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Abstract

The quest for autonomy has been a pervasive theme in human culture through-out history. In this paper a general
definition of autonomous systems is presented and discussed that leads naturally to the establishment of metrics to
measure the level of autonomy of a system. This definition is based on the system’s ability to achieve goals under
uncertainties and it does not involve the means by which the goals are achieved, such as sensing and feedback. This
paper takes the point of view that any autonomous system is a control system, and that to achieve higher levels of
autonomy one may need to add methods traditionally developed in areas such as operations research and AI. The work
presented here is based on earlier work by the author on functional architectures for autonomous spacecrafts.
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1. Introduction

Autonomous vehicles have certainly captured the imag-
ination of everyone, in recent years. It is fascinating to
have machines being able to drive us around autonomously,
without a human driver. In addition, the promise of reduc-
ing or even eliminating accidents via autonomy has been
very appealing indeed, and more so because of the con-
vincing marketing strategies of the world’s largest high
tech and automobile companies. Furthermore, significant
progress in unmanned aerial vehicles (UAV) and in au-
tonomous underwater and surface ships is announced daily.
These are exciting times, especially for researchers in con-
trol systems.

Autonomy in engineered systems is not a new concept.
Automatic pilots for aircrafts and ships that increase the
degree of autonomy of the system, have been operating
very successfully for many years — the first autopilot for
aircraft was introduced in 1912. Furthermore, autonomy
is not a new concept in society, in politics, in companies
and organizations, in biology, to mention but a few.

These engineered systems are examples of accomplish-
ments of the Quest for Autonomy, a pervasive theme in
engineered systems through the centuries starting even
earlier than Ktesibios’ waterclock with its feedback mecha-
nism in the 3rd century BC and continuing strong today. It
seems that we always wanted to build things that did more
things by themselves, that served us. In fact, as it was
mentioned in the works of the ancient poets Hesiod and
Homer around 700BC, Hephaestus the Greek god of inven-
tion and blacksmithing had created several creatures that
were accomplishing different tasks by themselves. One
of them was Talos, a giant bronze man commissioned by

Zeus to protect the island of Crete. As the story goes,
Talos marched around the island three times every day
autonomously and hurled boulders at approaching enemy
ships! Mayor (2018), see also Valavanis et al. (2014, 2007);
Antsaklis et al. (2005).

When people refer to autonomous systems they often
mean different things. It is important to be more precise
and agree upon a common definition.

The purpose of the present paper is to define autonomy,
describe concrete ways to talk about autonomy and levels
or degrees of autonomy and provide quantitative relations.

The terms autonomy and autonomous imply that the
system has the capability to accomplish certain goals. A
system is autonomous always with respect to certain goals;
it is not autonomous for the sake of being autonomous. Al-
though this appears to be an obvious point, if it is not rec-
ognized, it can lead to misunderstandings when attempt-
ing to compare autonomous systems.

A second major point is that a system which is au-
tonomous with respect to certain goals is always subject
to uncertainties in the system and its environment; uncer-
tainties that affect the abilities of the system to accom-
plish the goals. That is, uncertainties are always present,
because if they were not and we had perfect knowledge
of the system and its environment, we would have been
able to preprogram the system to accomplish any goals —
possible by its structure and its environment.

Therefore, when we state that a system is autonomous
we are really saying —or we should be saying— that the
system is autonomous with respect to a set of goals subject
to a set of uncertainties.

Such use of terminology is analogous to the use of the
term optimal which really means optimal with respect to
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certain optimization criteria, say minimum cost (goals),
subject to constraints (restrictions such as uncertainties).
Just stating that a solution is optimal is too vague. In
fact, anything can be optimal with respect to something!
The constraints restrict the set of possible solutions. The
constraints may be severe enough for a feasible solution
not to exist (set of constraints being infeasible) in which
case no optimal solution exists (in fact no solution exists at
all). Similarly, the uncertainties restrict the set of possible
control policies that achieve the goals. The uncertainties
may be large enough for no control policies to exist that
achieve the goals (the set of uncertainties render the prob-
lem infeasible) in which case no control policy exists that
make the system autonomous with respect to the given set
of goals.

In view of the above we can characterize autonomy as
follows:

If a system has the capacity to achieve a set of
goals under a set of uncertainties in the system
and its environment, by itself, without external
intervention, then it will be called autonomous
with respect to the set of goals under the set
of uncertainties.

For the same set of goals, the larger the set of uncer-
tainties the system can handle, the higher is its degree of
autonomy. The lower the needed external intervention by
humans or other systems to achieve the goals under the
uncertainties, the higher the degree of autonomy. So, the
level of autonomy depends on both, a measure of the set of
the goals that are being accomplished and a measure of the
set of uncertainties present. Specifically, {Measure of the
Set of Goals}×{Measure of the Set of Uncertainties}= L,
the level of autonomy. This definition allows the compar-
ison of the autonomy levels of different systems.

An autonomous system has goals to be accomplished
and mechanisms to accomplish those goals under uncer-
tainties. This is exactly what a control system does. Con-
trol policies are added to satisfy certain specifications un-
der uncertainties. Therefore, every autonomous system is
a control system. Adding to traditional control systems
advanced sensing and incorporating decision making from
areas such as AI is a way to increase substantially the
level or degree of autonomy of a system. Control systems
should be seen as the cornerstone of autonomous dynamic
systems.

