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Abstract

In this paper, a Model-FoHowing approach is used to
design Reconfigurable Control Sysiems. The conventional
state-space linear model-following approach to control is first
reexamined with emphasis on the conditions for Perfect Model-
Following(PMF) and its applications to the Reconfigurable
Conwrol Systems design. New frequency domain necessary and
sufficient conditions for the PMF are then obtained and they are
used to gain insight into the selection of the reference model and
to develop a new design approach by extending the PMF
approach. This novel design approach yieid fewer constrainis
on the reference model than before. and provide much greater
flexibility in specifying the state trajectories of the impaired
system.

I. Introduction

The linear model-following (LMF) approach in control
system design has been studied by various researchers and this
subject can be found in many text books in control, see for
example, [Landau79]. The objective of such systems is to make
the trajectories of the output of a physical plant close to that of a
reference model, which exhibits desired behavior. The design
process of such systems is straightforward and the resulting
conwol systems possess simple struciures with only the constant
gains to be implemented in the feedback and feedforward path.
This type of control systems has been widely used and it is the
foundation of the well-known model-reference adapuve conwol
systems. Note that the LMF approach has been mainly studied
in the state-space domain [Erzberger68, Chen73, Landau79}.

In the context of reconfigurable control sysiems (RCS),
the idea of controtling the impaired system so that it is "close”,
in some sense, to the nominal sysiem, has been explored in
numerous papers [Caglayan88, Huber84, Ostroff85, Rattan8,
Ga090,90a]. The RCS are conwol systems that possess the
ability to accommodate system failures automatically based upon
a-priori assumed conditions. The research in this area is largely
motivated by the control problems encountered in the aircraft
control system design. In that case, the ideal goal is to achieve
the so cailed "fault-tolerant”, or, "self-repairing" capability in the
flight control systems, so that the unanticipated failures in the
system can be accommodated and the airpiane can be, at least,
landed safely whenever possible. Due to the time consmaints in
many failure scenarios, the control law redesign process must be
automated and the algorithms used should be as numerically
efficient as possible.

A well-known approach in RCS is the Pseudo-Inverse
Method (PIM), which has been used quite successfully in flight
control simulations [Caglayan88, Huber84, Ostroff85,
Rattan85). The idea behind this method is to adjust the constant
feedback gain, assuming such gain is used in the nominal
system, $o that the reconfigured system approximates the
nominal system in some sense. The PIM is a typical pragmatic
approach; it is awractive because of its simplicity in computation
and implementation. A measure of closeness between the
systems before and after the faiture is the Frobenius norm of the
difference in closed-loop "A' mamices. [t was described in
[Ga089,90a,90b] that by minimizing this norm, the bound on
the variations of the closed-loop eigenvalues due to the faiiures
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is minimized. Note that a drawback of this method is that the
stability of the impaired system is not guaranteed and this may
lead 10 undesirable behavior in certain failure scenarios. A
modified version of PIM (MPIM) was proposed 1o address the
stability issue, by which the difference of the closed-loop 'A’
matrices is minimized subject 10 the stability constraints
[Gao9%Qa, 91].

There is a link between the design objectives of the LMF
and the PIM in terms of making one system, the plant or the
impaired system, imitate the reference mode! (LMF) or the
nominal system (PIM). The difference in the two approaches is
that in LMF the plant approximates the reference model in terms
of output trajectory, while in the PIM and MPIM the impaired
sysiem imitates the nominal system in terms of the closeness of
the closed-loop 'A' matrices in their state space model. It is
shown in this paper that the PIM is only a special case of the
LMF.

A key problem in the LMF control system design is
whether the plant can follow the reference model exactly, which
is referred o0 as perfect model-following (PMF). PMF is
desirable since it enables us to completely specify the behavior
of a system. Without achieving PMF, the LMF approach can
not specify how close the wajectory of the plant to that of the
reference model and this arbiTariness may not be acceptable in
certain control applicadons such as the RCS. On the other hand,
in conventional LMF, the conditions for PMF put severe
constraints on the reference model and therefore make it
sometimes impractical 1o obtain the PMF.

