
IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2, NO. 4. JULY 1991 461

Here, E,, E,- I etc. means over all neurons in layer n , n - 1, etc.,
6,*(k) for any later 1 5 k 5 n - 1 is given by

S,*(k) = w$(k)f’(net$(k)).

IV. CONCLUSION

A learning algorithm based on dynamic programming has been
derived for multilayer neural networks. The advantage of this al-
gorithm over other well-known algorithms [4], [SI is that it pro-
vides a recursive relationship to compute a minimizing error func-
tion for every hidden layer expressed explicitly in terms of the
weights and outputs of the hidden layer. The algorithm can be used
even when neuron activation functions are not continuous.

REFERENCES

[l] R. E. Bellman, and S. E. Dreyfus, Applied Dynamic Programming.
Princeton, NJ: Princeton University Press, 1962.

[2] L. Cooper and M. Cooper, Introduction to Dynamic Programming.
Elmsford, NY: Pergamon, 1981.

[3] R. E. Larson and J. L. Casti, Principles of Dynamic Programming.
New York: Marcel Decker, 1978.

[4] D. E. Rumelhart, et al., “Learning representations by back propagat-
ing errors,” Nature, vol. 323, p. 533-536, 1986.

[5] B. Widrow and R. Winter, “Neural nets for adaptive filtering and
adaptive pattern recognition,” Computer, vol. 21, no. 3, pp. 25-39,
1988.

A Simple Method to Derive Bounds on the Size and
to Train Multilayer Neural Networks

Michael A. Sartori and Panos J. Antsaklis

Abstract-For an arbitrary training set with p training patterns, a
multilayer neural network with one hidden layer and withp - 1 hidden
layer neurons can exactly implement the training set. Previous deri-
vations proved these bounds by separating the input patterns with par-
ticular hyperplanes and using the equations describing the hyperplanes
to choose the weights for the hidden layer. Here, the bounds are de-
rived by simply satisfying a rank condition on the output of the hidden
layer. The weights for the hidden layer can be chosen almost arbitrar-
ily, and the weights for the output layer are found by solving p linear
equations.

I. INTRODUCTION
For an arbitrary training set with p training patterns, a multilayer

neural network with one hidden layer and with p - I hidden layer
neurons can exactly implement the training set. These bounds were
derived previously in [11-[3] by finding particular hyperplanes that
separate the input patterns and then using the equations describing
these hyperplanes to choose the weights for the hidden layer. When
this is satisfied and with the signum function as the nonlinearity of
the hidden layer neurons, the outputs of the hidden layer form a

Manuscript received February 9, 1991. This work was supported by the

The authors are with the Department of Electrical Engineering, Univer-

IEEE Log Number 9100433.

Jet Propulsion Laboratory, Pasadena. CA, under Contract 957856.

sity of Notre Dame, Notre Dame, IN 46556.

linearly separable set and can be implemented with a final single
layer, the output layer.

In this paper, particular hyperplanes separating the input patterns
do not need to be found; the weights for the hidden layer can be
chosen almost arbitrarily to satisfy a simple rank condition. The
weights for the output layer are computed by solving #1 + 1 linear
equations, where #1 represents the number of neurons in the hidden
layer. For a two-layer neural network, the number of hidden layer
neurons needed to implement an arbitrary training set exactly is
shown to be p - 1. Note that it is only sufficient and not necessary
to use p - 1 hidden neurons to exactly implement the training set,
and for a particular training set, this number can be reduced. In the
training set, both the input vectors and the desired output vectors
are assumed to be generated by an arbitrary function and are real
numbers. Also, the nonlinearities for the hidden layer neurons are
not restricted to be the signum function, as in previous derivations.
In fact, the only condition which must be satisfied by the training
set and the nonlinearities of the neurons is the precondition of
Theorem 2, a rank condition.

It should be noted that in previous methods proposed, the rank
condition discussed here is satisfied; the rank condition in fact is
the only really sufficient condition needed. This implies that the
hidden layer’s weights do not necessarily need to be chosen to gen-
erate particular hyperplanes but can be chosen instead almost ar-
bitrarily to satisfy this simple rank condition, which of course guar-
antees that the outputs of the hidden layer are linearly separable.