The issues outlined above are discussed in detail in this
paper.

The present paper focuses on measures of autonomy
with emphasis on comparing levels or degrees of autonomy.
The definition of autonomy used here was first presented in
Antsaklis (2017) and further discussed in Antsaklis & Rah-
nama (2018) where the main ideas behind defining levels
of autonomy were elaborated upon.

It should be noted that the concepts in defining auton-
omy using sets of goals and uncertainties have appeared

in the writings of the author, published in the open litera-
ture, much earlier; see for example Antsaklis et al. (1988,
1989, 1991); Antsaklis & Passino (1993). Autonomy in en-
gineering systems and its relation to intelligent behavior
was discussed in the task force report Antsaklis (1994).
Details of defining levels of autonomy were discussed in
a paper draft Antsaklis (2018) which was circulated and
commented upon by colleagues. These ideas were also pre-
sented in a keynote address at the Mathworks Research
Summit in early June 2019.

To appreciate what is needed to achieve high levels of
autonomy a conceptual description of a functional archi-
tecture for an autonomous spacecraft is given. This de-
scription first appeared in Antsaklis et al. (1988) and in
journal paper form in Antsaklis et al. (1989). The version
included in the present paper may be found in Antsaklis
(2011) and it is given in Appendix Appendix B. It is rec-
ommended that the reader reads Appendix Appendix B,
even before proceeding to the main body of this paper.

In the following, we start the discussion with our def-
inition of autonomy. The interested reader may want to
read materials from Antsaklis & Rahnama (2018); Antsak-
lis (1998); Antsaklis et al. (1988, 1989, 1991); Antsaklis
(1994, 2011) and consult the references therein which de-
scribe early research (in the late 1980s to mid 1990s) in
combining control systems with intelligent methods from
artificial intelligence and machine learning to design highly
autonomous intelligent control systems. For additional
discussion of autonomy and its levels see, for example,
Beer et al. (2014) where the definitions introduced cor-
respond to the definitions in this paper in that they use
task-specific goals to be achieved by the system and re-
fer to needed outside intervention instead of uncertainties
present; that definitions also involve the means by which
autonomy is achieved which is not part of the definition in
our approach. See also Hrabia et al. (2015); NIST (2000);
Barber & Martin (1999); Durst & Gray (2014); Huang
et al. (2007). Note that a definition involving necessary
outside interventions to achieve the goals is discussed later
in this paper. It should be noted that, contrary to other
definitions, our definition of autonomy does not involve de-
scriptions of the means by which a specific level of auton-
omy is achieved, whether smart sensors or intelligent deci-
sion making are involved. We find it more useful to char-
acterize autonomy using only the possible to achieve goals
under given uncertainties and letting the specific means
by which the level of autonomy is achieved to be used in
characterizations of the system as smart, intelligent etc.
In fact, as it was stated many times in our publications,
“autonomy is the goal and intelligent means is one way
to achieve it.” Higher autonomy typically involves higher
intelligence.

Our definition of autonomous behavior provides a nat-
ural way to define levels or degrees of autonomy via sim-
ple quantitative relations, specifically, as it was mentioned
above, {Measure of the Set of Goals}×{Measure of the Set
of Uncertainties}== L, the level of autonomy. This eas-
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ily leads to an intriguing and interesting relation, namely
{Performance}×{Robustness}= L, the level of autonomy.
Here Performance is a measure of the set of goals that can
be achieved (and it may include stability) and Robustness
(Resilience) is a measure of the set of uncertainties under
which the goals are reached. Systems with higher perfor-
mance and/or higher Robustness/Resilience have higher
degree of autonomy. These issues are discussed in detail
later in the present paper.

Entropy can also be used as a general measure of the
set of uncertainties. Entropy in autonomy is also discussed
here.

An additional interesting measure is the degree of ex-
ternal intervention needed to achieve the set of goals. The
higher the needed external intervention the lower the level
of uncertainties under which the goals can be achieved;
that is there exists an inversely proportional relation be-
tween the level of needed external intervention and the
level of uncertainties or robustness under which the sys-
tem operates when achieving the set of goals.

Examples are used throughout this paper to illustrate
the concepts including a glimpse of how these definitions
and new relations may be applied to the 5 autonomous
vehicle levels used in the self-driving car literature and
industry.

2. Autonomous Systems

We start with the etymology of the word autonomy:
The term autonomy originated in Ancient Greek: αὐτο-

νομία (autonomia), from αὐτόνομος (autonomos), which
comes from αὐτο (auto) “self” and νόμος (nomos) “law”,
hence when combined it is understood to mean one who
gives oneself his/her own law. Autonomous means having
the capability and authority for self-government.

Autonomy goals: A system exhibits autonomous be-
havior of interest only when is achieving a goal or a set of
goals. That is, autonomy without clearly identified goals,
autonomy for the sake of autonomy is not interesting, if we
want to build useful engineering systems. Autonomy with-
out goals is as vague a concept as claiming that something
is optimal without specifying a measure, such as a cost to
be minimized. For example, a goal of an autonomous train
could be to move passengers safely from station to station
following a time schedule with some probability; the goal
of a speed cruise control of an automobile is to control the
car so to maintain approximately constant speed.

