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There is a growing presence of neural networks in the control of complex
dynamical systems. Some of the reasons for this presence can be attributed to the learning
ability of neural networks and their capacity for massively parallel computations. These
properties allow the control of systems without significant prior knowledge of their
dynamics and offer promise for real time control of very complex processes.

Neural networks in control are typically used to accomplish one or more of the
following tasks: modelling the dynamics of the system or the inverse dynamics of the
system, acting as a controller in a conventional control loop, and performing as a higher
level decision maker in an adaptive control system, where “adaptive” is not necessarily
restricted to conventional adaptive control. During the operation of the system, the neural
network can adapt to the changing conditions in the system and its environment. Control
applications of neural networks have been reported in the areas of chemical processes,
robotics, autonomous vehicles, and aerospace applications, among others. In this article,
the basic uses of neural networks in control systems are investigated; the problems

associated with their real-time application are not discussed.

I Neural Networks
Neural networks consist of many interconnected simple processing elements, which
have multiple inputs and a single output. The inputs are weighted and added together.

This sum is then passed through a nonlinearity, such as a sigmoidal function like f(x) =
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x2
1/(1 + ™) or f(x) = tanh(x), or a gaussian-type function, such as f(x) = ¢ X" orevena

hard limiter function, such as f(x) = sign(x) for x ¢ 0. The terms artificial neural networks
or connectionist models are typically used to describe these processing units and to
distinguish them from biological networks of neurons found in living organisms. The
processing elements or neurons are interconnected, and the strength of the interconnections
are denoted by parameters called weights. These weights are adjusted, depending on the
task at hand, to improve performance. They can be either assigned values via some
prescribed off-line algorithm, while remaining fixed during operation, or adjusted via a
learning process on-line. Neural networks are classified by their network structure
topology, by the type of processing elements used, and by the kind of learning rules
implemented.

Several types of neural networks appear to offer promise for use in control
systems. These include the multi-layer neural network trained with the back-propagation
algorithm commonly attributed to Rumelhart ez al. (1986), the recurrent neural networks
such as the feedback network of Hopfield (1982), the cerebellar model articulation
controller (CMAC) model of Albus (1975), the content-addressable memory of Kohonen
(1980), and the gaussian node network of Moody and Darken (1989). In Hecht-Nielsen
(1990) and Lippmann (1987), several of the main types of neural networks are discussed at
length. The choice of which neural network to use and which training procedure to invoke
is an important decision and varies depending on the intended application. In Antsaklis
(1990), a number of approaches applying neural networks to control problems are
presented.

Currently, the most frequently used neural network in control, and elsewhere, is the
feedforward muiti-layer neural network with a sigmoidal type nonlinearity for the
processing element. This is typically trained with the supervised method of back-
propagation, or a modified version of this gradient descent optimization algorithm. There

are several reasons for the popularity of this neural network including its relative simplicity
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and its ease of use. Primarily, it is the ability of the multi-layer neural network to
approximate any continuous function to an arbitrary degree of accuracy (Hornik ez al.
1989); in fact, two layers of weights suffice, an output layer and a hidden layer, and the
number of the hidden layer neurons chosen typically depends on the desired accuracy.
Thus, in principle, the multi-layer neural network is capable of modelling a very large class
of systems, including both plants and controllers, with any desired degree of accuracy; this
is accomplished by viewing the system as a static nonlinear input-output map. To avoid a
very large numbers of processing units and inhibitively large training times, a smaller
number of hidden layer neurons is often used, and the generalization properties of the
neural network are utilized. Note that the number of inputs and outputs in the neural
network are determined by the nature of the data presented to the neural network and the

type of output desired from the neural network, respectively.

To discuss the role of the multi-layer neural network in control systems in more
concrete terms, specific mathematical models are now given. The single neuron, or
processing element, is described by

y= f(E1 u; wi) = f(u'w), (1)

where f:IR — IR is the nonlinearity of the neuron, usually of a sigmoidal type, u = [uy,
s Up]' € R™ s the input vector, w = [wy, ..., W]’ € R™*! is the weight vector, and
up, = 1 is the bias input for the neuron. The single-layer neural network is comprised of n
parallel neurons each described by

yi = f(u'w;) 2
for 1 £i<n. For the i neuron, w; = [W1 gy s Winil' € R™! is the weight vector. The
multi-layer neural network consists of many layers of parallel neurons connected in a
feedforward manner. Using the quantity #(k) as the number of neurons in the kth layer, the

output of the i neuron in the k't layer is described by
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vt = fukwh) (3)
1]' ¢ R¥&DHDxL 5 the vector of inputs

from the previous layer plus the bias of 1 for the last term and w'l‘ = [wlki, w#(k_lk) +1.i] '

where 1 <1 < #(k). Here, u* = [yk1 L. y#(';‘_ll),
e R¥&D+D 3¢ the vector of weights.