In this paper, a new frequency domain approach is
applied 10 analyze the LMF control system. In particular,
necessary and sufficient conditions for the PMF are derived,
which make the selection of the reference model simple and
intuitive. Furthermore, based on the newly deveioped
conditions of the PMF in frequency domain, a new design
approach is developed to achieve the PMF with much fewer
constraints on the reference model and the plant; it utilized the
dynamic compensators insiead of the static compensators which
were used 10 achieve the PMF. More specifically in Section 2,
the standard state-space Linear Model-Following approaches are
discussed and the conditions for PMF are analyzed. In Section
3, a new design approach is developed to achieve the PMF with
fewer constraints on the reference model. This new approach is
shown to provide better performance for the reconfigured
system. [llusmation examples are included. Finally concluding
remarks are given,

IL. The Standard Linear Model Following Methods

LMF is a state-space design methodology by which a
control system is designed 10 make the output of the plant
follow the output of a model system with desired behavior. In
this approach the design objectives are incorporated into the
reference model and the feedback and feedforward controliers
are used, which are usually of zero order. By using a reference
model 10 specify the design objectives, a diificulty in control
system design is avoided, namely that the design specifications
must be expressed directly in terms of the conuoller parameters.
As in any control design approaches, there are limits in the
attainable control specifications because of physical limiations
and the allowable complexity of dynamic compensation. Itis
not always clear, however, how the system specifications
should be chosen so that they are within those limits. In LMF,
this is reflected in the constraints in the reference model for
which the PMF can be achieved.



Z. Gao and P. J. Antsaklis, "Reconfigurable Control System Design via Perfect Model-Followirg,”

P r'oceedings o ft he 1 991 A IAA G uidance, N avigation a nd C ontrol C o nference , pp 2

LA, August 12-14, 1991.

Assume that the plant and the reference model are of the
same order. Let the reference model be given as:

Xm = AmXm ¥ Bmbm

(1)
¥m = CanXm '
and the piant be represenied by
k= Agxg T+ Bl
. 2
¥p=Cpip

where Xm, Xp € R", um, up € RM, A, Ap e RAx0 B, Bpe
rAxm Cp,, Cn e RPXM. The corresponding transfer function
matrices of the reference model and the plant are:

Ton(s) = Con(SL - A 1B 6

P(s) = Cpfsl - Ap) "By, @)
Let e(t) represent the dif?cmncc in the state variables,

e(t) = Xq(t) - %p(1)- %)

To achieve the PMF, one must insure that for any U, piecewise

continuous, and e(0) = 0, we shall have ey =0forallt>0.

Next, we will discuss under what conditions the PMF is
possible and how o find the feedback and feedforward
controllers to achieve the PMF. In the cases when the PMF
cannot be achieved, it is shown how the error can be minimized.
These results are described in (Landau79).

2.1 The Implicit LMF

In the control system configuration of implicit LMF,
Figure 1, the reference model does not appear explicitly.
Instead, the model is used 10 obtain the conirol parameters, ky
and kp. From (1) and (2), by simple manipulation we have

¢ =Ape +{(Am-Aplxp + Bmlm - Bpup 6)
From the conmrol configuration in Figure 1, the control input up
has the form of

up = kpXp + kyUm N
The P is achieved if the control parameter ky and kpare
chosen such that

e =Ane (8)
or equivalently

(Ag-Ap)xp * Bum - Bpup = 0 9)
Note that if 2 selution up of (9) exssts, it will take the form

+ +
up = E‘»p (Am - AphXp + Bmeum (10)

where B;' represents the pseudo-inverse of the matrix By, From

(10) ky and kp can be found as kp = B:(Am - Ap), and ky =

B;Bm. By substituting (10) in (6), a sufficient condition for the
existence of the solution of (9) is

(1- BB )(Am - Ap) =0

P, (1)

(I- Bpo)Bmz 0

Note that (11) is known as Erzberger's conditions

[Erzberger64]. Clearly, these are rather restrictive conditions,

q . +
since most systems have more states than inputs, BPBP = I

Thus (11} can only be fulfilled when (i - BpB;) is in both the

left null spaces of (Am - Ap),a.nd B, It seems for an arbitrary
plant, it is rather difficult 10 find an appropriate reference model
such that it represents the desired dynamics and, at the same
time, saasfies (11).