In Sections I1 and 111, the problems of determining the weights
of single-layer and multilayer neural networks are formulated, and
the notation used is introduced. In Section IV, bounds on the size
of the multilayer neural network and a method for computing the
neural network’s weights are derived and formally stated. A com-
parison of these results with existing ones is also included. Finally,
in Section V, illustrating examples are presented.

11. THE SINGLE-LAYER NEURAL NETWORK

The single-layer neural network comprises n parallel neurons of
the form

Y, =f(U’Wi) (1)

for 1 I i I n . For the ith neuron, the functionf: l i d + 1;; is the
nonlinearity of the neuron, U : = [U’, * * , U ,] ’ E l i d m X ’ is the
input vector, wi : = [w l i , , wmi]‘ E i;;i” ’ is the weight vector,
and U, = 1 is the bias input for the neuron. The type of nonlinearity
used for the neuron is unrestricted.

Assume that a training set consisting of p pairs of input vectors
and desired output vectors { u (j) , d (j) } for 1 I j 5 p is given,
w h e r e u (j) E I l l : m X ’ , u , , , (j) = l . a n d d (j) = [d , (j) , * * - ,d , ‘ (j)] ’
E I, 8j’’ I for 1 5 j I p. The output of the single-layer neural net-
work is described by

Y = @ (U ’ W) (2)

where Y : = [y l , ‘I is the matrix of the neuron’s
outputs, yi := [y , (l) , * * * , y i (p)] ’ E ‘ 8 ’ / ’ x ’ for 1 I i I n is the
vectoroftheithneuron’soutput, U : = [~ (l) , * * * , u (p)] ’ ~ i , ‘ ’ ’ ~ / ’
is the matrix of input vectors, W : = [wI, . . . , w,,] E 8!“x’’ is the
matrix of weight vectors, and @(Z) E ,m8, ’ ’x ’ ’ with 2 := [zl. . . * ,
z,,] E ILpx“. The notation cP(2) represents a map which takes a
matrix 2 with elements zjr and returns another matrix of the same
size with elementsf(zji), wherefis the neuron’s nonlinearity.

The single-layer neural network training problem (L) is defined

* . , y,,]‘ E

1045-9227/91/0700-0467$01.00 0 1991 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 28, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2, NO. 4, JULY 1991 468

as follows:

W
min P(w)

where

P(W) = tr ((D - *(U'W))'(D - *(U'W)))

and where "tr" is the trace of a square matrix, D := [dg, * * ,
41 E R p x n is the matrix of desired outputs, and di := [d i (l) ,
* * * , d, (p)] ' E kif I for 1 < i 5 n are the desired output vectors.
In equation (L), P(W) is actually a sum of the squares of the error
between the individual desired output elements and the outputs of
the neurons:

n p

P(W) = c E (dk(i) - f (u (j) 1 w k)) 2 . (3)
k = l J = I

Next, the case of the single-layer neural network exactly duplicat-
ing the training set is examined.

Since

P (W) 2 0 (4)

for any W, if a W exists such that

P(W) = 0,

then this Wminimizes P(W) and solves (L). When this occurs, the
output of the single-layer neural network exactly matches the de-
sired one.

Theorem I : If there exists a W such that

the outputs of the single-layer neural network exactly match the
desired ones.

Case (ii): If there are more patterns than weights, that is, p >
m, then there is no guarantee that rank [U' : VI = rank [U'] or that
(6) will have a solution for a given V . In this case, a solution to
(L) with zero error does not necessarily exist.

In this paper, Theorem 1 and the first case with p 5 m, that is,
the number of patterns is less than or equal to the number of
weights, are used to derive the bound on the number of layers and
the bound on the size of the hidden layer of the multilayer neural
network to implement any training set.

