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Here, E,, E,- I etc. means over all neurons in layer n ,  n - 1, etc., 
6,*(k) for any later 1 5 k 5 n - 1 is given by 

S,*(k) = w$(k)f’(net$(k)). 

IV. CONCLUSION 

A learning algorithm based on dynamic programming has been 
derived for multilayer neural networks. The advantage of this al- 
gorithm over other well-known algorithms [4], [SI  is that it pro- 
vides a recursive relationship to compute a minimizing error func- 
tion for every hidden layer expressed explicitly in terms of the 
weights and outputs of the hidden layer. The algorithm can be used 
even when neuron activation functions are not continuous. 
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A Simple Method to Derive Bounds on the Size and 
to Train Multilayer Neural Networks 

Michael A. Sartori and Panos J. Antsaklis 

Abstract-For an arbitrary training set with p training patterns, a 
multilayer neural network with one hidden layer and withp - 1 hidden 
layer neurons can exactly implement the training set. Previous deri- 
vations proved these bounds by separating the input patterns with par- 
ticular hyperplanes and using the equations describing the hyperplanes 
to choose the weights for the hidden layer. Here, the bounds are de- 
rived by simply satisfying a rank condition on the output of the hidden 
layer. The weights for the hidden layer can be chosen almost arbitrar- 
ily, and the weights for the output layer are found by solving p linear 
equations. 

I. INTRODUCTION 
For an arbitrary training set with p training patterns, a multilayer 

neural network with one hidden layer and with p - I hidden layer 
neurons can exactly implement the training set. These bounds were 
derived previously in [ 11-[3] by finding particular hyperplanes that 
separate the input patterns and then using the equations describing 
these hyperplanes to choose the weights for the hidden layer. When 
this is satisfied and with the signum function as the nonlinearity of 
the hidden layer neurons, the outputs of the hidden layer form a 
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linearly separable set and can be implemented with a final single 
layer, the output layer. 

In this paper, particular hyperplanes separating the input patterns 
do not need to be found; the weights for the hidden layer can be 
chosen almost arbitrarily to satisfy a simple rank condition. The 
weights for the output layer are computed by solving #1 + 1 linear 
equations, where #1 represents the number of neurons in the hidden 
layer. For a two-layer neural network, the number of hidden layer 
neurons needed to implement an arbitrary training set exactly is 
shown to be p - 1. Note that it is only sufficient and not necessary 
to use p - 1 hidden neurons to exactly implement the training set, 
and for a particular training set, this number can be reduced. In the 
training set, both the input vectors and the desired output vectors 
are assumed to be generated by an arbitrary function and are real 
numbers. Also, the nonlinearities for the hidden layer neurons are 
not restricted to be the signum function, as in previous derivations. 
In fact, the only condition which must be satisfied by the training 
set and the nonlinearities of the neurons is the precondition of 
Theorem 2, a rank condition. 

It should be noted that in previous methods proposed, the rank 
condition discussed here is satisfied; the rank condition in fact is 
the only really sufficient condition needed. This implies that the 
hidden layer’s weights do not necessarily need to be chosen to gen- 
erate particular hyperplanes but can be chosen instead almost ar- 
bitrarily to satisfy this simple rank condition, which of course guar- 
antees that the outputs of the hidden layer are linearly separable. 

In Sections I1 and 111, the problems of determining the weights 
of single-layer and multilayer neural networks are formulated, and 
the notation used is introduced. In Section IV, bounds on the size 
of the multilayer neural network and a method for computing the 
neural network’s weights are derived and formally stated. A com- 
parison of these results with existing ones is also included. Finally, 
in Section V,  illustrating examples are presented. 

11. THE SINGLE-LAYER NEURAL NETWORK 

The single-layer neural network comprises n parallel neurons of 
the form 

Y,  =f(U’Wi) (1) 

for 1 I i I n .  For the ith neuron, the functionf: l i d  + 1;; is the 
nonlinearity of the neuron, U : = [U’, * * , U , ] ’  E l i d m X ’  is the 
input vector, wi : = [ w l i ,  , wmi]‘  E i;;i” ’ is the weight vector, 
and U, = 1 is the bias input for the neuron. The type of nonlinearity 
used for the neuron is unrestricted. 