It should be noted that even when the conditions for the
PMF in (11) are not fulfilled, the solution in (10) still minimizes
the 2-norm of the last three terms in the right side of (6). ic.

HAgm-Ap)Xp + Bmlim - Bpuplly = lle - Apeily.

This particular method of choosing up has the advantage
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of not involving X in the feedback thus elimunatng the need for
funning the model on line. Therefore the complexity of the
conmol system is relatively low. One of the disadvantages of
this method is that when the PMF is not achievable, the
trajectory of ¢ may not be desirable since we don't have control
aver the location of the poies in the system. Another
disadvantage with this approach is that, when conditions in (11)
are not satisfied, the solution 110} may resuit in an unstable
system. This drawback will be further discussed in the next
section wien the reiationship between the impticit LMF and the
PIM method is explored.

2.2 The Explicit LMF

A typical configuration of the explicit LMF is as
illustrated in Figure 2. In the configuration of the explicit LMF,
the reference model is actually implemented as part of the
conmoller. To compare with the implicit LMF, let & = xm - Xp,
or equivalently, assume Cm = Tand Cp = 1. By manipulating

(1) and (2), & canalso be written as

& = Ape + (Am-Ap)Xm *+ Bntim - Boup, (12)
Let the control input be
up = up + Uy = (Kee) + (kmXpy + Kuti) (13)

where u = kee is the stabilizing gain, and u3 = kmXm + Kulm is
to be determined to minimize l(Ap-Ap)xp + Buum - Bpuglh =

le -(Ap- Bpke)eily. From (12), it can be easily shown that the

sufficient conditions for the PMF is exactly the same as in (11)

and the corresponding control gains are:
+
km= Bp (Am-Ap)
+
k,= Bp Bm

with k. any stabilizing gain. Substituting (13) in (12), the
equation of error is

&= (Ap-Bpke)e + (1 - BgB NAm-Ap)xm + (1 ByB B,

(14)
When the conditions in (11) are met, we have

& =(Ap- Bpkede (15)
In this approacg if the plant is stabilizable, we can guaranice the

stability of the closed-loop system by choosing ke appropniately,
regardless of whether the condidons in (11) are met or not. This
can be illustrated as follows. Since {Ap, Bp) is stabilizable, ke
can be chosen such that (Ap - Bpke) has all its eigenvalues in the

left half plane; furthermore, let f(1} = (1 - BPB;)(Am-AP)xm(L) +

({1- BPB;)Bmum(t). then (14) can be expressed as: & = (Ap -

Boke)e + f(t). Because the reference model in {1) is suable, xm
will be bounded and therefore f(z) will be bounded for any
bounded ug. This implies that (14) is bounded-input bounded-
output (BIBO) stable.

A challenging problem in the LMF approach is to choose
the reference model appropriately. It not only must refiect the
desired system behavior, but also must be reasonably chosen so
that the plant can follow its trajectory closely. The Erzberger's
condition gives indications on the constraints of the reference
model for the PME. It can be used to check whether the existing
reference modei satisfies the PMF conditions. However, as we
can see in (11), it does not give much informagon on how 1o
select (A, Bm, Cm)- In the design process, what is needed is a
guideline that can be used to select the reference model so that it
will satisfy the Erzberger's condition. We shall look into
frequency domain for the explanations of the PMF condidons-to
gain additional insight to the problem.

X le. 1 Lat the nominal plant be
-.0507 -3.861 0. -32.17
A -0012 -.5164 1.0 0.
-.0001 1.4168 -4932 0.
0. 0. 1.0 0.
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;o 0.7 ]
0717 0.
B='l-1.645} C= [1.0} DY

L 0. 0.

and the ¢losed-loop nominal sysiem be {A-Bk, B, C.D}. where
k = (-.0043, -3.872, -.7186, -.0988]
For a hvpothetical impaired piant {Ar, Br, Cr, Dtl, assume

0.

-0717
Ap=A. Bf=|_ 645 !
0.