111. THE MULTILAYER NEURAL NETWORK

The multilayer neural network consists of many layers of parallel
neurons connected ir1 a feedforward manner. Using the quantity #k
as the number of nodes in the kth layer, the output of the kth layer
is described by

Y' = *(Uk'W'). (1 1)

Here Y' := [yf, * . , y;'] E x # k is the matrix of outputs; y f
: = [y : (l) , . . . , y f (p)] ' E 1 8 1 f I is the vector of outputs for the
ith neuron; U' := [u ' (l) , * . . , u ' (p)] E is the
matrix of input vectors; u ' (i) := [y ! - ' (i) , . * , y i & L l) (i) , 1 1 ' E
~ ; l (# (~ - I) + I) I is the vector of inputs for the ith neuron equal to the
outputs from the previous layer plus the bias of one for the last
term; W' := [w: , . . . , w i t] E I)+ I) "' is the matrix of
weight vectors; w : := [w' ; , ; , * * , w ; (k & L) + ' . ;] ' E 1 W - ') + I) X l

is the vector of weights; and (2) E ;; ;ip is defined as previously
U'W = v (6) stated. Using U' = U, the output of the first hidden layer is de-

where @(V) = D, then

F(W) = 0. (7)

Pro08 Applying the neuron's nonlinear function to both sides

(8)

of (6),
*(U'W) = @(V) = D

or

D - *(U'W) = 0. (9)

Substituting (9) into (L),

P(W) = 0. +
It is known from the theory of linear algebraic equations that (6)

has a solution if and only if rank [U' : VI = rank [U']. Next, two
cases are examined: (i) when there are at least as many weights as
there are patterns and (ii) when there are more patterns than
weights.

Case (i): If there are at least as many weights as there are pat-
terns, that is, m ? p, and rank [U '] = p , then a solution W to (6)
always exists for any V. In this case (with m > p) , there are an
infinite number of solutions W. The following corollary states this
result; the proof is obvious.

Corollary I : If rank [U '] = p I: m, then there always exists at
least one weight matrix W such that P(W) = 0; such W can be
found by solving (6).

That is, for any training set, if rank [U '] = p 5 m, then the
training set can always be implemented via a single-layer neural
network. There are, in general, an infinite number of weights W*
which can accomplish this, namely, solving problem (L) such that
&W*) = 0, where W* is any solution of (6). Clearly, in this case,

scribed by

Y' = @(U'W').

WithU'' = [Y ' ~] E I f x X (# l t l) w h e r e l ~ l "'I, theoutputofthe
second hidden layer is described by

Y2 = *(U2,WZ). (13)

Continuing this inductive process, each successive layer is defined
appropriately until the desired number of layers is reached. The
last layer is called the output layer and is described by

Y" = *(UO'WO) (14)

where the superscript o denotes output.

as follows:
The multilayer neural network training problem (M) is defined

min P(w', . , W O)
WI ' W .

and where "tr" is the trace of a square matrix, (W ' , . . . , W")
are the weight matrices of all the layers of the multilayer neural
network, D : = [dl, * . * , d ,] E t : " is the desired output matrix,
and Yo is the output of the output layer of the multilayer neural
network. In relation to the previous training problem (L), the input
matrix U is not directly in (M) since the input is "buried" beneath
the hidden layers. If there are no hidden layers, then (M) reduces
to (L). In equation (M), F(W', . * , W") is actually the sum of
the squares of the error between the individual desired output ele-
ments and the outputs of the neurons in the output layer:

, WO) = C C (d L (j) - yP(j)) * .
11 f

Aw', * (15)
k = I J = I

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 28, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2, NO. 4, JULY 1991 469

IV. THE BOUND A N D THE CORRESPONDING WEIGHTS

The theorem presented here guarantees the existence of a two-
layer neural network to represent exactly any arbitrary training set,
where the input vectors as well as the desired output vectors of the
training set are generated by an arbitrary function and are real num-
bers. The only restriction, which is easily satisfied, on the nonlin-
earities of the neurons is that they satisfy the precondition of Theo-
rem 2. In this section, the main theorem of this paper is presented,
and the appropriate weights to implement this result are derived.
The bound on the size of the hidden layer is shown to be #1 2 p
- 1. In addition, a comparison of this result with previous ones in
the literature is included.