Every autonomous system is a control system: An au-
tonomous system always has a set of goals to be achieved
and a control mechanism to achieve them. This implies
that every autonomous system is a control system. Here
the term “control system” is used in a most general sense,
in which control (a decision mechanism typically using sen-
sor measurements and feedback together with ways to im-
plement these decisions via actuators) is used to make the
system (a very general collection of processes) attain de-
sirable goals.

As it was mentioned above, the word control in au-
tonomous control has a more general meaning than in con-
ventional control; in fact, it is closer to the way the term
control is used in every-day language; see Antsaklis et al.
(1988). To illustrate, in a rolling steel mill, while conven-
tional controllers may include the speed (rpm) regulators
of the steel rollers, in the autonomous control framework
one may include in addition, fault diagnosis and alarm
systems; and perhaps the problem of deciding on the set
points of the regulators, that are based on the sequence
of orders processed, selected based on economic decisions,
maintenance schedules, availability of machines etc. All
these factors have to be considered as they play a role in
controlling the whole production process, which is really
the overall goal. Note that in order to increase autonomy it
is typical to implement several layers/levels of automation.
Local controllers are often referred to as level 1 automa-
tion, set points assignment as level 2, and so on.

System and its environment: As it is typically done
in the field of control systems, it is useful to think of a
system to be controlled as being surrounded by a boundary
separating it from its environment. The system acts upon
its environment through its outputs and receives inputs in
the form of disturbances or additional information. What
the system includes within its boundary, expressed via the
particular system model used, depends of course on the
goals and the characteristics/properties used to achieve
its goals.

Goals and Uncertainties: In addition to the set of goals
to be attained the other central component of autonomy is
the set of uncertainties. For example, in the above cruise
control example, the speed needs to be maintained (goal)
under varying external conditions such as road incline,
condition of road surface, wind gusts, as well as internal
varying vehicle conditions such as hot or cold engine and
age of the car (uncertainties). Clearly the uncertainties of
interest in an autonomous system are the ones that affect
the accomplishments of the goals.

So, autonomy is the ability of a system to achieve a
set of goals under uncertainties in the system and its en-
vironment. Autonomy exists only with respect to a set
of goals and it is of value when there are uncertainties.
If there were no uncertainties, we could program the sys-
tem ahead of time, in which case a macro-command would
be adequate. In control system theory if we had com-
plete knowledge of the system to be controlled and of the
external disturbances then we could only use open loop
control and the control problem would have been rather
straightforward. Uncertainties however are always present
in different degrees. For example, in the above case of the
train moving on fixed rails from station to station, as in
an airport terminal, there are reasonable guarantees that
no passenger will cross the rails and there will be an un-
obstructed path for the train and so the uncertainties are
rather limited and are primarily caused by variations in
the flow of passengers in and out the train at each station.
This problem is manageable and currently such automated
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trains are operating successfully in many airports around
the world. Compare this with a car moving from point A
to point B. Even if we assume that the car stays in the
same lane, the problem is much harder, compared to the
train example above, because there are uncertainties such
as traffic lights, other cars changing lanes without warning,
pedestrians crossing unexpectedly, the weather that affects
sensors and braking distance and so on. Because of the
increased uncertainties designing autonomous cars to op-
erate in a city is much harder than designing autonomous
trains to operate in an airport terminal. It should be noted
that significant successes have been achieved in airplane
automatic pilot systems that are being used thousands of
times daily which maintain direction, speed and altitude
under unexpected disturbances such as gusts of wind and
air pockets.

In view of the above discussion we introduce the fol-
lowing definition which captures the fact that autonomy
should always be considered in terms of goals attained un-
der uncertainty.

Given a system S, let G be a set of goals to be achieved
under a set of uncertainties U.

Definition 1. A system S is autonomous with respect to
the set of goals G under the set of uncertainties U, if the
system S is capable of achieving all goals in G in the pres-
ence of all uncertainties in U, by itself, without external
intervention.

The set of uncertainties U is associated with the set of
goals G. It is implied that the uncertainties considered in
the above definition are the ones that are relevant to the
goals considered. For example, for the goal of stability,
certain uncertainty in the parameters may be relevant, but
different set of uncertainties may be relevant when the goal
is tracking. Other uncertainties which are irrelevant to
the goals of interest do of course exist; for example, in
designing the autopilot of an aircraft we do not consider
the interior design of the passenger cabin unless it has
implications on the weight of the aircraft.

Long term autonomy is of interest. It is assumed that
the system S is able to perform these functions autonomously
over a significant time horizon; that is, this is a repeatable
function the system is capable of, over extended periods
of time.

It is possible to have as a goal to control the system
so that some property is attained with certain probabil-
ity. For example, the goal could be to attain asymptotic
stability with a probability of 95%. So, the above defini-
tion captures the realistic scenarios of achieving goals with
certain likelihood.

The above definition of autonomy should and does ap-
ply to organizations and natural systems as well. For ex-
ample, in an organization, a team led by a manager accom-
plishes a set of tasks under uncertainties such as personnel
absences and equipment breakdowns, independently, with-
out intervention by a general manager. A bacterium may

be able to reach a light under normal circumstances, but
needs external help to remove unexpected obstacles in its
path.