Ce=C,Dr=D

In faiture accommaodation, the reference model {Am, Bm: Cm,
Dm]) is chosen as the nominal closed-loop system, or, Am = A-
Bk, B =B, Cn = C, and Dm = D. Now the remaining task is
10 assign the feedback and feedforward gain matices (ke, ku,
km). In this exampie the open-loop plant is unstable, thus the
stabilizing gain, ke, must be implemented. Such stabilizing gain
was obtained using the LQR conrrol design approach; where ke
= [.2925 -8.83 -13.86 -16.74] is such stabilizing gain. The
feedforward gain matrices, ky and km are determined by kg =

B;(Am - Ap) and ky = B;Bm as in (13) and they are kp =

[.0367 33.16 6.15 .85] , and k, = 8.56. To simulate the closed-
loop system in Figure 2, its state-space description is derived

which has the form:
Xm B
| (3

R Ay

The closed-loop system shown in Figure 2 is simulated
using the initial conditions of xp(0)={00 00.1] and xp(0) = {0
0 0 0}, and zero input. The outputs of the reference model and
the plant are very close to each other as is shown in Figure 3.
Note that the performance of the reconfigured system achieved
here is much superior that the one obtained by using the MPIM
approach under exactly the same conditions [Gao90,91]. The
PIM approach, in this example, result in an unstable closed-loop
system. On the other hand, however, there is no guaraniee that
the explicit LMF can always achieve the performance as good as
this one. In fact, it is shown in the simulations for differeat
failures that the system response is very much dependent on the
types of the failures that occurred.

It seems that the explicit LMF is more computationally
efficient than the MPIM since the stability issue is resolved
directly by using the stabilizing gain ke. In contrast, to
guarantee the stability of reconfigured systems using MPIM
when the PIM solution cannot stabilize the system, a stabilizing
gain must be determined first. Then, the stability bounds of the
parameters in the gain mawix must be found, which is quite time
consuming. Finally these bounds are used to adjust the
feedback gains [0 obtain better performance. in general, it
seems that the explicit LMF approach is well suited for the
reconfigurable control problem.

Am 0
Bp(km+ke) Ap-Bpk

2.3 Properties of the LMF Control Systems

The state-space model-following approaches showa
above seems to have a simple contol structure and their design
philosophy seems to fit in the framework of reconfigurable
control quite well. For these approaches, simple constant
feedback controllers are used to regulate the state majectories of
the plant so that they follow the state of the reference model. To
use it effectively in reconfigurable control, we need 1o gain better
understanding of the LMF method. One of the vial properies
of such systems is the system stability: is the system stability
always guaranteed 7 does it have the robust stability properties
with respect 10 uncertainties in the modei of the plant ?

It is also of interest to see how the perfect match can be
achieved between the plant and the reference model. The PMF
is important because it enables us to completely specify the
system behavior. In this section, the frequency domain
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interpretation of the conditions of the PMF is studied. It is
shown that, in contrast to the Erzberger's conditions, the
conditions in frequency domain ¢an be used directly in choosing
+he reference model in the design process. The stability
robustness of the linear model following system is also
analyzed.

Lemma |: Assume Cp =1, C, =1 A necessary and sufficient
condition for the PMEF is that the reference model Ty be obtained
from the model of the plant using constant state feedback u, =
{xg + gT.
P

Proof: In Figure 2, it is straight forward o find that the mansfer
funcuon matrix between uy, and ¢ is:

¢ = (1+ Pk H(Tm - Pk T + ky)lup, (16)
where Tr and P are defined in (3) and (4). This is derived as
follows. From Figure 2

