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ABSTRACT

A discrete event system (DES) is a dynamical system whose evolution in
time develops as the result of the occurrence of physical events at possibly
irregular time intervals. Although many DES's operation is asynchronous, others
have dynamics which depend on a clock or some other complex timing schedule.
Here we provide a formal representation of the advancement of time for logical
DES via interpretations of time. We show that the interpretations of time along
with a timing structure provide a framework to study principles of the
advancement of time for hierarchical DES (HDES). In particular, it is shown that
for a wide class of HDES the event rate is higher for DES at the lower levels of
the hierarchy than at the higher levels of the hierarchy. Relationships between
event rate and event aggregation arc shown. We define a measure for event
aggregation and show that there exists an inverse relationship between the amount
of event aggregation and the event rate at any two successive levels in a class of
HDES. Next, we study how to design the timing structure (o ensure that there
will be a decrease in the event rate (by some constant factor) between any two
levels of a wide class of HDES. It is shown that if the communications between
the various DES in the HDES satisfy a certain admissibility condition then there
will be a decrease in the event rate. These results for HDES constitute the main
results of this paper since they provide the first mathematical chagacterization of
the relationship between event aggregation and event rates of the HDES and show
how to design the interconnections in 2 HDES to achieve event rate reduction.
Examples are provided to illustrate the results.

1.0 INTRODUCTION

In our main results we show that the interpretations of time which
characierize the advancement of time in DES (introduced in Section 2) along with
a timing siructure provide a framework to study principles of the advancement of
time for hierarchical DES (HDES). In Section 3 (Theorem 1) it is shown that for
a wide class of HDES the event rate is higher for DES at the lower levels of the
hierarchy than at the higher levels of the hierarchy. Relationships between event
rate and event aggregation are shown. We define a measure for event aggregation
and show that a high amount of event aggregation will result in a much lower
event rate at higher levels in a certain class of HDES while a low amount of
event aggregation will result in higher event rates (Theorem 2). Event rate
reduction in HDES is often desirable so that the processors implementing the
higher level controls are permitted adequate time before they must attend to the
lower level systems. Next, we study how to design the timing structure to ensure
that there will be a decrease in the event rate (by some coastant factor) between
any two levels of a wide class of HDES. It is shown that if the communications
between the various DES in the HDES satisfy a certain admissibility condition
then there will be a decrease in the event rate (Theorem 3). Hence, we show that
one only needs 10 restrict the interconnections in the HDES to achieve event rate
reduction. The results are illustrated with a conventional discrete event control
system and a manufacturing system. Some of the results in this paper were
originally reported in [4,6,8,9] and an expanded version of this paper (which
includes the proofs) is given in [18).

We focus on timing characteristics of single DES or HDES which have as
components DES that can be accurately modelled with

P=(X,U.Y.8.A.X0) [¢)]

where,
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(i) X is the set of plant states x,

(ii) U is the set of plant inputs u,

(iii) Y is the set of plant outputs y,

(iv) 8:UxX—[P(X) is the plant state transition function
([P(X) denotes the power set of X),

(v) A:UxXY is the plant output function, and

(vi) XoCX is the set of possible initial plant states.

The plant state transition function (a partial, point to set function) specifies for
each current input u and state x the set of possible next states x'e 5(u,x). The
output function specifies, for the current input u and state x, the current output
symbol y=A(ux). Formally, P is equivalent to a directed graph with node set X
and edges x—x' labelled with "u/y” for each triple (u,x,x") such that x'e 8(ux) and
y=A(ux). The model P is similar 10 a standard automaton but X, U, and Y are
not required to be finite. A run of P is defined as a sequence of triples (ug.x0.y0),
(u1.x1,y1) (2.%2.¥2), ..
Xk+1€ 8(uk,xk), and yk=A(uk.Xk)-
8(uk.xk)=0 for all uxe U at some xke X, a run may have a finite length. We
note that our results are not restricted solely to the use of the DES model (1).
The above model was chosen so that the results here would directly apply to a
wide class of systems that can be represented with “logical DES models” (e.g.,
General and Extended Petri nets [10], finite automata, and other DES models
[11,17]). The development of results analogous to ours for hierarchical timed or
performance models for DES is an important research direction.

such that xge X, ug is the initial input,
Notice that since it is possible that

2.0 CHARACTERIZING THE ADVANCEMENT
OF TIME IN DES

When a physical plant is modelled via (1), the meaning of the advancement
of time must be defined. If Z is an arbitrary set, then Z* denotes the set of all
finite strings of elements from Z. If Z and Z' are arbitrary sets then ZZ' denotes
the set of all functions mapping Z' to Z. Let N denote the set of natural
numbers.