Autonomous systems should be able to collaborate with
humans to accomplish enhanced goals which are not at-
tainable by just the human or just the autonomous sys-
tem. Adaptive autonomy is of interest here. Imagine the
scenario where the driver in an automobile carries out vari-
able tasks depending on how these tasks are shared with
the autonomous vehicle. For instance, the driver may want
to take on the task of maintaining certain distance from
another vehicle, that is taking on the advanced cruise con-
trol functions. The vehicle may take full control if the
driver is not capable of driving safely due to tiredness or
intoxication.

The impact of autonomous systems on society is of sig-
nificant interest. It is most important to adopt autonomy
in stages, providing education to prepare the population
for the changes. Such changes accompanied by temporary
loss of jobs have occurred several times in the past due to
the industrial revolution and there are many lessons to be
learned from that, on how to ease the impact. The hope is
of course that autonomy and automation in the long run
will create more jobs that the ones that were lost. The
difficulty is that the new jobs will probably require new
sets of skills. The social impact of autonomous systems
needs to be taken very seriously.

3. Levels of Autonomy

It is of interest to compare the levels of autonomy in
systems. Assume that a given system is autonomous with
respect to a set of goals under a set of uncertainties. If an-
other system can achieve the same goals under higher un-
certainties (under a larger set of uncertainties) then clearly
the second system has higher autonomy. Similarly, if more
goals can be achieved under the same set of uncertainties
then the system has higher autonomy.

The autonomy level of a system can be manipulated
and increased by adding feedback control, adaptation, learn-
ing, planning, failure detection and reconfiguration capa-
bilities, which in effect increase the level of uncertainties
the system can cope with autonomously.

A fixed feedback control system has low degree of au-
tonomy, because it can achieve the stability goals under
rather restricted parameter variations and external dis-
turbances. When there are more substantial parameter
changes then one could use methods from adaptive con-
trol to achieve stability. Such adaptive control system has
higher degree of autonomy due to greater uncertainty in
the parameters it can handle.

The degree of autonomy can be interpreted as the size
of an operating region (operating sphere) defined by a set
of parameters within which the system acts on its own in
a safe manner towards the goal. In the example of the car
speed control, a typical cruise control system can keep the
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car speed at acceptable levels only when the road is not too
steep. And such control system has certain degree of au-
tonomy as it acts appropriately within its operating region,
which is specified by the initial design of the system. We
could build cruise control systems with larger operating
regions satisfying the goal of keeping the speed at a preset
desired level. One way to achieve this is to anticipate, via
perhaps a vision system an upcoming steep grade and pre-
pare for it by shifting gears or accelerating slightly, which
is exactly what human drivers typically do. We could also
have car speed control systems that may attain additional
goals thus increasing even more their operating regions.
For example, we could add in a car a control system that
maintains the same speed as the car in the front (these are
called ACC —advanced cruise control systems), and in ad-
dition it adjusts the distance between the cars depending
on the speed, for safety reasons. It is clear that these two
control systems, taken together can satisfy a set of goals
under quite diverse conditions. Clearly such system has
higher degree of autonomy.

For given set of goals, the degree of autonomy may
be quantified by characterizing the safe operating region
within which the system acts appropriately. This region
in control systems is sometimes referred to as region (ball,
sphere) of uncertainty and it is characterized by certain
norm measures, when of course normed spaces are appro-
priate. Control systems that act appropriately in these
uncertainty regions are called robust with respect to these
uncertainty regions and with respect to goals such as sta-
bility (typically Lyapunov asymptotic stability) or perfor-
mance.

Note that the same system may be autonomous or not
depending on the stated goals and the uncertainties present.
Furthermore, a non-autonomous system may have several
autonomous functions. For example, in cars, the cruise
control, the ABS, ACC, lane preserving, etc., offer au-
tonomous functionalities and for each one of these sub-
systems the set of goals and the uncertainties could be
identified.

Autonomous systems deal with uncertainties primarily
using sensors, but also, for example, using prior knowl-
edge and machine learning, to improve their knowledge of
the processes to be controlled and also of the outside en-
vironmental influences, so to be able to achieve the goals
by applying effective decision-making methods. Interven-
tion (human or via a controller) reduces uncertainties the
system has to deal with autonomously. Successful control
actions, by engineered systems or human intervention, re-
duce the set of uncertainties that impact the goals and
must be dealt with autonomously. Human intervention or
adaptive/learning controllers may provide information via,
for example, cognitive abilities, data bases, prior experi-
ence that reduce the uncertainties, and lead to a smaller set
of uncertainties that need to be dealt with autonomously.

Measuring the degree of autonomy is non-trivial. It
is perhaps straightforward to compare systems that have
the same sets of goals but different uncertainties. It was

pointed out above that an adaptive control system has
higher degree of autonomy than a fixed feedback controller
because it can handle greater parameter uncertainty in
achieving stabilization (the common goal). When the goals
are different as well, then the problem of measuring degrees
of autonomy and comparing autonomous systems becomes
more complex.

The automotive industry currently uses a useful, de-
scriptive classification to distinguish levels of autonomy.
There is a SAE scale of 5 levels (plus a zero level) with
level 5 used for full autonomy. Similarly, the AFRL Au-
tonomy Framework is used in the UAV area, where a scale
of 10 levels (plus a zero level) is being used with level 10
used for full autonomy.

