a 
pair ( F ,  G), since  rank E=p(p  <m)  as it is implied  by  Lemma 1 and the 
assumption that a proper  right  inverse  exists. 

A  convenient method to solve (8) with  respect to (F ,G)  and obtain a 
proper  right  inverse of (1) is  now presented; note that this particular 
technique will be used later on to construct a stable proper  right  inverse. 

Find an m X m  nonsingular  matrix M- such that EM=[I ,  : 01. Then (8) 

becomes: - C = EMM IF = [ I, : 011 <I 1 = F', and I, = EMM IG = 
F, 

L & J  

[I, : 0][  = e,, which  implies that 

satisfy (8) for any i2 and 6,. Consequently, in view  of the proof of 
Lemma 3, it is  clear that the system 

is a proper right  inverse of (1) for any &E R(m-P)xn and E,€ 
R ( m - p ) x p .  Note  that the poles of system (10) are the eigenvalues of 

A + B F = A + B M M - ' F = A + [ B , B ~  = A - i l C + & F 2 ,  which 

shows that F, can  be used to alter the poles of the  proper  right 
inverse  system (10). This of course depends on the controllability of 
( A  - SIC,&), an observation  which leads to the following  lemma. 

Lemma 4: The uncontrollable modes of ( A  - B,C,B2)  are the  zeros 
of ( A , B , C , E } .  

[ a ]  

Proof: The zeros of ( A ,  B, C, E )  are those z, [ 5 ]  for which 

and the  structure  theorem 121 are used. 
'Note that these calculations can be avoided i f  the  differential  operator  representation 

If this  matrix  is  postmultiplied  first  by [ L], where the mXm 

nonsingular  matrix M satisfies EM=[I,:O],  and then by 

its  rank will not be  affected. That is, the  matrix 

will have reduced rank (less than n + p )  only if z, is a zero of 
{ A , B ,  C , E ) .  Note, however, that the z, which reduce the rank of th_e last 
mat&  -are exactly  those  which  _reduce  the rank of [sl, -[A - BIC+ 
B2F2],  B2] or ofJsI, ; ( A  - BIG), BJ which are exactly the uncontrollable 
poles of ( A  - B , C , B 2 }  [5]. - 

Remark I :  In view of the comments following (IO), it is clear that F2 
can be  used to arbitrarily assign  all of the poles of the proper  right 
inverse  (10)  only if the system ( A , B ,  C,  E )  does not have any zeros. 
Generally, the poles of the proper right  inverse (10) will consist of I )  a 
set of k poles equal to the zeros-of ( A , B , C , E ) ,  and 2) a set of n - k  
poles arbitrarily assignable  via F2. This is  because the eigenvalues of 
A + B F = A  - d,C+ &F2 consist, as it was  shown above, of two  sets; 
one u3affeSted  by F2, i.e., the set of the k uncontrollable modes of 
( A  - BlC,B2)  which equal the zeros of (I), and  one arbitrarily_ assi-m- 
able via F2, Le., the set of the n - k controllable modes of ( A  - B,C,B2) .  

The main  result of this  paper can now  be stated. 
Assume that system  (1)  is  given  where  rank E = p ,  i.e., a proper  right 

inverse  exists. Then: 
Theorem I :  If the zeros of ( I )  are stable, a stable nth-order  right 

inverse can always  be found. Specifically, a proper nth-order right 
inverse can always be constructed with k of its poles equal to the ( k )  
zeros of ( I )  and the remaining (n - k) poles arbitrarily assignable. 

Prooj This result has already  been  established via  Lemma 3, 
Lemma 4, and Remark 1. 

An  algorithm  is  now  presented whch realizes the claim of Theorem 1. 
Note that this  algorithm  is  completely  justified  in view  of the  previously 
developed  results. 

Algorithm 

Step I :  Find an m? m-nonsingular matrix_M such that EM=[I, : O ] .  
Step 2: Calculate [ B l , B 2 ]  2 B M  and A - B,C. 
Step 3: Find a lsvf matrix F2 which arbitrarily azsigns- the n - k 

Step 4: The desired stable proper  right  inverse is 
( k  =number of zeros of (1)) controllable  poles of ( A  - B , C , B , ) .  

where g2 was  determined  in Step 3 and 6, any (m - p )  X p  real matrix 
(which  can  be  taken 0 for  convenience). 