eE=Xm-Xp*= TmUm 0 P(kcc + kamUm + kuUm).
therefore

(I + Pko)e = Tmum - P(kmTmum + kylm)
(Trm - Ptk Tm + ky)um

thus giving (16).
From (16), clearly ¢ =0 for all u, if and only if

T - Pk Tm + ky) =0 an
which implies

Tm = (I - Pk)" 1Pk, (18)
and we have f =k, and g = k. O

Compare Lemma 1 to Erzbergers condition (11),
Lemma 1 gives necessary and sufficient conditions for the PMF
which show exactly how to select the reference model. It makes
good practical sense in that if a plant is designed 1o follow an
anificial system exactly via constant state feedback, the artificial
system must have the same basic structure as that of the plant.
In fact, the Erzberger conditions can be seen as a special case of
Lemma 1 since they are simply the sufficient conditions for Am
=Ap+ Bpkp, and By = Bpky. 1t also shows the limitation of
this state-space approach in that the reference models a plant can
follow exactly in this configuration are those which have the
same zero structures as of the plant. This is because the system
zeros cannot be changed by state feedback uniess they are
cancelled by the closed-lcop poles.

From Figure 2, when Cp # I, we have e(t) = xm(t) -
yp(t). That is, the system is designed so that the output of the
plant follows the state of the reference model. In this case, the
condidons for the PMF can be derived similarly as above, that is
Tm must be obtained from the model of the plant using the
output feedback up = fyp + gr. In this case, the wransfer matrix
of the reference model, "i‘m, still satisfies (18) with f =kmy and g
= ky. Here the PMF implies that the output of the plant follows
the state of the reference model exactly.

For a successful implemnentation of PMF, it is important
that k, provides robust stability with respect to plant parameter
uncertainty. Note that ke is the only design parameter that
affects the stability robustness as shown below. Here robust

stability means that if the real plant is P instead of P, where P=
P + AP for some small AP, the closed-loop system should stll
be stable. In the following, the stability robustness is examined
for the closed-loop system designed by using the explicit LMF
to achieve the PMF.

Lemma 2: For the conmol gains (k.. km, k,} obtained by using
the explicit LMF described in {(13), the closed-loop system from
Um to & is stable if, for the real plant P = P + &P, (I - Pk.)-1AP
is stable.
Proof:

e =( + Pk {(Tm - Plk T + Ky

= (I + Pko) 1T - Pky)Ten - Pk)ug

= (I + Pkg)"1({ - Pky)Trm - AP Tin - Pkey)um

= (I + Pk)"1(Pk, - APKpTm - Pky)lug
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= (1 + Py H- APY (ke T + Kg)Um - _a9
if (I + Pk.)1AP is stable. then the transfer function mamix from
ug o ¢ 1s stable.

]

“ote that when there is no uncerainty in e piant, thatis
AP =G, (19) shows that the ransfer mamx from um 10 & 1s 2850,
which agrees with the original PMF design objective.  When
ihere is an uncenainty in the model of the plant, Lemma 2 shows
that, aithough the PMF is no longer valid, the system s.tabllluy
will be maintained if ke provides robust stability. This implies
that for bounded upm, the error e wiil always be bounded; if um 15
¢ constant, then will go 1o zero. Equation (19) also shows that
10 minimize the effect of sysiem uncerainty, the error (I + Pk
1AP should be made small .

When the Erzberger condition is not met, an extra erm
will be added o é besides the homogeneous part. Since we have
wwo different expressions for ¢ and up in the derivation of the
implicit and explicit LMF, ¢ takes two different forms. For the
implicit LMF:

& = Amge £ g1 (20)
where g(0) = (I- ByB )(Anm - Apixg + (1 - ByB})Bmup, and for
explicit LMF:

e =(Ap- Bpke)e + f(1)
where £(0) = (1 - ByB X Am - Aphtm + (- ByB )Broum.

21

Clearly, when the Erzberger's conditions are satisfied,
f(i) = g(t) = 0, and we have the perfect model-following. When
the condition is not met, f{2) and g(t) are nevertheless minimized
in term of the Frobenius norm and e will diminish in steady state
if the system is stable. The key difference between these two
formulations is that, for the closed-loop system to be stable, itis
required that the plant be stable in the implicit LMF while in the
explicit LMF, it only requires the piant be stabilizable and ke be
the stabilizing gain. This is because for e 10 be bounded for a
bounded input u, under the conditions that A and (A - Bpke)
are stable matrices, g(t) and f(t) must be bounded. SPincc the
reference model is a stable system, x; is always bounded for a
bounded input um, therefore f(t) is always bounded. On the
other hand, g(t} is bounded only when xp is bounded which
requires that the plant be stable. It has also been shown
[Chen73] that the upper bound on absolute value of e, lel, is
minimized by the explicit LMF when the Erzberger condition is
not fulfilled. It seems that the explicit LMF has a clear
advantage over the implicit LMF in this sense. In the following
it is shown that the PIM is only a special case of the implicit
LMF.