4. Metrics

The above discussed relationships that help us charac-
terize different degrees of autonomy may be captured by
the following very simple relations:

Level or degree of Autonomy = {Measure of the Set of Goals G}×
{Measure of the Set of Uncertainties U under which the goals in G are attained}

Let MG be a measure of the set of goals G and MU be
a measure of the set of uncertainties U and L be a measure
of the level of autonomy of the system.

Then L = MG ×MU

L, the level or degree of autonomy, depends on both,
the measure of the set of uncertainties and the measure of
the set of the goals that can be accomplished.

The measure of the set of goals should reflect the im-
portance, complexity and number of goals. Importance
may depend on existing priorities — tracking quickly within
a few seconds may be a higher priority than tracking asymp-
totically and in this case the level of autonomy with respect
to the finite tracking is smaller if only asymptotic tracking
may be achieved. Similarly, the measure of the set of un-
certainties should reflect the size, frequency and number
of uncertainties.

For a given level of autonomy L, when MU decreases,
MG increases, that is under reduced uncertainty more goals
can be achieved by the system. When MU goes up, MG

goes down that is, under increased uncertainty fewer goals
can be achieved.

When the goal is just stability and the uncertainties
are small, that is MG and MU are small then the level of
autonomy L is low. This is the case for example when sta-
bilization can be achieved via a fixed feedback controller.
When stabilization can be achieved under higher uncer-
tainties, which is the case for example when adaptive con-
trol is used to stabilize a system, the level of autonomy
L is higher. To increase L, when there is a fixed set of
goals, one needs to increase uncertainties under which the
system is capable of achieving the goals.
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Appropriate controllers in effect increase the size of the
set of uncertainties relevant to the goals that can be accom-
plished autonomously and increase the system’s level of au-
tonomy. Note that these controllers are modifying the sys-
tem. Uncertainties that can be dealt with autonomously
may be increased, for example using adaptation and learn-
ing, or human intervention, where extra sensors, cognitive
abilities, past experience effectively increases the set of un-
certainties the system can cope with autonomously. For
example, consider the case when a driver intervenes and
assumes certain functions to help the vehicle cope with
uncertain situations.

Clearly, by introducing restrictions on the uncertainties
in autonomous vehicles (e.g. adding structure — staying
in the same lane, using rails, assuming good weather etc.)
more goals can be achieved.

More goals can be achieved by adding additional con-
trollers. For example, assume that a given system is sta-
bilized via a feedback controller, which operates success-
fully over a set of uncertainties. If a tracking controller is
added the goals that can be achieved increase; however, the
set of uncertainties that can be dealt with autonomously
while tracking may be reduced compared to the stabiliza-
tion case.

Given a system, if there are no uncertainties at all, a
much-enhanced set of goals may be achieved with appro-
priate controllers. For example, we could use open loop
control to cancel all existing dynamics and introduce any
new desired dynamics. However, note that when a sys-
tem is run open loop, uncertainties in plant parameters
and disturbances could deny the ability to achieve control
goals, such as stability.

Given a system is there a maximum L? The answer is
affirmative. For a given system there is a maximum set of
goals that can be achieved. For example, the attainable
goals for a self-driving vehicle do not include the ability to
fly — at least not yet. Considering this maximum set of
goals, consider the set of uncertainties that affect those
goals and then consider the largest set of uncertainties
under which this set of goals can be attained. To find
the maximum autonomy level of a system, consider the
measures for the set of goals and the set of uncertainties
under which these goals are achieved and then maximize
their product by varying the sets of goals and for each set
of goals selecting the corresponding set of uncertainties
that have the maximum measure.

5. Humans in the Loop and Adaptive Autonomy

When one considers humans collaborating with engi-
neered systems, then the overall system that includes hu-
mans in the loop may be considered autonomous with re-
spect to a large set of goals and under a large class of
uncertainties, that is having a high level of autonomy. De-
pending on the role of the humans in the loop and the level
of control authority humans exert, the remaining system
will have different degrees or levels of autonomy. So, in

an automobile, if for example the goal is to keep the vehi-
cle inside a lane while travelling with constant speed, the
system may consist of the vehicle and the driver where
the system attains its goals in the presence of uncertain-
ties/disturbances, such as gusts of wind and road inclines.
The driver together with the automobile’s control systems
provide the correct steering and gas pedal commands so
the vehicle maintains its course within a lane and at cer-
tain (approximately) constant speed in the presence of un-
certainties/disturbances, such as gusts of wind and road
inclines. If one considers the controller to consist of just
the control systems of the car without the driver, then the
system, the car, has a lower degree of autonomy, meaning
that it may need extra help from humans or other systems
to attain the required level of autonomy.

Humans or other systems may insert themselves at dif-
ferent levels of a functional hierarchy (that correspond to
different levels of autonomy) used to describe the opera-
tion of autonomous intelligent systems Antsaklis & Rah-
nama (2018); Antsaklis (1998); Antsaklis et al. (1988, 1989,
1991), and take over control functions. For example, hu-
mans may insert themselves to take over planning, fail-
ure detection and identification, reconfiguration or learn-
ing functions. Or they may insert themselves to take over
lower control functions e.g. a driver may want to take
over the functions of the ABS system to perform the brak-
ing pumping action on his own. Such adaptive auton-
omy, where the authority the human operator exercises
may vary, appears to be a very promising direction in au-
tonomous systems research. The level of authority of the
human operator may vary and the changes may be ini-
tiated not only by the human operator, but also by the
vehicle if it detects driver errors or lowering of the driver’s
alertness.