sequences

In order to discuss timing issues for P, an index set J and index

oeI*UN )

are utilized similar to the approach in [12]. The index set J is thought of as a set
of times. Let R + denote the set of strictly positive real numbers and
|R+=[R+U(0}, the set of non-negative reals. Note that N or R could be
candidates for the set J. For convenience, we assume that J=R.,. The index
sequences o€ T*UIN are sequences of time instants that can be of finite or
infinite length. For ae F*UIN let lal denote the cardinality of the size of the
string a. Note that either ccN—J or &:[0,a] »J where [0,a]CN, and a(k) simply
denotes an element in J. An index sequence (function) e J*UIN is said to be
admissible if:
@) it is order preserving, i.c.,

(a) if e JN, then for all kqkoe N, ki<k) implies that a(k|)<a(kp),

(b) if e I*, then for all k1.k2e N with ki ko€ [0.lak1], k1 <k implies that

ok )<a(ky), and

(ii) it is injective and if ae JN then a(k)—eo as k—»eo,

Following [12], the state of the plant xe X is associated with the index a(k)
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for some ae J*UIN and is denoted with x(a(k)), meaning “the state at time
a(k)". Similarly, inputs ue U and outputs ye Y are associated with that same
index and denoted with u(a(k)) and y(a(k)) respectively.. The transition to a state
in the set 8(u.x) can be thought of as leading to the next state, with "next"
quantified with the index sequence o as a(k+1). With this, the transition
function is given as x(ou(k+1))e Hu(a(k)),x(a(k))) which is often abbreviated as
Xk+ 1€ 8(uk,xx). Similarly, the output is often denoted with yk=A(ug xk) for
ke N. Each run of P (u0,x0,y0),(41,X1,¥1).- has an associated index sequence
aeJ*UIN, a=a(0),a(1),... specifying the time instants at which the triples are
defined. Notice that if for some xxe X and all uge U, &(uk,xx)=0, then c(k+1) is
undefined and in this case o has finite length (i this situation we say that P is
"deadlocked”).

A DES often activates or triggers other DES to act. For instance, in the
case where P represents a plant, P may trigger a controller to generate an input to
P. In this case, the trigger often represents certain changes that occur in the
plant. For instance, events can be used as the trigger. Similar to [11), we let
ECXxX denote the set of events e, where

E={(xx)e X*X: xe §(ux)} 3
An event e=(x,x") is said to occur if the state transition from x to x'e 8(u,x) takes
place. For convenience we shall assume that the event occurs (is defined) at the
time instant a(k+1) where the next state is defined. Due to the injective part of
the admissibility requirement for o the variables x, u, and y are defined at time
instants which are distinct from one another. By condition (ii) of the
admissibility requirement when state transitions occur it is guaranteed that time
will advance (although it may be a very smail amount) and if an infinite number
of events occur this will take an infinite amount of time. The other important
implication is that using the definition of events E in (3) it is automatically
assumed that events occur at distinct times, i.e., simultaneous events are not
allowed because the index sequences are required to be admissible. Suppose for a
moment that condition (ii) of the admissibility requirement is omitted so that for
ael*UIN it is possidble that a(k+1)=a(k) for any ke N such that a(k) and
agk+1) are defined. This will allow events to occur simultaneously at a particular
time instant. In fact, for ae JN it will allow even an infinite number of events to
occur at one time instant resulting in the possibility that time will not advance.
Normally, to treat simultaneous events, only a finite number of events are
allowed to occur at a single time instant; hence, other events representing the case
that "several events occur at once” can often be defined. So the problem of
dealing with simultaneous events is often transformed to the case where only a
single event occurs at each time instant so that time is guaranteed to advance and
admissibility can be assumed (e.g., this can be done for Petri nets [10]).