Assume that the training set (U, D) is generated by an arbitrary
function: given an arbitrary function g ’n -+ I:.?, d (j) = g (u (j))
for 1 I j I p. Assume also that the nonlinearity of the neurons is
the signum function.

Lemma I : Given the input matrix U E V‘ x p , there exists at least
one weight matrix W E I: lY

rank [@(U’W)l] = p. (16)

Pro08 The proof of the existence of at least one matrix W
was established previously in [3] with the signum function as the
nonlinearity of the neurons. In [I] and [2], when the input vectors
U are in general position (which is explained below), the existence
of at least one matrix W was also established with the signum func-
tion as the nonlinearity of the neurons. In these proofs, the matrix
W is derived so that the corresponding n hyperplanes partition the
input space in a particular manner. Clearly, if one set of hyper-
planes is found, then there exist others, some of which may be
found by infinitesimally shifting the hyperplanes.

Actually, the signum function does not need to be used as the
nonlinearity of the neurons, and in fact almost any arbitrary non-
linearity will suffice to satisfy (16). Furthermore, the weight matrix
Wcan be chosen almost arbitrarily. To see this, let W be such that
[@(U’W)l] does not satisfy the rank condition. This implies that
all p-order minors in [@ (U W) 11 are zero. For this to happen, the
weights wii must zero all such p-order minors. This, however, will
not occur in general as each minor is zeroed for only certain values
of the weights. These weights which reduce the rank lie on a hy-
perplane in the weight space. Thus, if the weight matrix W is cho-
sen arbitrarily, the weights will not in general lie on the hyperplane
causing the rank reduction. This results in [@(U W) 11 having full
rank p ; in other words, (16) is satisfied generically. The examples
in the following section illustrate this.

Using the notation defined for a multilayer neural network with
two layers, the output matrix of the hidden layer is described by
Y’ E I l; ipx#l, its weights as W’ E 1 8 ’ ” x ’ ’ , and its inputs as U’ = U
E Il:pxm. The output matrix of the output layer is described by Y’
E I/ iip ”, its weights by W’ E I: + I) I’ , and its inputs by U’’ =

Let the training set (U, D) and a two-layer neural network be
given.

Theorem 2: Assume that the weights of the hidden layer W’ are
such that rank [U”] = p . Then, there always exists a weight ma-
trix w’ such that 4 W ’ , w’) = 0, and W2 can be computed by
solving the linear equation

with n + 1 2 p such that

+

[y’ 11 E l i ; i P X (# l + 1)

(1’’W’ = v2 (17)

where @(V’) = D.
Pro08 Note that in view of Lemma I , there always exists a

matrix W‘ such that rank [U”] = p; in fact, almost any W’ will
suffice. Using Corollary 1, there exists a weight matrix W’ such

that 8(W’, W’) = 0, and such weights are given by (17), which
always has at least one solution. +
A . Bounds

As discussed above, the weight matrix W’ for the hidden layer
can be almost arbitrarily chosen. If the number of hidden neurons
is chosen to be equal to p less one, that is #I = p - 1 , then U’ E
R P x p is a square matrix and W2 is the unique solution of the linear
equation (17). If # 1 > p - 1, then (17) is an underspecified linear
system, and there are an infinite number of solutions W’. In gen-
eral, (17) has a solution W’ if and only if rank [U”] = rank
[U” : V’]; with U’‘ E i i ! (px(#I + I) , (17) has a solution for any V’ if
and only if rank [U”] = p 5 #I + 1, which can occur if # I 2 p
- 1.

Two bounds on the size of the multilayer neural network result
from Theorem 2. First, the multilayer neural network only needs
two layers of weights to implement any training set. Second, only
if #1 z p - 1 can rank [U2‘] = p; only if the number of neurons
in the hidden layer is greater than or equal to the number of patterns
less one, that is, #1 z p - 1, can the multilayer neural network
assuredly implement the arbitrary training set exactly. Thus, an
upper bound on #I is p - 1. If #1 < p - 1, then the existence of
a W’ such that AW’, W’) = 0 is not guaranteed for an arbitrary
training set.