6. External Intervention

Autonomy may also be defined in terms of needed, out-
side intervention necessary to achieve the goals instead of
in terms of a set of disturbances. Note that an equivalent
definition of autonomy is:

Definition 2. A system is autonomous with respect to a
set of goals G under a set of outside interventions I (by hu-
mans or engineered systems), when the system can achieve
all the goals in G, assisted by just the interventions I.

If the goals can be achieved under a smaller set of out-
side (human and otherwise) interventions, then the system
may cope with higher uncertainties and has higher auton-
omy; if more goals can be achieved under the same set
of interventions or the same set of uncertainties then the
system has higher autonomy.

The lower the needed intervention to accomplish the
goals, the higher the level of autonomy. The uncertainty
the system can cope with while achieving its goals, is in-
versely proportional to intervention necessary to achieve
the same goals.
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{Measure of the Set of Interventions I under which the
goals in G are attained}×{Measure of the Set of Uncer-
tainties U under which the goals in G are attained}= a
constant which is taken to be 1. That is MI ×MU = 1.

These relationships may be captured via a simple rela-
tion:

Level or degree of Autonomy = {Measure of the Set
of Goals G}/{Measure of the Set of Interventions I under
which the goals in G are attained}

Let L be a constant that corresponds to the level of
autonomy. Let MG be a measure of the set of goals G and
let MI be a measure of the set of needed interventions I.
Then

L = MG/MI

Note that here it was assumed thatMU×MI = 1. That
is, MI the measure of the set of needed interventions may
be taken to be inversely proportional to MU the measure
of the set of uncertainties U.

As an example, consider a home thermostat. A simple
thermostat can achieve the goal of thermal comfort with
minimum energy use, with user interventions to change the
set-point when residents leave or return to home, sleep, etc.
A smart thermostat could achieve the goal without this
level of human intervention, relying on occupancy sensors,
models of thermal comfort at night versus daytime, etc.
The smart thermostat has higher level of autonomy as it
can achieve the goal with lower user intervention.

In certain cases, human intervention is needed to take
care of a subset of the existing disturbances thus eliminat-
ing them from the set of uncertainties the system needs to
cope with. Such intervention allows the system to attain
the goals autonomously, under the now reduced set of dis-
turbances. For example, the cruise control in a car that
maintains the car’s speed constant may be not be able to
perform if the road incline is too steep. The driver may in-
tervene using say look ahead control policies to cope with
these large size uncertainties of the road incline and so re-
ducing the set of incline uncertainties the system needs to
deal with autonomously.

7. Performance and Robustness

Performance may be taken to be a measure of the set
of goals G achieved by the system. A performance level
is assigned that captures the number of goals, their diffi-
culty and importance. It should be noted that the term
Performance here has a more general meaning than in the
Controls literature, where typically it does not include sta-
bility. A level of Performance is accomplished under a level
of Robustness which corresponds to the level of uncertainty
under which the goals are achieved. For fixed performance
level, higher level of robustness implies higher autonomy.
Also, for fixed robustness level, higher level of performance
implies higher autonomy level. For fixed autonomy level,
higher performance leads to lower robustness and higher
robustness leads to lower performance.

Level of autonomy L = {Performance}× {Robustness}
Performance P is a particular measure of the set of

goals G, MG. Robustness R is a particular measure of the
set of uncertainties U, MU . For P = MG and R = MU .

L = P ×R

For fixed level of autonomy L when Performance increases
Robustness must be reduced. This brings up interesting
issues regarding fundamental limitations.

Robustness R which is a measure of the uncertainties
the system can cope with is inversely proportional to MI

the level of needed outside intervention.

R×MI = 1

8. Summary of Measures and Relations

Let MG be a measure of the set of goals G. Let MU be
a measure of the set of uncertainties U.

If L is the level of autonomy of the system then

L = MG ×MU

Performance P can be seen as an MG. Robustness R
can be seen as an MU . Then for P = MG and R = MU

the above relation becomes

L = P ×R

Let MI be a measure of the set of needed interventions
I. Then for MI ×MU = 1 the above relation becomes

L = MG/MI

In view of the relation between measures of Uncertainty
and Intervention, namely MI × xMU = 1 and the fact
that measure of Robustness R = MU we have that MU =
R = 1/MI , that is the smaller the needed intervention the
higher the robustness of the system

9. Entropy

We may use Entropy to compare autonomous systems
that achieve the same set of goals. Entropy is a measure of
uncertainty. If two systems accomplish the same goals, the
system with higher Entropy has a higher level of autonomy
since the goals are achieved under greater uncertainties.
For the same goals, higher Entropy implies higher levels of
autonomy.

We may use Entropy to compare autonomous systems
with varying sets of goals. Entropy measures uncertainty.
Reduced entropy means reduced uncertainty that implies
an increase of the set of goals possible, that is a higher
level of autonomy.