The pair I=(A,J) where J is an index set and ACT*UIN will be referred to as
an interpretation of time since it specifies the meaning of the advances in time for
the occurrence of state transitions, i.e. it specifies the time instants where the
variables of the DES P are defined. In general, a system P is said to have a
particular interpretation of time I=(A,J) as long as the time instants associated
with the elements of the runs of P are elements of J and the index sequences
associated with the runs of P are elements of A. The admissible interpretation of
time will be denoted with Ind=(AadJad) Where Jaq is an index set and

Aag={0T34UIY) za is admissible). @
Most often we can choose Jad=J=IR + and this is what we will assume here. It is
common to discuss the timing characteristics of DES relative to a clock. By a

"clock” we mean a device which has a fixed interval Te RY between sicks and
which does not stop ticking (if there is deadlock, the clock keeps ticking but no
events occur). Next we provide definitions for several standard interpretations of
time used in DES studies:

Definition 1: The asyrchronous interpretation of time is Iq=(AgJa) where

Ja=R4 and Ag={ae Agg:a(0)=0}.

Definition 2: The partially asynchronous interpretation of time is Ipa=(AyJpa)
with Jpa=R+ and Ayg=(ae Aa : alk}+rsalk+1)sakh+B} for yfe R* where
B2y.

Definition 3: The general synchronous interpretation of time is Ys=(AT J5) with
Js=R, and AT=(a € Ag : a(k+1)=0:(k)+nT where ne N-(0} } with Te R™.

When n=1 we shall refer to I5 simply as the synchronous interpretation of time.

3.0 TIMING CHARACTERISTICS OF HIERARCHICAL DES

The formation of a control theory for HDES is just beginning [15-17] even
though such systems occur quite frequently. Some principles of the evolation of
time in hierarchical systems have been postulated but not fully investigated in
[1,13,14,5,72]. As in [3] what these researchers have recognized is that "systems
usually operate at the higher rates at the lower levels in a hierarchical system®.
We shall verify this intuition for a wide class of HDES here.

3.1 A Hierarchical DES Model
We shall focus on HDES that have as components two types of DES, Gj,
1<j<m, and Pj, 1si<n, all defined via (1) except with different timing
characteristics. We introduce what we call a timing structure which will define
how the various components of the HDES influence (are influenced by) the
timing characteristics of other components of the HDES. The definition of the
timing structure is based on the interpretations of time defined in Section 2.0 and
what will be called input and output triggers. Each Pj, 1<i<n, in the HDES has
timing characteristics that are simply specified via their own interpretation of
time denoted with Ipi=(ApiJpi). Roughly speaking, each Gj, 1<j<m, has timing
characteristics that depend on other P; and G via the timing structure as we now
discuss in mose detail.
LaEpidenotethesetqfevemsfa?,,degj,mesetofeventsforGjboth
defined in a similar manner to the events E for P in (3). Let Cp; (Cg;) denote the
set of communications that can be transmitted from P; (G;) via the timing
structure to other G». The ousput triggers for the P; (resp., for Gj) are defined via
9i:Epi~Cpi 1<isn (resp., WiEgi—Cgj 1Sj<m) [0
(or restrictions of these maps). If ¢;(e)=c or y;(e)=c' then c and c' are
communications that are said to occr due to the occurrence of event string e or &'
(e triggers communication ¢). We use the standard notation for concatenation,
e.8. if e,¢'c Epj then ee’ denotes the concatenation of e and ¢'. The time instant
at which the communication ¢ (¢') occurs is"the same time instant that e€ Ep;
(e'e Eg;j) occurs where ¢j(ee)=c (yj(e'e')=c"). The input triggers for the Gj are
defined by the Tj maps for j, 1<j<m, where
1j:Cp1* = *xCpn*Cg1* - *Cgj.1*Cgja1* = *Cgm—{0,1} ©
and 1:j(-)=1 (=0) indicates that an event egjla(k+1))e Egj where
egj(a(k+1))=(xgj(a(k)),xgj(a(k+1))) is forced (not) to occur in Gj. The T
indicate which P; and Gy communicate with Gj via the timing structure.
Equation 6 indicates the form for the 7j maps; the absence of a Cp; or Cg# from
the cross product in the domain of t; indicates that P; or Gy does not
communicate with Gj via tj. It is assumed that the t; maps form a “tree
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structured” timing strocture as we describe next.

Let cack DES component P;, 1<i<n, or Gj, 1Sj<m, of the HDES represent a
node (e.g., denoted with boxes as in Figure 3.1) of a directed graph & and let the
1; define the arcs (e.g., denoied with shaded arcs in Figure 3.1) that connect the P;
and G to G;j in the following manner: Let il1,i2,21,82¢ N. If there exists i (2)
*Cpix - Cpi2xCygp1% - *Cgpx - *Cg22—{0,1} then
there exists an arc pointing from P; to Gj (G to G;). In this paper we focus on

such that tj:Cpif* -

HDES which have a tree structured timing structure, i.¢., the case where 4 has no
closed cycles. In this way we eliminate the possibility that some Gj can directly
force its own events to occur via the timing structure. Notice that the P;, 1<i<n,
are the "leaves” of the tree structured timing structure.