Assume that a training set consisting of p pairs of input vectors 
and desired output vectors { u ( j ) ,  d ( j ) }  for 1 I j 5 p is given, 
w h e r e u ( j ) E I l l : m X ’ , u , , , ( j )  = l . a n d d ( j )  = [ d , ( j ) ,  * * - ,d , ‘ ( j ) ] ’  
E I, 8j’’ I for 1 5 j I p. The output of the single-layer neural net- 
work is described by 

Y = @ ( U ’ W )  (2) 

where Y : = [ y l ,  ‘I is the matrix of the neuron’s 
outputs, yi  := [y , ( l ) ,  * * * , y i ( p ) ] ’  E ‘ 8 ’ / ’ x ’  for 1 I i I n is the 
vectoroftheithneuron’soutput, U : =  [ ~ ( l ) ,  * * * , u ( p ) ] ’ ~ i , ‘ ’ ’ ~ / ’  
is the matrix of input vectors, W : = [wI, . . . , w,,] E 8!“x’’ is the 
matrix of weight vectors, and @(Z) E ,m8, ’ ’x ’ ’  with 2 := [zl. . . * , 
z,,] E ILpx“. The notation cP(2) represents a map which takes a 
matrix 2 with elements zjr and returns another matrix of the same 
size with elementsf(zji), wherefis the neuron’s nonlinearity. 

The single-layer neural network training problem (L) is defined 

* . , y,,]‘ E 
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as follows: 

W 
min P(w) 

where 

P(W) = tr ((D - *(U'W))'(D - *(U'W))) 

and where "tr" is the trace of a square matrix, D := [dg, * * , 
41 E R p x n  is the matrix of desired outputs, and di := [ d i ( l ) ,  
* * * , d, ( p ) ] '  E kif I for 1 < i 5 n are the desired output vectors. 
In equation (L), P(W) is actually a sum of the squares of the error 
between the individual desired output elements and the outputs of 
the neurons: 

n p  

P(W) = c E (dk(i) - f ( u ( j ) 1 w k ) ) 2 .  (3) 
k = l  J = I  

Next, the case of the single-layer neural network exactly duplicat- 
ing the training set is examined. 

Since 

P ( W )  2 0 (4) 

for any W, if a W exists such that 

P(W) = 0, 

then this Wminimizes P(W) and solves (L). When this occurs, the 
output of the single-layer neural network exactly matches the de- 
sired one. 

Theorem I :  If there exists a W such that 

the outputs of the single-layer neural network exactly match the 
desired ones. 

Case (ii): If there are more patterns than weights, that is, p > 
m,  then there is no guarantee that rank [U' : VI = rank [U' ] or that 
(6) will have a solution for a given V .  In this case, a solution to 
(L) with zero error does not necessarily exist. 

In this paper, Theorem 1 and the first case with p 5 m, that is, 
the number of patterns is less than or equal to the number of 
weights, are used to derive the bound on the number of layers and 
the bound on the size of the hidden layer of the multilayer neural 
network to implement any training set. 

111. THE MULTILAYER NEURAL NETWORK 

The multilayer neural network consists of many layers of parallel 
neurons connected ir1 a feedforward manner. Using the quantity #k 
as the number of nodes in the kth layer, the output of the kth layer 
is described by 

Y' = *(Uk'W'). (1 1) 