As Entropy decreases the set of goals that may be
achieved increases. When Entropy is epsilon or zero, a very
large set of goals may be accomplished — restricted only
by the system’s characteristics, its dynamics and structure.
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As Entropy increases the set of goals that maybe achieved
decreases. When Entropy is very large the set of goals that
can be achieved becomes very small — epsilon size or zero.

Let MG be a measure of the set of goals G and MU be
a measure of the set of uncertainties U.

We have seen that L = MG ×MU .
Entropy can be taken to be the measure for the uncer-

tainties.
Let Entropy H = MU . Then L = MG ×H.

10. Concluding Remarks

General metrics to measure autonomy levels and com-
pare levels of autonomy among different systems were in-
troduced. They are based on a very general definition of
autonomy that involves only the set of goals to be achieved
under a set of uncertainties. This point of view was devel-
oped by the author, simplified and fine-tuned over many
years. It is based on research performed during a summer
spent at JPL in Pasadena, California on envisioning the ca-
pabilities of a spacecraft necessary to act autonomously —
in a way bringing Houston Control on board of the space-
craft. Appendix Appendix B below describes in detail how
higher levels of autonomy may be accomplished. It is quite
interesting that fault detection and identification and con-
trol reconfigurations needed for autonomy is not being ad-
dressed in current efforts towards autonomous cars. Au-
tonomy is a very exciting topic with many challenges. I
am glad to see that the big high-tech companies working
on autonomous vehicles have started moving beyond the
original hype where full autonomy was to be implemented
in our cars within days, or weeks at most! There are many
things to improve and more things to invent in this area.
The challenges are serious, but the potential payoff makes
it all worth it. The Quest for Autonomy continues at an
ever increasing pace.
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Appendix A. Autonomy in vehicles

There is a SAE scale of 5 levels (plus a zero level) with
level 5 used for full autonomy. Consider the 0 to 5 levels
of autonomy in vehicles. We have:

MG ×MU = L

and
MG/MI = L

Let the scale for MG be 0-10 and the scale for MU be
0-10. Then the range of level of autonomy will be 0-100.

Assume that the goals are the same - to drive at the
level of a human driver under any normal road conditions.
We shall take MG to be equal to 10 across all levels.

At level 5 we calibrate MU to be 10, which implies that
all goals are achieved under maximum uncertainties. At
level 0 we calibrate MU to be 0.1, which implies that all
goals are achieved under minimum or no uncertainties.

In summary

• At level 0, MU = 0.1

• At level 1, MU = 2

• At level 2, MU = 4

• At level 3, MU = 6

• At level 4, MU = 8

• At level 5, MU = 10

The levels of autonomy then will be

• At level 0, {MG = 10} × {MU = 0.1} = 1 = L the
level of autonomy.

• At level 1, {MG = 10} × {MU = 2} = 20 = L

• At level 2, {MG = 10} × {MU = 4} = 40 = L

• At level 3, {MG = 10} × {MU = 6} = 60 = L

• At level 4, {MG = 10} × {MU = 8} = 80 = L

• At level 5, {MG = 10} × {MU = 10} = 100 = L

Instead of Uncertainty consider now a measure of re-
quired Intervention for the goals to be achieved.

Let the scale for MG be 0-10 and the scale for MI be
0-10. Then the range of level of autonomy will be 0-100.

At level 5 we calibrate MI to be 1/10 = 0.1, which
implies that all goals are achieved under minimum or no
intervention. At level 0 we calibrate MI to be 1/0.1 =
10, which implies that all goals are achieved only under
maximum intervention.

In summary

• At level 0, MI = 1/0.1 = 10

• At level 1, MI = 1/2

• At level 2, MI = 1/4

• At level 3, MI = 1/6

• At level 4, MI = 1/8

• At level 5, MI = 1/10 = 0.1

The levels of autonomy then will be

• At level 0, {MG = 10}/{MI = 1/0.1 = 10} = 1 = L
the level of autonomy.

• At level 1, {MG = 10}/{MI = 1/2} = 20 = L

• At level 2, {MG = 10}/{MI = 1/4} = 40 = L

• At level 3, {MG = 10}/{MI = 1/6} = 60 = L

• At level 4, {MG = 10}/{MI = 1/8} = 80 = L

• At level 5, {MG = 10}/{MI = 1/10 = 0.1} = 100 =
L

We could have taken

• At level 0, MI = 1/0.1 = 10

• At level 1, MI = 8

• At level 2, MI = 6

• At level 3, MI = 4

• At level 4, MI = 2

• At level 5, MI = 1/10 = 0.1

In that case the levels of autonomy then will be

• At level 0, {MG = 10}/{MI = 1/0.1 = 10} = 1 = L
the level of autonomy.

• At level 1, {MG = 10}/{MI = 8} = 10/8 = L

• At level 2, {MG = 10}/{MI = 6} = 10/6 = L

• At level 3, {MG = 10}/{MI = 4} = 10/4 = L

• At level 4, {MG = 10}/{MI = 2} = 10/2 = L

• At level 5, {MG = 10}/{MI = 1/10 = 0.1} = 100 =
L

The constant then takes on different values from the case
when Uncertainties are considered.
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Appendix B. Autonomous spacecraft

In this Appendix a conceptual case study is described
that identifies the capabilities of a spacecraft necessary to
exhibit autonomous behavior. It is pointed out that con-
trol theory is a cornerstone of autonomy in systems. The
level of autonomy is increased by adding functions such as
learning, planning, failure diagnosis and reconfiguration.
The description below follow Antsaklis (2011). Additional
details maybe found in Antsaklis (2011); Antsaklis et al.
(1989, 1991) and the references therein.