Intuitively, the ¢; and wj specify what each DES will communicate (Cp; and
Cgj to the other DES in the HDES. The tj definc communication channels (the
arcs and paths in 4) and where the communications are distributed in the HDES.
Next, we define the time instants at which events occur when they are forced to do
5o by other DES components of the HDES via the timing structure.

Whereas the interpretation of time is always specified for the Pj, 1<i<n, the
interpretations of time for the Gj are specified in terms of the other G ¢ and the Pj
via the timing structure. Let acpi(k+1) and acg p(k+1) denote the time instants
at which communications cpje Cpi and cg b€ Cg ) occur respectively. Suppose
that at some time instant 0gj(k+1), T;(-)=1 so that egj(agj(k+1))e Egj occurs.
This time instant at which egj(0gj(k+1)) occurs is given by

agi(k+1)=max {acpi(k+1),0cg 2(k+1): 3 anarc in A from P; or Gy to Gj} (1)
and corresponds to the time instant at which the last communication accessible to
G;j occurred and caused tj(-)=1. Each time a communication occurs which forces
1j(}=1, an event occurs in Gj; hence the "1" represents a pulse sent to Gj via 1j
which forces an'event to occur. Hence, if j(-) is set equal to 1 at some time
instant, an event in Gj must occur at that time instant (unless Gj is deadlocked);
if every communication in a sequence of communications all cause tj(-)=1 then
there is one event occurrence in Gj for each communication in the sequence. The
interpretation of time for any Gj is found by executing all possible runs (in all
possible orders) of the P;j, 1<i<n, and G for which there exists a path in 4 from
Pior G to Gj. Then via (7), the time instants and hence index sequences and
interpretations of time for the Gj are specified. We shall study HDES where there
is at least one Pj and the interpretations of time for the Gj can be uniquely defined
in terms of the Pj.

Note that although we consider only tree structured timing structures we
place no restrictions on the manner in which the DES inputs U and outputs Y are
connected. This allows our results to apply to a large class of HDES with a wide
variety of input/output connecting structures. Tree structured timing structures
allow us to study properties of what has been called a "time scale hierarchy” [2].
In this hierarchy a DES component is "higher in the hierarchy” than another DES
component if its timing characteristics can be influenced by the other DES (i.e.,
there exists a path in 4 from one to the other).

3.2 Lower Event Rates at Higher Levels in the HDES

To analyze the timing characteristics of HDES we study one fundamental
component (shown in Figure 3.1) of the HDES defined above. Even though we
consider only P; at the lower level, it requires only a simple modification to
cmsideramixofPiandeatthelowerlevelandallofourmsultsbelowatestill
valid. Moreover, our results easily generalize 1o the fully interconnected HDES

by repeated application of the derived relationships which pertain to the two levels
in Figure 3.1.

Figure 3.1 Hierarchical DES with Single-Branch

Let the admissible interpretation of time for Pj be Ipi=(ApiJpi), 1<i<n, with
in=]R+ and for G] be Ig[=(A81Jg1).

Definition 4: The event occurrence rate (event rate) in P or Gj is the number of
events that occur in the time interval Ty=(r1,r2] where (r1.2]1CR* and it will be
denoted with #(P;,Ty) and #(G;,Ty) respectively.

Notice that if Pj has a synchronous interpretation of time with Te R* and
we choose Ty such that ir3-rq =T then #(P;,Typ)=1, i.e., there is 1 event occurrence
in the time interval Ty; no matter what the particular values of 1] and rp are. If Pj
has an asynchronous interpretation of time then no matter how Ty is chosen it is
possible that #(Pj,Ty)=0, since we cannot guarantee that an event will occur in
the given time interval Ty. In fact, we do not know how many events will occur
in Ty. It would appear that our definition of event rate is too restrictive. This is,
however, not the case since the focus here is on comparing the event rates of
different DES components in the HDES and this comparison is made relative to
Ty, an interval of the real time line.

n
Theorem 1: 3 #(P;, Ty2#(G1,Ty)20 for all Ty,
i=1

Theorem 1 states the intuitively clear fact that the timing structure can mask
events and hence remove the time instants at which events occur in higher levels
of the hierarchy. This means that the event rate is lower in DES at the higher
levels of the HDES and higher in lower levels of the HDES no matter what the
interpretations of time are for the Pj, 1<i<n.