Here Y' := [yf,  * . , y;'] E x # k  is the matrix of outputs; y f  
: = [ y : ( l ) ,  . . . , y f ( p ) ] '  E 1 8 1 f  I is the vector of outputs for the 
ith neuron; U' := [ u ' ( l ) ,  * . . , u ' ( p ) ]  E is the 
matrix of input vectors; u ' ( i )  := [ y ! - ' ( i ) ,  . * , y i & L l ) ( i ) ,  1 1 '  E 
~ ; l ( # ( ~  - I ) +  I )  I is the vector of inputs for the ith neuron equal to the 
outputs from the previous layer plus the bias of one for the last 
term; W' := [w: ,  . . . , w i t ]  E I)+ I) "' is the matrix of 
weight vectors; w :  := [w' ; , ; ,  * * , w ; ( k & L ) + ' . ; ] '  E 1 W - ' ) + I ) X l  

is the vector of weights; and (2) E ;; ;ip is defined as previously 
U'W = v (6) stated. Using U' = U, the output of the first hidden layer is de- 

where @(V)  = D, then 

F(W) = 0. (7) 

Pro08 Applying the neuron's nonlinear function to both sides 

(8) 

of (6), 
*(U'W) = @(V) = D 

or 

D - *(U'W) = 0. (9) 

Substituting (9) into (L), 

P(W) = 0. + 
It is known from the theory of linear algebraic equations that (6) 

has a solution if and only if rank [U' : VI = rank [U']. Next, two 
cases are examined: (i) when there are at least as many weights as 
there are patterns and (ii) when there are more patterns than 
weights. 

Case (i): If there are at least as many weights as there are pat- 
terns, that is, m ? p, and rank [ U ' ]  = p ,  then a solution W to (6) 
always exists for any V. In this case (with m > p ) ,  there are an 
infinite number of solutions W. The following corollary states this 
result; the proof is obvious. 

Corollary I :  If rank [ U ' ]  = p I: m,  then there always exists at 
least one weight matrix W such that P(W) = 0; such W can be 
found by solving (6). 

That is, for any training set, if rank [ U ' ]  = p 5 m,  then the 
training set can always be implemented via a single-layer neural 
network. There are, in general, an infinite number of weights W* 
which can accomplish this, namely, solving problem (L) such that 
&W*) = 0, where W* is any solution of (6). Clearly, in this case, 

scribed by 

Y' = @(U'W'). 

WithU'' = [ Y ' ~ ] E I  f x X ( # l t l ) w h e r e l ~ l  "'I, theoutputofthe 
second hidden layer is described by 

Y2 = *(U2,WZ). (13) 

Continuing this inductive process, each successive layer is defined 
appropriately until the desired number of layers is reached. The 
last layer is called the output layer and is described by 

Y" = *(UO'WO) (14) 

where the superscript o denotes output. 

as follows: 
The multilayer neural network training problem (M) is defined 

min P(w', . , W O )  
WI ' W .  

and where "tr" is the trace of a square matrix, ( W ' ,  . . . , W") 
are the weight matrices of all the layers of the multilayer neural 
network, D : = [dl, * . * , d , ]  E t :  " is the desired output matrix, 
and Yo is the output of the output layer of the multilayer neural 
network. In relation to the previous training problem (L), the input 
matrix U is not directly in (M) since the input is "buried" beneath 
the hidden layers. If there are no hidden layers, then (M) reduces 
to (L). In equation (M), F(W',  . * , W") is actually the sum of 
the squares of the error between the individual desired output ele- 
ments and the outputs of the neurons in the output layer: 

, WO) = C C ( d L ( j )  - yP( j ) ) * .  
11 f 

Aw',  * (15)  
k = I  J = I  
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IV. THE BOUND A N D  THE CORRESPONDING WEIGHTS 

The theorem presented here guarantees the existence of a two- 
layer neural network to represent exactly any arbitrary training set, 
where the input vectors as well as the desired output vectors of the 
training set are generated by an arbitrary function and are real num- 
bers. The only restriction, which is easily satisfied, on the nonlin- 
earities of the neurons is that they satisfy the precondition of Theo- 
rem 2. In this section, the main theorem of this paper is presented, 
and the appropriate weights to implement this result are derived. 
The bound on the size of the hidden layer is shown to be #1 2 p 
- 1. In addition, a comparison of this result with previous ones in 
the literature is included. 