Linear Model Followi
Method (PIM)

The PIM is a method that can be used to accommodate
system failures that are formulated as follows. Let the nominal
niant be

and Its Relation 10 th -inv

x =Ax+Bu

v =Cx. (22)
Assume that the nominal closed-loop system is designed by
using the state feedback u = kx, and the closed-loop system is

x = (A+Bk)x

v =Cx (23)
where k is the state feedback gain. Suppose that the modei of
the systern, in which failures have occurred, is given as

xf = Apcf+ Bfug

yf = Cexf
and the new closed-loop system is

(24}

xe=(ApBrkpxe

ve= Cexe, 52
where kf is the new feedback gain to be determined. In the
PIM. the objective is to 1ind a k¢ 50 that the system A-matrix in
{25) approximates in some sense the one in (21). For this A+Bk
is equated to Ae+Beky and an approximate solution for kg is
given oy

kf=B (A - Af + BK) 26)

where Bf denotes the pseudo-inverse of By, and the resulting
input to the impaired plant is
Fy
up=Be(A - Af + BRixf. V)]

Clearly, this is just a special case of (10) in the implicit LMF
where un 15 set 10 Z2r10.

Since the PIM and the implicit LMF are essentially the
same, our main interests are in the case of the explicit LMF.
From the discussion above, the explicit LMF has the advantages
of the guaranteed stability and the pre-specified error majectory.
Note that in terms of control reconfiguration, the reference
model in Figure 2 can be sclected as the nominai closed-loop
system while the plant is the impaired open-loop system. Once
the failures are identified and the new mode] obtained, the
control gains {ke, km, ky) can be immediately reconfigured
according to the new model of the plant and the explicit LMF
algorithm. The stabilizing gain ke can be found via many
available computer algorithms such as the pole placement or the
LQ routine; the only non-trivial part in the determination of k,
and kpy is the calculation of the pseudo-inverse of By which can
be found via various methods in the numericai analysis
literature.

In general, it is felt that the explicit LMF is a practical
approach that can be udlized in the control reconfiguration. It
seems that the explicit LMF offers better tracking than the
implicit LMF and the PIM since it is the difference of the states
that are being minimized. A disadvantage of it is that the closed-
loop system 1s more complex since the reference model must be
implemented on-line.

A common shortcoming of all the reconfigurable conwol
methods discussed so far, including the PIM and the LMF
approaches, is the severe constraints needed to be satisfied for
the perfect match between the nominal system and the impaired
onc. Although the output of the reconfigured sysiem can be
made very close to that of the nominal system as shown in
Exampie 1, there are always cases, at least mathemarically, that
the explicit LMF cannot achieve satisfactory performance for the
reconfigured system. This is because the feedforward gains, ky
and km are determined using a pseudo-inverse type of approach
10 minimize a cost functon, f(t) = (Ap-Ap)Xm + Baum - Bpua.

The cost function (1) will be made small if (I - BPB;) is close to

. L . + .
zero matrix, as it is shown in (14), or, Bpo is close to an

identity mawrix. Therefore, we cannot prespecify how close the
nominal and the impaired systems should be because we do not
have any control over Bp, which is a part of the model of the
plant.