Remark 1: Repeated application of Theorem 1 to the multi-level hierarchy in
Figure 3.2 results in #(P1,Ty)2#(G1,Ty)2 -+ 2M(Gm.Ty20 for all Ty. This
result supports the studies in [3] where the author assumes a synchronous
interpretation of time and that the event rates can be split into "spectra” according
to the level in the hierarchy. It also shows that in the more general cas, e.g., for
asynchronous P}, the event rates in DES at the higher levels are also greater than
or equal to the event rates at the lower levels.

Example 1: (Conventional Discrete Event Control System) Consider the
controlled DES shown in Figure 3.3. We have ¢1:Ep'1—Cp1 and
©1:Cp1—>{0,1} and for the standard control configuration it is most often assumed
that for all e E] such that e=e'c (e Ep1), t1(#1(e'e))=1 so that each time an
event occurs in Py, G is forced to act by having an eveat in G| occur (it is
normally assumed that one always exists). Clearly, then if Ip1=(Ap1.Jp1) is the
interpretation of time for P} and Ig1=(Ag1Jg1) for Gy where Jg1=Jp1, then
Ag1=Ap1. The interpretation of time for the plant and coatroller are the same.
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Figure 3.2 Multi-Level Hierarchical DES with m+1 Levels
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P} viatj and ¢1. Via Theorem 1, for general ¢; and t{ we see that we can
expect fewer events to occur in Gy than in P) since Pj may not communicate the
occurrence of an event or G may not recognize the communication. i
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Figure 3.3 Discrete Event Control System

Remark 1 and Example 1 illustrate the generality of Theorem 1; the result
applies to hierarchical DES currently being studied (in addition to the work in [3}
the result also applies to the work in [15-17]), and standard discrete event control
systems. Example 2 (a manufacturing system) in Section 3.4 is used to further
illustrate the use of Theorem 1.

3.3 Event Rates and Aggregation in a Class of HDES

Next we study how aggregation affects the event rates in HDES. Again we
shall focus on the HDES component shown in Figure 3.1 but note that the result
easily generalizes to a fully interconnected HDES. Let E;iCEp; and
i":E4i—Cpi for all i, 1<i<n, denote restrictions of ¢;. We use ¢;' maps for
aggregation rather than the ¢;; if e Ep;, e¢ Eg; then ¢; is said 10 ignore e (rather
than mask ¢). Let BiCN-{0} for j, 1sj<n.

Definition 5: {Pj=(XJ,ul,Y},81 M X0)), ¢'j:1<j<n} satisfies the (x ,22,...%%)-
event aggregation property if for each j, 1sj<n,

(i) There exists a family of sets X;jXJ, ie Bj such that

(a) XjjNXij=9 for all i#k, and X0jNXij=0 for i€ Bj,

M) If Pj first enters a state xe Xij for some ie Bj, it will take (for all possible
runs) at least ni>0 state transitions before the state of Pj, say x', is such that
X'¢ Xij,

(ii) 9'j:E3>Cp; where E.'_,=(eeEE.,-:e=e'e, where e=(x,x), and for some i€ Bj,
Xx€ Xij, x'e Xij ).

Theorem 2: If {Pj=(XJ,UJ,Y},81 M) Xgj), #'j:1j<n) satisfies the (x!.x2,...x%)-
event aggregation property and Ty=(r}.r2] and ir2-r]| is sufficiently large, then

Remark 2: For the malti-level HDES in Figare 3.2, if the (=/)-cvent aggregation
property holds for each successive level and Tp=(r1.12) with r=0 thes for all
1250, and for j, 1<j<m,

«—G’E‘I‘) 2#Gj+1.Tu).

The ¢j, ¥j, and T; can be viewed as maps that cause event aggregation;
consequently, Theorem 2 and Remark 2 provide a relationship between event
aggregation and event rates for one class of HDES. If there is a high measure of
aggxegaﬁona!kveljﬂargexj)thendmwmualotfewerevmocanﬁnga
level j+1. This illustrates that there is an inverse relationship between event
aggregation and event rate between two levels of a HDES. In general, hierarchical
systems researchers have observed a similar inverse relationship between “time
scale density” ("time granularity”) and "model abstractness” {2,13}. The above
results provide the first mathematical validation of these researcher’s intuition
about relationships between event aggregation and event rates for a class of
HDES. Example 2 in Section 3.4 is used to illustrate the use of Theorem 2.