Assume that the training set (U, D) is generated by an arbitrary 
function: given an arbitrary function g ’n -+ I:.?, d ( j )  = g ( u ( j ) )  
for 1 I j I p. Assume also that the nonlinearity of the neurons is 
the signum function. 

Lemma I :  Given the input matrix U E V‘ x p ,  there exists at least 
one weight matrix W E I: lY  

rank [@(U’W)l] = p. (16) 

Pro08 The proof of the existence of at least one matrix W 
was established previously in [3] with the signum function as the 
nonlinearity of the neurons. In [ I ]  and [2], when the input vectors 
U are in general position (which is explained below), the existence 
of at least one matrix W was also established with the signum func- 
tion as the nonlinearity of the neurons. In these proofs, the matrix 
W is derived so that the corresponding n hyperplanes partition the 
input space in a particular manner. Clearly, if one set of hyper- 
planes is found, then there exist others, some of which may be 
found by infinitesimally shifting the hyperplanes. 

Actually, the signum function does not need to be used as the 
nonlinearity of the neurons, and in fact almost any arbitrary non- 
linearity will suffice to satisfy (16). Furthermore, the weight matrix 
Wcan be chosen almost arbitrarily. To see this, let W be such that 
[@(U’W)l] does not satisfy the rank condition. This implies that 
all p-order minors in [ @ ( U W )  11 are zero. For this to happen, the 
weights wii must zero all such p-order minors. This, however, will 
not occur in general as each minor is zeroed for only certain values 
of the weights. These weights which reduce the rank lie on a hy- 
perplane in the weight space. Thus, if the weight matrix W is cho- 
sen arbitrarily, the weights will not in general lie on the hyperplane 
causing the rank reduction. This results in [@(U W) 11 having full 
rank p ;  in other words, (16) is satisfied generically. The examples 
in the following section illustrate this. 

Using the notation defined for a multilayer neural network with 
two layers, the output matrix of the hidden layer is described by 
Y’ E I l; ipx#l, its weights as W’ E 1 8 ’ ” x ’ ’ ,  and its inputs as U’ = U 
E Il:pxm. The output matrix of the output layer is described by Y’ 
E I/ iip ”, its weights by W’ E I: + I )  I’ , and its inputs by U’’ = 

Let the training set (U, D) and a two-layer neural network be 
given. 

Theorem 2:  Assume that the weights of the hidden layer W’ are 
such that rank [U”] = p .  Then, there always exists a weight ma- 
trix w’ such that 4 W ’ ,  w’) = 0, and W2 can be computed by 
solving the linear equation 

with n + 1 2 p such that 

+ 

[y’ 11 E l i ; i P X ( # l  + 1 )  

(1’’W’ = v2 (17) 

where @(V’) = D. 
Pro08 Note that in view of Lemma I ,  there always exists a 

matrix W‘ such that rank [U”] = p; in fact, almost any W’ will 
suffice. Using Corollary 1, there exists a weight matrix W’ such 

that 8(W’, W’) = 0, and such weights are given by (17), which 
always has at least one solution. + 
A .  Bounds 

As discussed above, the weight matrix W’ for the hidden layer 
can be almost arbitrarily chosen. If the number of hidden neurons 
is chosen to be equal to p less one, that is #I  = p - 1 ,  then U’ E 
R P  x p  is a square matrix and W2 is the unique solution of the linear 
equation (17). If # 1  > p - 1, then (17) is an underspecified linear 
system, and there are an infinite number of solutions W’. In gen- 
eral, (17) has a solution W’ if and only if rank [U”] = rank 
[U” : V’]; with U’‘ E i i ! (px(#I  + I ) ,  (17) has a solution for any V’ if 
and only if rank [U”] = p 5 #I  + 1, which can occur if # I  2 p 
- 1. 