1II. Expiicit LMF with Dynamic Compensators

In the RCS, the ideal goal is to develop a control system
that is able to accommodate a large class of different system
impairments so that the reconfigured systems behave exactly as

prespecified. The explicit LMF approach described above is an
approach that makes the output of a plant follow that of a
reference model to a certain extent using constant feedback and
feedforward gains. The exact match only happens for a
particular class of the reference models which have been chosen
to satisfy the severe constraints illustrated in Lemma 1. In the
control reconfiguradon to accommodate system failures, these
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CcORStralnts SOMetimes seem to be to0 resmictve. In this section
we will investigate the use of dynamic compensators, instead of
constant ones, 10 loosen the resrictons on the reference models.
In the proof of Lemma 1, it is shown that for PMF. 2
necessary and sufficient condition is that the ansfer function
matrix {rom um i0 € is zero. Lemma 1 applies only to the
reference models znd plants where Cm=Cp=1 This is rather
restrictive in design especially when the reference model is often
chosen as the nominai closed-loop system in the control
reconfiguration. In the following, the transfer function matrix is
derived for the generai case where Cm and Cp are not necessarily
idenudes. From Figure 2,
c=Y¥m-Yp
= Tml.lm -Pu
= TmUm = p(kcc + kam + kuUm)
= - Pket + Tmum - Plkm(sl - Am) 1 Bmum + kybm]
= (1 + Pke) }{ Try - Plkm(st - Ap) 1B + kyljum. (28)
Clearly, a necessary and sufficient condition for the PMF is that

[ T - Plkm(sI - Am)"1Bm + ku] =0. 29)
Now it remains to solve (29) with respect (0 km and k,. Note
that there are many solutions of (29). A simple solutdon is

(km, Ku) = [0, PiTm] (30

where Py; is defined as the right inverse of P, i.e. PP =1,
assuming it exits. It was shown in [Gao89a) that the conditions
for ky to be proper and stable is that the reference model T, is
chosen such that it is ‘more proper' than the plant and it has as
its zeros all the RHP zeros of P together with their zero
structures. It was also shown that the right-inverse of P can be
calculated using a state-space algorithm which has good
numerical properties. Note that the complexity of the
compensator ky is dependent on how different the reference
model T is from the open-loop plant, P. This can be seen
clearly from (30), where ky = PriTm. For example, if only a
pair of open-loop poles are undesirable, that is, the poles and
zeros of P and T, are the same except one pair of poles, then ky
is a second order compensator since all the poles and zeros of Pri
and T are canceled except one pair of zeros of Py and one pair
of poles of Tm. in case of failures, perhaps ail open-loop zeros
and poles will be shifted. However, only the unstable poles and
dominant poles are of major concern in surviving the failures
since their locations dominate how the sysiem will behave in
general. Therefore, in order to produce a fast and simple
solution to keep the system running, T should be chosen close
1o the impaired plant P with exceptions of only a few critical
poles.

The main advantage of this approach is that there are
fewer resmictions on the reference model than before. The only
restrictions are on the zeros of the reference model which are
much more manageable than before. If the plant does not have
RHP zeros, or its RHP zeros are unchanged after the failure,
then the reference model is almost arbitrary except that it should
be at least ‘as proper’ as P so that the compensator ky is proper.
The disadvantages of this approach is the increased complexity
of the control system due to the higher order compensators
required. This is a trade-off between the performance and
compiexiry of the control system.

Note that there are many control configurations, other
than that of Figure 2, that can be used for dynamic
compensators. Here the same configuration is used for both
constant and dynamic compensators because it is felt that the
dynamic compensator can be used in conjunction with the
constant compensators for the reconfigurable control purposes.
As is mentioned earlier, there are two steps in the
sccommodation of failures. First, the impaired system must be
stabilized. In the explicit LMF approach, this is accomplished
via the implementauon of the stabilizing gain ke. This must be
executed quickly 1o prevent catasrophic results from happening.
Once the system is stabilized, it gives time to the control
reconfiguration mechanism to manipulate the compensators o
obtain better system performance. Assuming, by this time, that
the model of the impaired system is availabie, a reference model
should be chosen which has the desired behavior for the system
under the specific system failure. Once the reference model is
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chosen, either the constant or the dynamic compensators can be
compuied and implemented as explained above. The choice of
the types of the compensator depends on the performance
requirements and the limitations on the complexity of the
COMpPENnsators.