3.4 HDES Timing Structure Design for Event Rate Reduction
Theorem 2 provides a characterization of how event rates are affected by
aggregation for one class of HDES. In this section we study the problem of how
to design the timing structure to ensure that there is a decrease (by a some
constant factor) in the event rate between any two levels of a wide class of HDES.
A reduction in event rate is often desirable so that the processors implementing
the higher level controls are permitted adequate time before they must attend to
the lower level systems (e.g., take actions based on the occurrence of an event

string).
Let
SpiCEpi (SgCEg) o)
and the communications be defined by
Cpi=P(Spi) (Cgj=P(Sgi)- 10)

The notation ec e’ will be used to denote the fact that e is a substring of e'.
Consider the case where the output trigger is defined so that se ¢;(e) if se e and
se€ Sp; (s'e ¢i(e) if s’e e and s'e Sy;j).
communication the first time an event string occurs and id;(e')id;(e) if le'>lel.

This output trigger initiates a

Hence, if the same event string occurs twice (or more) in some run this fact
cannot be reported by this output trigger. Similar problems can exist if we define
the output trigger so that se ¢j(e) if e=e ey, p2lesb>0, and se e7. This output
trigger does, however, have the interesting property that it will "forget” about
event strings in the past (depending on the choice for p). Here, we shall define
the output trigger so that

se ¢j(e) if e=e's and se Sp; (11)
(s'e wjle) if e=e"s' and s'e Syj). By definition, if ¢i(e)=G (;(e)=0), a "null
communication” occurs which cannot directly cause an event occurrence in any
other DES in the HDES. These assumptions about Cp; (Cg;) and ¢; (w;) in (9-
11) are only mildly restrictive since it is possible that there can be a different
communication representing each possible set of finite event strings that have
just occurred. Moreover, there will be no particular assumptions about the tj
maps and the definition for the output triggers via (11) and communications via
(9-10) is quite practical since each component DES is allowed to communicate

#PpTy)
E '{ o 7 1}2*(61"1'“)- ®  the fact that sequences of events have just occurred; other DES in the HDES can
H then act based on such behavior.
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The design of the timing structure will entail choosing the proper Sp; and
heace the communications Cp; that can occur between the various DES in the
HDES. It is shown that by restricting the choice of what communications are
allowed one can achieve a decrease in the event rate at the higher levels of the
HDES. In this way we achieve event rate reduction by restricting the manner in
which the DES communicate and not by making particular assumptions about the
dynamics of each component DES (as was done for Theorem 2). As in Sections
3.2 and 3.3 we shall focus only on the HDES of Figure 3.1 and the results easily
generalize to fully interconnected tree-structured HDES. First, we introduce a
fundamental property of comenunications within the HDES:

Mnnimj:msaspiissnidtoben-admissibleiffurans,s'espisuchﬂlat
s=ab, s=cd, and b=c with Ibi=kc>0 it is the case that ld2y;>0.

A similar definition can be given for the Sgj. Clearly, there may not exist
SpiCEpi such that Sp; is yi-admissible for some given 7;; but there always
exists some Y;>0 such that Sy; is y;-admissible. Hence for some DES one may
be able to achieve more event rate reduction than for others and y;-admissibility
characterizes this property. Intuitively, if the behavior of some DES P; is such
that it generates event strings which do not frequently cause communications to
other DES thea ¥ is large. Next, we provide scveral examples of SCEp; that
are v;-admissible:

(1) Assume that for all se Sp;, sl2y;. If for all se Sp; and all ee s where ec Ep;j,
there does not exist s'e Sp;, $'#8, such that ¢e s’ then Sy; is y;-admissible.
(2) If for all se Sp; there exists ec Ep;, and s such that s=esp and s2/>;-1, and
there does not exist s'e Sp;, s'#s, such that ecs' then Spj is y;-admissible

(similarly for s=sz¢), and more generally:

(3) If for all se Sp; there exists sj, s such that s=s;s3, Is1 21, and Isl27;-1,
and there does not exist s'€ Sp;, s'#s, such that sje s’ then Sp; is ¥i-
admissible.

It is important to note that for a given Sp; that might be chosen in the design of

a timing structure it is not difficult to test whether or not Sp; is in fact ¥;-

admissible for some given v; (of course this may be computationally intensive).