Two bounds on the size of the multilayer neural network result 
from Theorem 2. First, the multilayer neural network only needs 
two layers of weights to implement any training set. Second, only 
if #1 z p - 1 can rank [U2‘]  = p; only if the number of neurons 
in the hidden layer is greater than or equal to the number of patterns 
less one, that is, #1 z p - 1, can the multilayer neural network 
assuredly implement the arbitrary training set exactly. Thus, an 
upper bound on #I  is p - 1. If #1 < p - 1, then the existence of 
a W’ such that AW’,  W’) = 0 is not guaranteed for an arbitrary 
training set. 

B. Compurison with Previous Derivations 

In the literature, there have been several derivations of the bounds 
for the multilayer neural network, namely [ 11-[3]. The differences 
between the results presented here and these are now discussed. 

In [ 11 ,  the following is derived: a two-layer feedforward neural 
network with one hidden layer and with p - 1 hidden layer neurons 
can exactly implement a classification training set, that is, a train- 
ing set with real inputs and binary outputs of the set (0, I}.  The 
classification training set is assumed to contain scalar desired out- 
puts and input patterns in “general position”; that is, for an 
m-dimensional input space no subset of m + 1 input patterns lies 
on an (m - 1)-dimensional hyperplane. Nilsson’s derivation [I] 
uses the threshold logic units of the 1960’s and 1970’s, but is dis- 
cussed here in the context of this paper’s notation. Nilsson states 
that forp  - 1 hyperplanes which form a “nonredundant partition” 
of the input space, these hyperplanes can be used to specify the 
hidden layer, and the output of the hidden layer is linearly sepa- 
rable. A “partition” of the input space means that the hyperplanes 
divide the input patterns into “cells” such that no two patterns of 
opposite categorization are in the same cell. A “nonredundant par- 
tition” of the input space means that if any of the separating hy- 
perplanes is removed, then at least two nonempty cells will merge 
into one cell. Note that the nonredundant partitioning of the input 
space actually ensures that the rank condition of (16) is satisfied 
for the outputs of the hidden layer. The equations describing the 
partitioning hyperplanes are then used for the weights and biases 
of the hidden layer neurons, but a method is not provided for find- 
ing the nonredundant partitioning hyperplanes. The derivation as- 
sumes a signum function with (0, I }  as the nonlinearity for both 
the hidden layer neurons and the output layer neurons. The weights 
of the output layer are found by computing a matrix inverse. 

In [2], different bounds were derived for a ciassification training 
set with a scalar desired output and with input patterns in “general 
position”: a two-layer neural network with one hidden layer and 
with p hidden layer neurons (not p - I ,  as in [ I ] )  can exactly 
implement the classification training set. Instead of using hyper- 
planes in a nonredundant partitioning scheme like Nilsson, Baum 
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[2] separates each of the p patterns with p parallel hyperplanes, 
each of which is orthogonal to the same axis. With this separation, 
the outputs of the hidden layer form a linearly separable set, which 
satisfies the rank condition of (16), and are hence implementable 
with a single neuron. Once again, the equations describing the par- 
titioning hyperplanes are used for the weights of the hidden layer 
neurons. Although a method for determining the hyperplanes ex- 
plicitly is not provided, it is conceivably easier to find these hy- 
perplanes than those of Nilsson. The signum function with { - 1 ,  
I }  is used as the nonlinearity for both the hidden layer neurons and 
the output layer neurons. To find the weights W’ of the output 
layer, it is suggested to use the perceptron convergence theorem of 
Rosenblatt [4] with U’ as the input patterns and d as the desired 
outputs. In general, this method is less efficient than solving the p 
linear equations of (1  7). 