Remark 2: The pair (F ,G)  used  in  the above satisfies (8). Note, 
however, that T,,(s)= I,, iff  there exists ( F , G )  such  that EG= I, and 
( C +  EF)[BG,(A + BF)BG, . .  . ]=O, as it can be  easily  seen if TF,,(s) is 
written as 

T,,(~)=EG+J[(C+EF)BG]+-[(C+EF)(A+BF)BG]+... . 1 1 
SZ 

This implies that (8) are only  sufficient conditions; they are necessary 
and sufficient  for TF.G(s)= I only if ( A  + BF, B G }  is completely control- 
lable. Note that such a case is  when p = m, where,  in addition, the pair 
( F , G )  is determined uniquely from (8) and the  inverse (12) is  unique. In 
view of the  above, i t  is clear that there  might  exist stable proper nth 
order inverses of the form (7), which are not given  by the algorithm. 
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IV. CONCLUSION 

It has been shown in this note that, if a given nth-order system (1) has 
a stable  proper right (left) inverse, then a stable  proper right (left) inverse 
of order n can always be  constructed using an equivalent to  linear 
state-variable feedback feedforward compensation scheme. In particular, 
a simple algorithm was  given to  construct a proper (rank E = p )  right 
inverse of order n with k of its poles equal to the (k) zeros of (1) and 
the remaining (n - k )  poles arbitrarily assignable. Finally, note  that  the 
zeros of system (I), which are being found  in  the process, are the uncon- 
trollable modes of a new  system  (Lemma 4); this clearly suggests a 
method to  evaluate the zeros of a given  system. 
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A Note on Selecting Low-Order Discrete-Time 
Dynamic Systems via  Modal  Methuds 

G. B. MAHAPATRA 

Absmm-A method is presented in this note to select the dimension Of 
low-order discretetime dynamic systems via the modal methods of 
Marshall and Davison. 

I. INTRODUCTION 

Model reduction techniques for continuous-time state-space models 
have been the subject of many recent investigations with modal a p  
proaches of Davison [ 11, Chidambara and Davison [2], and Marshall [3]. 
These concepts have been applied recently by Wilson et al. [4] to reduce 
high-order discrete-time dynamic systems. An important problem in this 
area of research is to decide how small a large system can safely be 
simplified to before causing excessive error. Mahapatra [5] established 
these conditions for continuous-time state-space modeIs  using modal 
reduction techniques of Davison [l].  The  criterion was expressed in 
terms of the lowest eigenvalue neglected, and  the sizes of the high- and 
low-order systems.  But it is not yet clear about the smallness of the 
simplified high-order discrete-time dynamic systems. An attempt is made 
in this note to establish this criteria for stable discrete-time dynamic 
systems employing modal reduction concepts of both Davison [I] and 
Marshall [3]. 

11. DEVELOPMENT OF CRITERION VIA DAVISON‘S APPROACH 

Consider an nth-order discrete-time dynamic system  with zero initial 
condition: 
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The m-state variables X,(k) are to be retained in the low-order  model. 
Equation (1) can be written as 

X(k+I )=GX(k)+Hu(k)  (2) 

where G is a constant  matrix of order n x n ,  u(k) is of order rX 1. Let P 
be the modal matrix and D be the  diagonal matrix such that  the 
eigenvalues hi, i = I , & -  . . ,n occupying the  unit circle are  arranged in 
descending  order of magnitude. 

A2 

x, 
& + I  

Then 

and 

where Dl  is the dominant eigenvalue matrix of order m, D2 is the 
eigenvalue matrix of order ( n  - rn) to be neglected during  simplification. 
SI and 8, are  the  partitioned matrices of matrix 8, given  by 

&= P-’H. (6) 

When eigenvalue matrix D, and the corresponding eigenvector for 
matrix are neglected to  approximate solution of X l ( k )  in (4), the reduced 
solution is  given  by 

W k )  = PI I YI(Q (7) 

From (4) and (7) the error is given by 

E ( k ) = X , ( k ) - X l ; ( k )  

= P12Y2(k). (8) 

Assuming u to be unit  step  function, from (5) 

Y2(k)= 2 (D2)k- i -1&2.  
k- 1 

Expressing  (14) in geometric series, 
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