Theorem 3: If Sp; is f-admissible for all i, 1<i<n, then
Z{M} 2 #(Gy,Ty) for all Ty, (12)

] v

Theorem 3 shows that if each Sp;, for i, 1<i<n, is 7;-admissible then there
results a special type of aggregation between two levels of a HDES so that event
rate reduction can be obtained. It is important that this aggregation is achieved
via conditions on the communications and not on the structure of the P;, 1<i<n.
Of course, for a given set of lower level P; one may be able to achieve lower
event rates than for another set of P;; Theorem 3 shows how to design the
communications in the timing structure to achieve event rate reduction for a given
set of P;.

Example 2: (Manufacturing System) A simple manufacturing system will be
used to illustrate the results from Sections 3.2, 3.3, and 3.4. We consider a
manufacturing system which consists of a machine that can process parts of two

types, one at a time. The machine outputs each type part into a particular output
bin and the machine can be idle. Let X={MI, M), M2, OUT}, OUT2} be the set

of states where MI means "machine idle”, Mj means the machine is busy
processing part type i, and OUT; means that the machine outputs part type i. Let
U={u}.u2} where uj input part type i into the machine. Let Y={yp, y1d.
y2d} where yp, indicates that the machine is busy processing a part of either type,
and yjd indicates that the machine is done processing a part of type i. The
transition function & and the output function A for the manufacturing system are
specified via the bottom of Figure 3.4. We let Xo={MI} and consider
P1=(X,U,Y.5.A.X0) to be our piant.

There is a higher level mechanism which forces the alternate processing of
one part of type 1 and then two parts of type 2. This device is pictured in the top
of Figure 3.4 and will be referred to as G1. We have G1=(Xg.Ug.Y g.89.0g.X0g)
and Xg=(x1x2,x3}, Ug=Y-{yp}, Yg=U, and X0g=(x1}. Also, initially the input
to the plant is u). Notice that G] completely ignores output yp as it is
unimportant in coordinating the alternation of processing. (Hence, the inputs and
outputs are not connected in a conventional manner where in G1, 8p(u.x) must be
defined for all u.)

Suppose that we let 11:Cp1—{0,1}, Cp1=Ep], and ¢; (ec)=e for all eec Eg)
such that e=(OUT;,MI) for i=1,2 (otherwise, ¢1(ec)=@ so that no event occurs in
Gj). If the manufacturing system operates asynchronously (synchronously) then
the coordination mechanism will operate asynchronously (with a general
synchronous interpretation of time). Via Theorem 1, #(P1.Ty)>#G1,Ty) for all
Ty. In particular we sce that since event strings ending with (MI,M;) and
(M;,0UT;) for i=1,2 are masked, a greater number of eveats will occur in the
plant P1 (lower level system) than in the controller G| (higher level system).
Hence, for this simple manufacturing system the event rate at the higher level is
lower no matter what the interpretation of time in Py is. Also, notice that if we
choose B1={1,2}, and Xj1={M;,OUT;} for ie B, then if we use the input trigger
¢'|:E.‘1—){0,l}, a restriction of ¢1, and initial state as defined above, the
conditions of Theorem 2 are satisfied with x1=2 so #(P1,Ty)/2 + 12#(G1,Ty) for
the proper Ty and all 1;. Hence, via Theorem 2 we find an inverse relationship
between event aggregation and event rate for this simple manufacturing system.

ouUTy

Figure 3.4 Model of a Manufacturing System

Next, we show how Theorem 3 applies to this manufacturing system.
Suppose that the same models for the manufacturing system and its controller are
used but with a different interconnecting timing structure. In particular, using the
approach of this Section to specify the timing structure, we let
Sp1={(MLM))(M,, OUT{)(OUT.MI}, (MI,M2}(M3,0UT2)}(OUT2,MD)},
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Cpi=P(Spi), 71:Cp1—1{0.1}, and ¢ be defined as above in (11). Notice that
Sp1 is 3-admissible (case (1) above) so that #(P,Ty)/3 2 #(G),Ty) for all T,
We see that Theorem 3 can be used to produce a tighter bound on the number of
events that occur in Gi; hence, the design of the timing structure via the
Theorem 3 results in the guarantee of an even lower event rate in G;. B

4.0 CONCLUSIONS

We have provided a mathematical representation of the advancement of time
in DES via index sets, index sequences, and inferpretations of time. It was shown
that for a wide class of HDES the event rate is higher for DES at the lower levels
of the hierarchy than at the higher levels of the hierarchy. Relationships between
event rate and event aggregation were shown. In order to study how aggregation
effects event rates in more general HDES we studied how to design the timing
structure to achieve event rate reduction. It was shown that if the
communications between the various DES in the HDES satisfy a certain
admissibility condition then there will be a decrease in the event rate. Hence, we
showed that one only needs to restrict the interconnections in the HDES to
achieve event rate reduction.