In [3], a two-layer feedforward neural network with one hidden 
layer and with p - 1 hidden layer neurons is shown to exactly 
implement an arbitrary training set. The desired outputs are not 
restricted to scalars, and the input patterns are not restricted to being 
in general position but must lie in a Euclidian space so that a metric 
can be defined between the input vectors. The training set, how- 
ever, is assumed to be generated by an arbitrary function, as is 
assumed in this paper. For the two-layer feedforward neural net- 
work, the nonlinearity of the hidden layer is the signum function 
with outputs (0, I } ,  and the nonlinearity of the output layer is the 
linear function. As with Nilsson, the input space is divided using 
p - 1 hyperplanes. Each hyperplane is constructed to separate one 
input pattern from the rest. If this cannot be accomplished, then 
the hyperplane is constructed such that the chosen input pattern and 
previously separated input patterns are on the same side of the hy- 
perplane. A method based on the minimum distance between any 
two input patterns is presented for finding the hyperplanes, and the 
equations describing the separating hyperplanes are then used for 
the weights of the hidden layer neurons. With this procedure, the 
outputs of the hidden layer form an upper triangular square matrix, 
and the rank condition of (16) is satisfied. The weights for the out- 
put layer are found by 

Wz = [Uz1]-‘D (18) 

since the nonlinearity of the output layer’s neurons is the linear 
function. Equation (18) is equivalent to solving (17) by inverting 
a square U’’ when the nonlinearity of the output layer neurons is 
the linear function. 

V .  EXAMPLES 
A 4 X 4 retina, as described in Widrow [ 5 ] ,  is used in this ex- 

ample. Twenty-eight different patterns are used in the training set, 
as shown in Fig. 1. Seven different letters are used, and each is 
translated four times over the retina. The input patterns generated 
for these patterns consist of either a I (black) or a - 1 (white) and 
are formed by copying the elements of the retina matrix row-wise 
into a vector such that the input matrix U E ” 28 IS  ’ formed. It is 
desired to map the letters X, T, C, and U to one class and the letters 
L, J, and H to another. With the hyperbolic tangent used for each 
neuron’s nonlinearity, the desired scalars associated with the input 
patterns for X, T, C,  and U are assigned a 1 - le-IO, and those 
associated with the input patterns for L, J, and H are assigned a 
-1 + le-10 such that d E 2 8 x  I . The input space is of high di- 
mension, and it is unclear if the training set is linearly separable. 
Performing a test for linear separability, the training set IS not lin- 
early separable. Thus, to implement the classification training set, 
a multilayer neural network is needed. Applying Theorem 2, a two- 
layer neural network is constructed with # I  = 27 and with the hy- 

Fig. 1 .  Retina patterns for the letters X ,  T ,  C, U, L, J ,  and H. 

perbolic tangent used as the nonlinearity of the hidden layer neu- 
rons. The weights W1 are chosen at random in the interval 1-1, 
I ]  with a uniform distribution, and (16) is satisfied; rank [U’] = 
28. Choosing V’ such that v l ( j )  = tanh ( d l ( j ) )  for 1 I i 5 # I  
and 1 I j I p ,  the weights W’ are found by solving (17) and 
AW’, W’) = 0. 

Example 2 
In a square of size [0, 81 X [0, 81, consider a circle of radius 2 

centered at ( 4 , 4 ) .  Let the input patterns be points inside the square. 
If the input pattern lies inside the circle, the corresponding desired 
output is I ,  and if the input pattern lies outside the circle, the cor- 
responding desired output is - 1 .  Thus, U E I: ,?  x p  and d E I ,  \,‘’ I. 

The training patterns are taken as points evenly spaced over the 
square; a new pattern occurs every 0.5 steps in a direction parallel 
to an axis, for a total ofp = 64 training patterns with 12 inside the 
circle and 42 outside the circle. In Fig. 2, the training patterns are 
indicated with the appropriate desired output, as well as the circle 
for reference. The hyperbolic tangent is used as the nonlinearity 
for the hidden layer neurons, and the signum function is the one 
for the output layer neurons. Applying Theorem 2,  a two-layer 
neural network is constructed with # I  = 63, and the W’ are chosen 
at random in the interval 1-1, I] with a uniform distribution, and 
rank [U’] = 64 satisfying (16). Choosing V’ such that z ( ( j )  = 
d i ( j )  = signum ( d l ( j ) )  for I I i I # I  and 1 5 j 5 p and solving 
the p linear equations of (17) to compute W’, the training set is 
learned exactly such that F‘(W’, W ’ )  = 0, and the same figure as 
in Fig. 2 results. 