B. Compurison with Previous Derivations

In the literature, there have been several derivations of the bounds
for the multilayer neural network, namely [11-[3]. The differences
between the results presented here and these are now discussed.

In [11 , the following is derived: a two-layer feedforward neural
network with one hidden layer and with p - 1 hidden layer neurons
can exactly implement a classification training set, that is, a train-
ing set with real inputs and binary outputs of the set (0, I}. The
classification training set is assumed to contain scalar desired out-
puts and input patterns in “general position”; that is, for an
m-dimensional input space no subset of m + 1 input patterns lies
on an (m - 1)-dimensional hyperplane. Nilsson’s derivation [I]
uses the threshold logic units of the 1960’s and 1970’s, but is dis-
cussed here in the context of this paper’s notation. Nilsson states
that forp - 1 hyperplanes which form a “nonredundant partition”
of the input space, these hyperplanes can be used to specify the
hidden layer, and the output of the hidden layer is linearly sepa-
rable. A “partition” of the input space means that the hyperplanes
divide the input patterns into “cells” such that no two patterns of
opposite categorization are in the same cell. A “nonredundant par-
tition” of the input space means that if any of the separating hy-
perplanes is removed, then at least two nonempty cells will merge
into one cell. Note that the nonredundant partitioning of the input
space actually ensures that the rank condition of (16) is satisfied
for the outputs of the hidden layer. The equations describing the
partitioning hyperplanes are then used for the weights and biases
of the hidden layer neurons, but a method is not provided for find-
ing the nonredundant partitioning hyperplanes. The derivation as-
sumes a signum function with (0, I } as the nonlinearity for both
the hidden layer neurons and the output layer neurons. The weights
of the output layer are found by computing a matrix inverse.

In [2], different bounds were derived for a ciassification training
set with a scalar desired output and with input patterns in “general
position”: a two-layer neural network with one hidden layer and
with p hidden layer neurons (not p - I , as in [I]) can exactly
implement the classification training set. Instead of using hyper-
planes in a nonredundant partitioning scheme like Nilsson, Baum

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 28, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

470 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2, NO. 4. JULY 1991

[2] separates each of the p patterns with p parallel hyperplanes,
each of which is orthogonal to the same axis. With this separation,
the outputs of the hidden layer form a linearly separable set, which
satisfies the rank condition of (16), and are hence implementable
with a single neuron. Once again, the equations describing the par-
titioning hyperplanes are used for the weights of the hidden layer
neurons. Although a method for determining the hyperplanes ex-
plicitly is not provided, it is conceivably easier to find these hy-
perplanes than those of Nilsson. The signum function with { - 1 ,
I } is used as the nonlinearity for both the hidden layer neurons and
the output layer neurons. To find the weights W’ of the output
layer, it is suggested to use the perceptron convergence theorem of
Rosenblatt [4] with U’ as the input patterns and d as the desired
outputs. In general, this method is less efficient than solving the p
linear equations of (1 7).

In [3], a two-layer feedforward neural network with one hidden
layer and with p - 1 hidden layer neurons is shown to exactly
implement an arbitrary training set. The desired outputs are not
restricted to scalars, and the input patterns are not restricted to being
in general position but must lie in a Euclidian space so that a metric
can be defined between the input vectors. The training set, how-
ever, is assumed to be generated by an arbitrary function, as is
assumed in this paper. For the two-layer feedforward neural net-
work, the nonlinearity of the hidden layer is the signum function
with outputs (0, I } , and the nonlinearity of the output layer is the
linear function. As with Nilsson, the input space is divided using
p - 1 hyperplanes. Each hyperplane is constructed to separate one
input pattern from the rest. If this cannot be accomplished, then
the hyperplane is constructed such that the chosen input pattern and
previously separated input patterns are on the same side of the hy-
perplane. A method based on the minimum distance between any
two input patterns is presented for finding the hyperplanes, and the
equations describing the separating hyperplanes are then used for
the weights of the hidden layer neurons. With this procedure, the
outputs of the hidden layer form an upper triangular square matrix,
and the rank condition of (16) is satisfied. The weights for the out-
put layer are found by

Wz = [Uz1]-‘D (18)

since the nonlinearity of the output layer’s neurons is the linear
function. Equation (18) is equivalent to solving (17) by inverting
a square U’’ when the nonlinearity of the output layer neurons is
the linear function.