Next, the stability robustness is analyzed. Let the real

plant be P and the nominal transfer marrix of the plant be P,
where B = P + AP for some small AP,

Lemma 3: For the control gains (ke kp, ky) obtained by using
the explicit LMF with dynamic compensator described above
from (28) 10 (30), the closed-loop sysiem from up to ¢ is stable

if, for the real plant P = P + AP, (I + Pk.)"14P is stable.
Proof: From (28) and (30)

e = (I + Pl 1¢- APYkyupy G1)
If (1+ Pk, 1AP is stable, then the wansfer funcrion matrix from
up to € is stable. a

Note that when there is no uncertainty in the plant, thatis
AP =0, (30) shows that the ransfer mawix from um to ¢ is zero,
which agrees with the original design objective. When there is
an uncertainty in the model of the plant, Lemma 3 shows that the
system stability will be maintained if ke provides robust stability.
This is because, by design, kyisa stable compensator, therefore

the closed-loop system is stable if (I - Pk,) AP is stable.

Example 2 To show the effectiveness of the new approach, we
use the same nominal system as in Example 1 except that the C
matrix is changed to (.0241 -135.0-103.9 21.0}. Cis chosen
as such for the convenience of the simuiation, since now the
output stabilizing gain is simply ke= 1. The impaired piant (A,
B¢, Cr, Dy} is as follows:

0

0717
Af=A, Bf=|. 1645}

-1.0
The dynamic compensator abuained from (30) is kyy = 0, and

Cr=C, Dr=D

ky = 3L2N(sT + 2756 +. 655 - 1.95% -.09s3 -1.452 -

00165 - .0025, s7 + 6.46s6 +21.1s5 + 39.0s* + 35.653 +
11.852 .51s +.1)
The impulse responses of both the reference model, which is the
nominal closed-loop system, and the reconfigured system are
shown in Figure 4. They match exactly as expected. This is
compared to the response of the sysiem reconfigured with the
standard explicit LMF method.

Note that the exact match is attained at the expense of
having a seventh-order compensator. This compensator can be
implemented, together with the reference model, in the real-time
aircraft control environment via flight control computers. The
complexity of these compensators may or may not be an issue in
the implementation depending on the capacity of the computers.
If it is, then the reference model has 1o be chosen close to the
open-loop plant, as is discussed above, so that the poles and
2eros of Prj and T cancel each other except the critical poles.
The standard explicit LMF has a very simple system structure
where only the constant gain matrices are 10 be adjusted for
different failures. It shouid be used whenever the performance
of the reconfigured system is acccptable. However, difficulty
may arise when it does not provide satisfactory performance and
the dynamic compensator cannot be used due 10 the limitations
on the system complexity. Such problems will be investigated
in future research.

1¥. Concluding Remarks

The linear model-following methods in controi system
design were studied in the coniext of reconfigurable control,
The necessary and sufficient conditions for perfect model-
following were obtained using 2 transfer function approach,
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which yield simple and intitive constraints on the reference
model. A new approach was developed to design “the
reconfigurable conmol system so that the state trajectories of the
reconfigured system to follow those of the reference model
exactly. This was achieved at the expense of increased sysiem
complexity due to the use of dynamic compensators.

The advantages of using the LMF conmol methodology
in reconfigurable control system design can be summarized as
follows. First, the widely used pseudo-inverse method is only a
special case of the LMF. By examining the PIM in the context
of LMF, it helped us to understand the characteristics and the
limitations of the PIM. Secondly, like the PIM, the LMF control
system is simple in terms of design and implementation. More
importandy, it guarantees the stability of the reconfigured system
assuming the impaired plant is stabilizable. Thirdly, the new
design approach proposed in this paper enable us to achieve the
PMF, and thus completely specify the behavior of the
reconfigured system with much fewer constraints on the
performance specifications. Finally, since the adaptive model
reference control systems have been developed based on the
LMF systems, it is possible to extend the results in this paper to
adaptive control systems. This may be necessary in certain
cases since it could make the reconfigurable conmol sysiems less
dependent on the fault detection and identification systems.
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Figure 1 The control configuration of the implicit LMF.

Figure 2 The control configuration of the explicit LMF.
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Figure 3 The outputs of the nominal and reconfigured closed-loop system using the explicit

LM approach
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Figure 4 The impulse responses of the reference model and the system reconfigured using new
and standard explicit LMF methods
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