Example 3 
The reproduction of a sinusoidal over one period is desired. 

Sampling the sinusoid for input points as sin (k) fork = 0, 2u/8 .  
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Fig. 2. Training set for Example 2. 

Bayes Statistical Behavior and Valid Generalization 
of Pattern Classifying Neural Networks 

Fumio Kanaya and Shigeki Miyake 

Abstract-This letter demonstrates both theoretically and experimen- 
tally that under appropriate conditions a neural network pattern clas- 
sifier generates the empirical Bayes rule optimal against the empirical 
distribution of the sample data which are used to train the network. In 
addition, it is proposed that a Bayes statistical decision approach leads 
naturally to a probabilistic definition of the valid generalization which 
a neural network can be expected to generate from a finite training 
sample. 

-1 
0 1 2 3 4 5 6 7 

Fig. 3. Training set for Example 3 

* . * , (2x - 2 r / 8 ) ,  the input matrix, U E 1LZx8, is composed of 
the values fork and a bias input for the eight patterns. The desired 
vector d E k?x ’ is the value of the sinusoid. The training set is 
shown in Fig. 3. The hyperbolic tangent is used as the nonlinearity 
for the hidden layer neurons, and the linear function is the one for 
the output layer neurons. Applying Theorem 2, a two-layer neural 
network is constructed with #I  = 7, and the W ’  are chosen at 
random in the interval [-I, I ]  with a uniform distribution, and 
rank [U’]  = 8 satisfying (16). Choosing V’ such that v , ! ( j )  = 
d j ( j )  for 1 I i I # I ,  1 5 j I p and solving thep linear equations 
of (17) to compute W’, the training set is learned exactly such that 
p(W’, W 2 )  = 0, and the same figure as in Fig. 3 results. 

VI. CONCLUDING REMARKS 

A new derivation is presented for the bounds on the size of a 
multilayer neural network to exactly implement an arbitrary train- 
ing set; namely, the training set can be implemented with zero error 
with two layers and with the number of hidden layer neurons equal 
to # I  L p - I .  The derivation does not require the separation of 
the input space by particular hyperplanes, as previous ones do. The 
weights for the hidden layer can be chosen almost arbitrarily, and 
the weights for the output layer can be found by solving # I  + I 
linear equations. The method presented here exactly solves (M), 
the multilayer neural network training problem, for any arbitrary 
training set. It is of course understood that arbitrarily choosing the 
hidden layer weights may not be the best possible way of guaran- 
teeing correct classification of test patterns. The problem addressed 
here deals with exactly duplicating the training set. 

I. INTRODUCTION 

In the context of statistical pattern classification it is a familiar 
fact that the Bayes optimal rule attains the minimum possible prob- 
ability of misclassification. Let 0 = { e }  be a set of categories or 
pattern classes and let X = {x} be a set of pattern vectors to be 
classified. For simplicity we assume 0 and X to be finite. Let P(0) 
be a prior distribution on 0 and let W(x 10) be the conditional prob- 
ability of pattern vector x being observed under the hypothesis that 
8 is the true category. Denoting a loss function as p: 0 x 0 + R+ 
= [0, OD), for a given decision rule $: X -+ 0,  the expected risk 
is defined by 

( 1 )  

If p is the Hamming metric dH (the usual case in practical pattern 
classification), r (P ,  W ,  $) represents the probability of misclassi- 
fication. Let A denote the set of all possible decision rules. Then 
the minimum attainable risk 

r (p ,  W, $1 = & xFx P(e) W(X 1 e) P ( W ,  0 ) .  

r ( P ,  W, 4) = min r ( P ,  W, $) (2) 
+€A 

is referred to as the Bayes optimal risk, and the minimizing rule 4 
is defined as the Bayes optimal rule against the joint distribution 
P ( 0 )  W(x I e). It is well known that the Bayes rule always exists and 
is computable in principle according to the following equation: 
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