In a "time scale hierarchy” - what we have been using here - the intuition that
event rates are higher for lower levels in the hierarchy has been verified here for a
class of HDES, but the resuits here are relative to this particular type of
hierarchy. If one defines a hierarchy relative to, faor instance, the functional
architecture of a system [2) then clearly at the higher levels of the functional
architecture there may be systems that are operating at higher rates than at the
lower levels of the functional architecture. It may take a re-arrangement of the
system componeats to place the sysiem in a time scale hierarchy so that our
resuits apply.

5.0 REFERENCES

[1] Albus J.S., Barbera AJ., Nagel R.N., “Theory and Practice of Hierarchical
Control”, Proc. of the 23rd [EEE COMPCON, pp. 19-39, 1981.

[2] Antsaklis P.J., Passino K.M., Wang S.J., “Towards Intelligent Autonomous
Control Systems. Architecture and Fundamental Issues”, ], of Intelligent and
Robotic Systems, Vol. 1, pp. 315-342, 1989,

[3] Gershwin S.B., "Hierarchical Flow Control: A Framework for Scheduling and
Planning Discrete Events in Manufacturing Systems®, Proc, of the IEEE, Vol.
77, No. 1, pp. 195-209, 1989.

{4] Knight J.F., Passino K.M., "Decidability for a Tempoml Loglc Used in
Discrete Event System Analyss Indt, Joumnal of Control, 1990

[5] Mesarovic M., Macko D., Takahara Y., Theory of Hierarchical Multilevel
Systems, Academic Press, NY, 1970.

(6] Passino K.M., Analysis and Synthesis of Discrete Event Regulator Systems.
Ph.D. Dissertation, Dept. of Electrical Eng., University of Notre Dame, Notre
Dame, IN, April 1989.

[7) Passino K.M., Antsaklis P.J., "Fault Detection and Identification in an
Intelligent Restructurable Controller”, J. of Intelligent and Robotic Systems,
Vol 1, pp. 145-161, 1988.

{8] Passino K.M., Antsaklis P.J., "Relationships Between Event Rates and
Aggregation in Hierarchical Discrete Event Systems”, Proc. of the Allerton
Conf. on Communication, Control, and Computing, Univ. of Iilinois,
Champaign-Urbamna, Oct. 1990.

[9] Passino K.M., Antsaklis P.J., "Timing Characteristics of Discrete Event
Systems”, Control Systems Technical Note #68, Univ. of Notre Dame, Dept.
of Electrical Engineering, June 1989.

[10] Peterson J.L., Petri Net Theocy and the Modeling of Systems, Prentice Hall,
NJ, 1981.

[11] Ramadge P.J., Wonham W.M., "Supervisory Control of a Class of Discrete
Event Processes”, SIAM 1. Control and Optimization, Vol. 25, No. 1, Jan.
1987.

[12] Sain M.X., Introduction to Algebmic System Theory, Academic Press, NY,
1981,

[13] Saridis G.N., "Intelligent Robot Control", IEEE Trans. on Automatic
Control, Vol. AC-28, pp. 547-556, 1983.

{14] Valavanis K.P., AMM&MWMQX
Intelligent Ph.D. Dissertation, Dept. of Electrical and Computer
Eng., Rensselaer Polytechnic Inst., Troy, NY, Nov. 1986.

[15]) Zhong H., Wonham W.M., "On the Hierarchical Control of Discrete-Eveat
Systems”, Proc. of the 1988 Conf. on Inf. Sciences and Systems, Princeton,
NJ, March 1988.

[16] Zhong H., Wonham W.M., "Hierarchical Control of Discrete Event
Systems: Computauon and Examples”, Proc. of the Allerton Conf. on
Communication, Control, and Computing, Univ. of Illinois, Urbana, Sept.
1989.

[17] Zhong H., Wonham W.M., "On the Consistency of Hierarchical Supervision
in Discrete-Event Systems”, IEEE Trans, oo Automatic Control. Vol 35,
No. 10, pp. 1125-1134, 1990.

[18] Passino K.M., Antsaklis P.J., "Event Rates and Aggregation in Hierarchical
Discrese Event Systems", Submitted for journal publication, 1990.

2922

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 28, 2009 at 14:04 from IEEE Xplore. Restrictions apply.