The back-propagation algorithm is a constant step size, gradient descent procedure
to iteratively adjust the weights of the neurons in a multi-layer feedforward neural network.
The objective of the algorithm is to minimize the squared error performance criterion:

p #(0)
=33 3. (40) - 130)° )

L=
where p denotes the number of input patterns presented to the neural network, y‘i’(j) denotes
the output of the i" neuron in the output layer to the jth input pattern to the neural network
("o" denotes the output layer of the multi-layer neural network), and d(j) denotes the
desired output of the i neuron in the output layer to the jth input pattern to the neural
network. When using the back-propagation algorithm, the weights of the neural network
are adjusted after every epoch (i.e., one pass of all the input patterns) by the gradient
descent rule:

wi () = who - o 2 5)

k
Swh.i

where o is a constant step size, t denotes the iteration number, and & denotes a partial
derivative. If the nonlinearity used for each neuron is the hyperbolic tangent function, after
some manipulation of the partial derivative term, the back-propagation algorithm's rule for
changing the weights of the muiti-layer neural network is given by
‘”hk,i(t"'l) = wl:c,i(t) + 0o j=§1 S‘i‘(j) Ykﬁlﬁ) (6)
where Sli‘(j) is known as the delta term. If the k™ layer is the output layer, then
8G) = [dih) - I {1 - y2G)). )
Otherwise, for the hidden layers,
B =" 5K wEL [1- 52 @®
i ] r ir i
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The back-propagation algorithm is applied by initializing the weights wlf,i(O) of the multi-
layer neural network with small nonzero random numbers and then using equations (6) to
(8). Since the back-propagation algorithm is a gradient descent method, it is conducive
both to potential entrapment in the local minima of its cost function (i.e., the sum of the
squares of the errors) and to long training times since the gradient direction zig-zags with
small step sizes in low gradient regions. Current areas of investigation include suggesting
modifications to the back-propagation algorithm to increase both its convergence properties
and its speed and examining other minimization procedures to train the weights of the
multi-layer neural network.

In the training of the neural network, it is typically assumed that there exists a set of
data that is divided into two sets: the training set and the testing set. Using these two sets,
an iterative procedure is often followed to determine the type and size of neural network to
use. An initial neural network is selected and trained, and the success of the training is
checked with the testing set. If necessary, this procedure is repeated with different initial
weights, size, or type of neural network. The data used in both the training and the testing
of the neural network is also an important consideration. Clearly, the correlation between
the two sets must be taken into account in order to accurately judge how well the neural
network would actually operate if it were implemented.

Currently, rigorous theoretical analysis of neural networks in control systems is
lacking. This is true for both stability analysis and training of the neural network. There
exists a large potential for significant contributions in these directions. Some initial ideas
and reasoning have been drawn from conventional control theory. Indeed, arguments for
choosing certain configurations over others have been made based on results from adaptive
control for linear systems (see Narendra and Parthasarathy 1990). Methods and ideas are
currently being validated by either proof-of-concept experiments or by massive computer

simulations for varied system parameters.
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2 Modelling the Plant's Dynamics

In this approach, the neural network is trained to model the plant's behavior, as in
Fig. 1. The input to the neural network is the same input used by the plant. The desired
output of the neural network is the plant's output. The signale=y - 9 from the summation
in Fig. 1 is the error between the plant's output and the actual output of the neural network.
The goal in training the neural network is to minimize this error. The method to accomplish
this varies for the type of neural network used and the type of training algorithm chosen.
In the figure, the use of the error to aid in the training of the neural network is denoted by
the arrow passing through the neural network at an angle. Once the neural network has
been successfully trained, it is actually a mathematical model of the plant that can be further
used to design a controller or to test various control techniques via simulation of this neural

network plant emulator. This type of approach is discussed in Sect. 4.