V . EXAMPLES
A 4 X 4 retina, as described in Widrow [5] , is used in this ex-

ample. Twenty-eight different patterns are used in the training set,
as shown in Fig. 1. Seven different letters are used, and each is
translated four times over the retina. The input patterns generated
for these patterns consist of either a I (black) or a - 1 (white) and
are formed by copying the elements of the retina matrix row-wise
into a vector such that the input matrix U E ” 28 IS ’ formed. It is
desired to map the letters X, T, C, and U to one class and the letters
L, J, and H to another. With the hyperbolic tangent used for each
neuron’s nonlinearity, the desired scalars associated with the input
patterns for X, T, C, and U are assigned a 1 - le-IO, and those
associated with the input patterns for L, J, and H are assigned a
-1 + le-10 such that d E 2 8 x I . The input space is of high di-
mension, and it is unclear if the training set is linearly separable.
Performing a test for linear separability, the training set IS not lin-
early separable. Thus, to implement the classification training set,
a multilayer neural network is needed. Applying Theorem 2, a two-
layer neural network is constructed with # I = 27 and with the hy-

Fig. 1 . Retina patterns for the letters X , T , C, U, L, J , and H.

perbolic tangent used as the nonlinearity of the hidden layer neu-
rons. The weights W1 are chosen at random in the interval 1-1,
I] with a uniform distribution, and (16) is satisfied; rank [U’] =
28. Choosing V’ such that v l (j) = tanh (d l (j)) for 1 I i 5 # I
and 1 I j I p , the weights W’ are found by solving (17) and
AW’, W’) = 0.

Example 2
In a square of size [0, 81 X [0, 81, consider a circle of radius 2

centered at (4 , 4) . Let the input patterns be points inside the square.
If the input pattern lies inside the circle, the corresponding desired
output is I , and if the input pattern lies outside the circle, the cor-
responding desired output is - 1 . Thus, U E I: ,? x p and d E I , \,‘’ I.

The training patterns are taken as points evenly spaced over the
square; a new pattern occurs every 0.5 steps in a direction parallel
to an axis, for a total ofp = 64 training patterns with 12 inside the
circle and 42 outside the circle. In Fig. 2, the training patterns are
indicated with the appropriate desired output, as well as the circle
for reference. The hyperbolic tangent is used as the nonlinearity
for the hidden layer neurons, and the signum function is the one
for the output layer neurons. Applying Theorem 2, a two-layer
neural network is constructed with # I = 63, and the W’ are chosen
at random in the interval 1-1, I] with a uniform distribution, and
rank [U’] = 64 satisfying (16). Choosing V’ such that z ((j) =
d i (j) = signum (d l (j)) for I I i I # I and 1 5 j 5 p and solving
the p linear equations of (17) to compute W’, the training set is
learned exactly such that F‘(W’, W ’) = 0, and the same figure as
in Fig. 2 results.

Example 3
The reproduction of a sinusoidal over one period is desired.

Sampling the sinusoid for input points as sin (k) fork = 0, 2u/8 .

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 28, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2. NO. 4, JULY 1991 41 1

REFERENCES

[I] N. J . Nilsson, Learning Machines. New York: McGraw-Hill, 1965.
[2] E. B. Baum, “On the capabilities of multilayer perceptrons,” J . Com-

plexity, vol. 4, pp. 193-215, 1988.
[3] S. C. Huang and Y. F. Huang, “Bounds on number of hidden neurons

in multilayer perceptrons,” IEEE Trans. Neural Networks, vol. 2 , pp.
47-55, Jan. 1991.