Figure 1

In Fig. 1, the type of plant used is not restricted. The plant could be a very well
behaved single-input single-output system, or it could be a nonlinear multi-input multi-
output system with coupled equations, or it could even be an unknown system. The actual
plant or a mathematical model of the plant could be used. The plant may also operate in
continuous or discrete time; although for training the neural network, discrete samples of
the plants inputs and outputs are often used. If the plant is time-varying, the neural
network clearly needs to be updated on-line. The type of information supplied to the neural
network about the plant may vary. For instance, the current input, previous inputs, and
previous outputs can be used as inputs to the neural network. This is illustrated in Fig. 2
for a plant operating in discrete time. The boxes with the "A" symbol indicate the time
delay. The bold lines stress the fact that signals with varying amounts of delay can be

used. The plant's states, derivatives of the plant's variables, or other measures can be used
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as the neural network's inputs. This type of configuration is conducive to training a neural
network when the information available about the plant is in the form of an input-output
table. Training a neural network in this manner, by using input-output pairs, can be
viewed as a form of pattern recognition, where the neural network is being trained to realize
some {possibly unknown) relation between two sets. If a multi-layer neural network is
used to model the plant via the configuration depicted in Fig. 2, a dynamic system

identification can be performed with a static model.

Figure 2

If the back-propagation algorithm is used in conjunction with a multi-layer neural
network, a configuration similar to the one shown in Fig. 2 is often employed. Since the
back-propagation algorithm requires discrete outputs of the neural network, as can be seen
in equations (6) to (8), a discrete plant or a discretized continuous plant is needed. The
discrete inputs to the plant are used as the discrete inputs to the neural network to form the
neural network's discrete outputs; the plant's discrete outputs are used as the desired
outputs of the neural network. With these, the cost function in (4) and the gradient in (5)
are formed. This modelling scheme is easily implementable when the plant's data is in the
form of an input-output table. If this modelling is to be performed on-line, considerations
need to be made concerning which among the current and past values of the inputs and
outputs to utilize in training the neural network. A moving window of width p time steps
could be employed in which only the most recent values are used; approximations to the
cost function of (4) and the gradient in (5) are needed in this case. An important question
to be addressed here concems the number of delays of previous inputs and outputs, if any,
to be used as inputs to the neural network. In Narendra and Parthasarathy (1990) for the
case when both previous inputs and previous outputs are used, it is argued that the number

of delays should be equal to the order of the plant.
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If there is some apriori knowledge of the plant's operation, this can be incorporated
into the training. This knowledge can be imbedded in a linear or nonlinear model of the
plant, or incorporated via some other means. Two possible ways of utilizing this
information via a plant model are illustrated in Fig. 3: a parallel configuration and a serial
configuration. This use can be viewed as modelling the unmodelled dynamics of the plant
with a neural network. Depending on the type of unmodelled dynamics (for instance,

either additive or multiplicative), one configuration may be preferable over the other,

Figure 3

In the above, it is assumed that the neural network's desired output is the plant's
output. The neural network can instead be trained to predict the states of the plant. As
previously described, other inputs to the neural network can be also be used here besides
the current values of the plant's inputs and outputs. This use for neural networks would be
an alternative to well known state estimation techniques such as Kalman filtering, which
operates well under specific assumptions but not so well when these assumptions are not

satisfied.

3 Modelling the Plant’s Inverse Dynamics

Instead of training a neural network to identify the forward dynamics of the plant as
discussed in Sect. 2, a neural network can be trained to identify the inverse dynamics of the
plant as illustrated in Fig. 4. This type of model is useful in certain control approaches as
discussed in the next section. The neural network's input is the plant's output, and the
desired neural network output is the plant's input. The error e = u - 11 is to be minimized
and can be used to train the neural network. The type of neural network and the training
algorithm used are not restricted. The plant can be continuous or discrete and can also be

single-input single-output or multi-input multi-output. The desired output of the neural
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network is the current input to the plant. The type of information used by the neural
network to model the inverse dynamics of the plant may vary. For instance, the neural
network's inputs may contain the current and previous outputs and the previous inputs of
the discrete time plant, as illustrated for the neural network plant emulator in Fig. 2. In
addition, other signals, such as the plant's states, derivatives of the plant's variables, or
other measures can also be used as inputs to the neural network. If the plant is time-
varying, the neural network clearly needs to be updated on-line. When modelling the
inverse dynamics of the plant with a neural network, it is often assumed that the plant is
invertible. If the plant is not invertible, the training of the neural network in this manner

may be problematical.