141 F. Rosenblatt, Principles of Neurodynamics. New York: Spartan,
1962.

[SI B. Widrow, “ADALINE and MADALINE-1963.” Proc. 19871EEE
Int. Conf. Neural Networks, vol. 1 , pp. 145-157.

“0 2 4 6 8
Fig. 2. Training set for Example 2.

Bayes Statistical Behavior and Valid Generalization
of Pattern Classifying Neural Networks

Fumio Kanaya and Shigeki Miyake

Abstract-This letter demonstrates both theoretically and experimen-
tally that under appropriate conditions a neural network pattern clas-
sifier generates the empirical Bayes rule optimal against the empirical
distribution of the sample data which are used to train the network. In
addition, it is proposed that a Bayes statistical decision approach leads
naturally to a probabilistic definition of the valid generalization which
a neural network can be expected to generate from a finite training
sample.

-1
0 1 2 3 4 5 6 7

Fig. 3. Training set for Example 3

* . * , (2x - 2 r / 8) , the input matrix, U E 1LZx8, is composed of
the values fork and a bias input for the eight patterns. The desired
vector d E k?x ’ is the value of the sinusoid. The training set is
shown in Fig. 3. The hyperbolic tangent is used as the nonlinearity
for the hidden layer neurons, and the linear function is the one for
the output layer neurons. Applying Theorem 2, a two-layer neural
network is constructed with #I = 7, and the W ’ are chosen at
random in the interval [-I, I] with a uniform distribution, and
rank [U’] = 8 satisfying (16). Choosing V’ such that v , ! (j) =
d j (j) for 1 I i I # I , 1 5 j I p and solving thep linear equations
of (17) to compute W’, the training set is learned exactly such that
p(W’, W 2) = 0, and the same figure as in Fig. 3 results.

VI. CONCLUDING REMARKS

A new derivation is presented for the bounds on the size of a
multilayer neural network to exactly implement an arbitrary train-
ing set; namely, the training set can be implemented with zero error
with two layers and with the number of hidden layer neurons equal
to # I L p - I . The derivation does not require the separation of
the input space by particular hyperplanes, as previous ones do. The
weights for the hidden layer can be chosen almost arbitrarily, and
the weights for the output layer can be found by solving # I + I
linear equations. The method presented here exactly solves (M),
the multilayer neural network training problem, for any arbitrary
training set. It is of course understood that arbitrarily choosing the
hidden layer weights may not be the best possible way of guaran-
teeing correct classification of test patterns. The problem addressed
here deals with exactly duplicating the training set.

I. INTRODUCTION

In the context of statistical pattern classification it is a familiar
fact that the Bayes optimal rule attains the minimum possible prob-
ability of misclassification. Let 0 = { e } be a set of categories or
pattern classes and let X = {x} be a set of pattern vectors to be
classified. For simplicity we assume 0 and X to be finite. Let P(0)
be a prior distribution on 0 and let W(x 10) be the conditional prob-
ability of pattern vector x being observed under the hypothesis that
8 is the true category. Denoting a loss function as p: 0 x 0 + R+
= [0, OD), for a given decision rule $: X -+ 0, the expected risk
is defined by

(1)

If p is the Hamming metric dH (the usual case in practical pattern
classification), r (P , W , $) represents the probability of misclassi-
fication. Let A denote the set of all possible decision rules. Then
the minimum attainable risk

r (p , W, $1 = & xFx P(e) W(X 1 e) P (W , 0) .

r (P , W, 4) = min r (P , W, $) (2)
+€A

is referred to as the Bayes optimal risk, and the minimizing rule 4
is defined as the Bayes optimal rule against the joint distribution
P (0) W(x I e). It is well known that the Bayes rule always exists and
is computable in principle according to the following equation:

Manuscript received February 9. 1991. This work was presented in part

The authors are with the NTT Transmission Systems Laboratories.

IEEE Log Number 9100432.

at COGNITIVA 90, Madrid, Spain, November 20-23, 1990.

1-2356 Take Yokosuka-shi. Kanagawa 238-03, Japan.

1045-9227/91/0700-0471$01.00 0 1991 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 28, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