Figure 4

4 As a Conventional Controller

A neural network can also be used as a conventional controller in both open loop
and closed loop configurations. Its use as an open loop controller is first examined. In the
training of the neural network to model the inverse dynamics of the plant in the previous
section, the purpose often is to use the trained neural network as a feedforward controller
for the plant in an open loop configuration. The desired output of the plant is the input to
the neural network controller. It is anticipated that the neural network will produce an
appropriate input signal for the plant to accomplish this. Obviously, as with the training of
the neural network, one of the major assumptions of this approach is that the plant is
invertible. This method is very popular among researchers attempting to apply neural
networks to the control of robot arms. Given the desired location of the robot arm, the
proper control signal to move the robot's joints is required. This is a well known and

difficult problem in robotics, the problem of inverse kinematics, and can be formulated in
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many ways. The inverse Jacobian of the plant is a known technique to compute the plant's
input; the use of neural networks to find this control signal is an alternative approach.
Instead of training the neural network as in Fig. 4, the neural network can be
trained immediately as an open loop controller. This is shown in Fig. 5. The errore =y -
y is used to train the neural network. In this configuration, there does not exist a desired
output for the neural network, and the error is "back-propagated” through the plant to
account for this. The arrow passing through both the plant and the controller represents the
back-propagated error. A multi-layer neural network trained with the back-propagation
algorithm, or any gradient descent algorithm, is well suited for this approach. The first
derivative of the plant output with respect to the input to the plant is computed. This can be
approximated by slightly changing the input to the plant and determining the plant's new
output. In using this approach to train the neural network, the plant can be thought of as
being the "output layer" of the multi-layer neural network. Instead of using the actual
plant, a neural network model of the plant can be used in its place. If a mulii-layer neural
network is trained to emulate the plant as described in Sect. 2, the error can be back-

propagated through this mode! easily.

Figure 5

The use of a neural network as a conventional controller in a closed loop
configuration is illustrated in Fig. 6. The feedback is not restricted to output feedback
(state feedback could also be used), and the desired output ¥4 can be zero as in a regulator
loop. As previously discussed, signals, other than e, can also be used as inputs to the
neural network. The difference between the neural networks considered here and those
previously is that the neural networks here are not specifically trained to implement the
inverse dynamics of the plant, but are trained to be a controller. Once trained, the neural

network controller can be updated on-line to cope with unforeseen situations or with a time-
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varying plant. The neural network can also be trained to be a part of an existing control
structure; for instance, as part of an internal model control scheme or in conjunction with a
PID controller. For this application, the neural network is trained to perform an operation

or 10 augment the operation of an existing controller.

Figure 6

As another application of a neural network controller, the neural network can be
trained to mimic a control law. This is illustrated in Fig. 7. This use for a neural network
is plausible if the controller currently in use is too expensive or unreliable. For this, the
neural network is given the same inputs as the current controller, and the desired neural
network output is the output of the current controller. This use of a neural network is
equivalent to the design and use of an expert system to capture the reasoning process of an
expert. Note that the approach described in Fig. 7 is quite versatile. If a controller is
designed to use signals from the plant which are not available or too expensive to compute,
the controller can not be directly implemented; however, if a neural network can be trained
to emulate the already designed controller using different signals, the neural network can

then be used as the actual controller for the plant.

Figure 7

Besides training a neural network to mimic a control law, the neural network
controller can also be trained to reduce the error at the output of the plant compared to a
reference model as illustrated in Fig. 8. Here, a desired output for the controller does not
exist, and one needs to be determined. This configuration is amenable to the use of the
multi-layer neural network as the controller and training it with the back-propagation

algorithm, or some other gradient descent procedure. The error is first back-propagated
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through the plant and is then used to adjust the weights of the neural network controller.
As discussed previously, the gradient of the error can be approximated by varying the
plant's inputs and measuring the resulting outputs. If the plant is first modelled with a
multi-layer neural network as discussed in Sect. 2, this neural network can be used to
replace the plant for the training of the neural network controller, and the back-propagation

of the error through the plant emulator can then be accomplished.
Figure 8

Thus far, the cost function has been assumed to consist of only the error yg-y. In
relation to Fig. 8, the error r - y can also be included in the cost function to keep this signal
small. The signal u may also be used in the cost function to conserve control energy. The
rate u can also be added, and by reducing this, the violent switching of the control input
from one extreme to another may avoided. If any of these signals, or any others, are part
of the cost function, their importance can be ranked by appropriately scaling their

contribution, This is illustrated by modifying (4) appropriately to obtain:

#(0)
F=3 §ll [i; [2(dG) - ¥36))* + b () - y2G))7] + El [eu,()° + 16,0) - uG-DY1) ©)
Fi 1= i=

where m s the number of inputs and T is the period between samples. As a side comment,
by using a sigmoid nonlinearity at the output of the neural network, the saturation property
of most actuators can be accommodated, since the range of the sigmoid function is from -1
to +1 and can be appropriately shifted and scaled.

Instead of back-propagating the error through the plant, or a neural network plant
emulator, the desired output can be computed using an outside critic as illustrated in Fig. 9.
The critic is used to adjust the neural network controller by reducing some appropriate cost

function. The inputs to the critic may be different from the ones shown in Fig. 9. A critic
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could be an expert system or simply a performance index. If the back-propagation
algorithm is used to train a multi-layer neural network, the use of a critic has the advantage
that the gradient of the cost function with respect to the plant's inputs does not need to be
determined. Note that a critic could be considered to be part of a higher level decision
making system. In the next section, neural networks as high level decision makers are

discussed.

Figure 9

5 As a High Level Decision Maker

Neural networks discussed in this section are used in the control of the plant, but
are not actually in the conventional control loop, per se. As described in Antsaklis ez al.
(1989), they perform some higher level decision making tasks in a manner which adds
more "autonomy"” to the system. This configuration is illustrated in Fig. 10. The neural
network becomes a high level decision maker and is not directly involved in determining
the input to the plant. Instead, the neural network supplies to the controller information to
properly form control signals for the plant. In Fig. 10, the neural network's inputs are the
desired output of the plant, and the actual input and output of the plant. As previously
discussed, this can be extended to include other signals as well. This configuration also
does not preclude the use of a reference model. The output of the neural network is a

signal that is useful for the control of the plant.

Figure 10

Two uses are discussed here: changing the control parameters and supplying failure

information. In the first, the neural network is used to determine appropriate values for

parameters in the controller. For example, for a PID controller, the neural network can be
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trained to determine values for the gains based on the operating conditions of the plant, thus
providing parameter tuning. The neural network could also be used as a scheduler. Given
the current operating point of the plant, the neural network decides which control law to
use. Depending on the choice of the neural network implementation, the neural network
scheduler may give rise to quite smooth control law switching. As another option, the
neural network can be used as an optimizer to find the minimum of a cost function, such as
in a linear quadratic optimal controller. The output of the neural network is the value of the
controller parameters that minimize that cost function. This would be an alternative to
solving a Ricatti equation at each time step.

Besides being used to determine parameters for the controller, the neural network
can also be trained to supply failure information to the controller. Depending on the type of
training data used, the type of information can vary from fault detection to fault
identification to fault diagnosis. The controller can then use this knowledge to take
appropriate actions. A neural network trained for fault detection and identification can even
be used in conjunction with another neural network trained to choose the appropriate

control parameters given specific failures of the system.

6 Concluding Remarks

With the ever-increasing technological demands of the more complex control
systems being considered and built, the potential use for neural networks to aid in solving
some of the problems involved is great, and this research area is evolving rapidly. The
viewpoint is taken that conventional control theory should be augmented with neural
networks in order to enhance the performance of the system. The potential of neural

networks in control systems clearly needs to be further explored.
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Figure Captions

Figure I Modelling the plant's dynamics.

Figure 2 Modelling the discrete time plant's dynamics using delayed signals.

Figure 3 Using apriori knowledge of the plant: (a) a parallel configuration, (b) a serial
configuration.

Figure 4 Modelling the plant's inverse dynamics.

Figure 5 Error back-propagated through plant for an open loop controller.

Figure 6 Neural network controller in a conventional closed loop configuration.
Figure 7 Neural network trained to mimic existing controller.

Figure 8 Error back-propagated through plant.

Figure 9 Critic used to adjust neural network controller.

Figure 10 Neural network used as a high level decision maker.
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