We begin by describing a conceptual functional archi-
tecture of the autonomous controller necessary for the op-
eration of future advanced space vehicles that was devel-
oped in Antsaklis et al. (1988, 1989, 1991); Antsaklis &
Passino (1993). This hierarchical architecture is certainly
one of many possible control architectures. The choice is
dependent on the particular problem addressed. We refer
to it as a hierarchical functional architecture - hierarchies
make it possible for us to handle complexity better - but
the architecture in fact is a heterarchy, as it also allows
direct communication among elements on the same level.

The concepts and methods needed to design success-
fully such an autonomous controller are introduced and
discussed. A hierarchical functional autonomous controller
architecture for a future spacecraft is described; it is de-
signed to ensure the autonomous operation of the control
system and it allows interaction with the pilot/ground sta-
tion and the systems on board the autonomous vehicle. A
command by the pilot or the ground station is executed by
dividing it into appropriate subtasks, which are then per-
formed by the controller. The controller can deal with un-
expected situations, new control tasks, and failures within
limits. To achieve this, high-level decision-making tech-
niques for reasoning under uncertainty and taking actions
must be utilized. These techniques, if used by humans,
are attributed to intelligent behavior. Hence, one way to
achieve autonomy, in some applications, is to utilize high-
level decision-making techniques, “intelligent” methods, in
the autonomous controller. Remember that autonomy is
the objective, and “intelligent” or “smart” controllers are
one way to achieve it.

B.1. Autonomous Controller Functions
Autonomous control systems must perform well under

significant uncertainties in the plant and the environment
for extended periods of time and they must be able to
compensate for system failures without external interven-
tion. Such autonomous behavior is a very desirable char-
acteristic of advanced systems. An autonomous controller
provides high level adaptation to changes in the plant and
environment. To achieve autonomy the methods used for
control system design should utilize both

a) algorithmic-numeric methods, based on the state-of-
the-art conventional control, identification, estimation,
and communication theory, together with advanced sen-
sors and actuators and

b) decision making-symbolic methods, such as the ones
developed in computer science (e.g., automata theory),
and specifically in the field of AI.

In addition to supervising and tuning the control algo-
rithms, the autonomous controller must also provide a high
degree of tolerance to failures. To ensure system reliability,
failures must first be detected, isolated, and identified (and
if possible contained), and subsequently a new control law
must be designed if it is deemed necessary.

The autonomous controller must be capable of plan-
ning the necessary sequence of control actions to be taken
to accomplish a complicated task.

It must be able to interface to other systems as well as
with the operator, and it may need learning capabilities to
enhance its performance while in operation. It is for these
reasons that advanced planning and learning, among oth-
ers, must work together with conventional control systems
in order to achieve autonomy.

The need for quantitative methods to model and ana-
lyze the dynamical behavior of such autonomous systems
presents significant challenges. The development of au-
tonomous controllers requires significant interdisciplinary
research effort as it integrates concepts and methods from
areas such as control, identification, estimation, and com-
munication theory, computer science, artificial intelligence,
and operations research.

Autonomous controllers evolve from existing controllers
in a natural way fueled by actual needs, as is now dis-
cussed.

B.2. Design Methodology — History
Conventional control systems are designed using math-

ematical models of physical systems. A mathematical model,
which captures the dynamical behavior of interest is chosen
and then control design techniques are applied, aided by
software packages, to design the mathematical model of an
appropriate controller. The controller is then realized via
hardware or software and it is used to control the phys-
ical system. The procedure may take several iterations.
The mathematical model of the system must be “simple
enough” so that it can be analyzed with available mathe-
matical techniques, and “accurate enough” to describe the
important aspects of the relevant dynamical behavior. It
approximates the behavior of a plant in the neighborhood
of an operating point or a region. The first mathemati-
cal model to describe plant behavior for control purposes
is attributed to J.C. Maxwell, who in 1868 used differen-
tial equations to explain instability problems encountered
with James Watt’s flyball governor; the governor was in-
troduced in 1769 to regulate the speed of steam engine
vehicles (the first feedback control mechanism in the his-
torical record is the water clock of Ktesibios, 3rd century
BC).

Control theory made significant strides in the past 140
years, with the use of frequency domain methods and Laplace
transforms in the 1930s and 1940s and the introduction of

10



Controller Plant

r

u

d

ym

yc
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Figure B.2: Conventional Indirect Adaptive Controller

the state space analysis in the 1960s. Optimal control in
the 1950s and 1960s, stochastic, robust and adaptive con-
trol methods in the 1960s to today, have made it possible
to control more accurately, significantly more complex dy-
namical systems than the original flyball governor. The
control methods and the underlying mathematical theory
were developed to meet the ever-increasing control needs
of our technology. The evolution in the control area was
fueled by three major needs:

a) The need to deal with increasingly complex dynamical
systems.

b) The need to accomplish increasingly demanding design
requirements.

c) The need to attain these design requirements with less
precise advanced knowledge of the plant and its envi-
ronment, that is, the need to control under increased
uncertainty.

The need to achieve the demanding control specifica-
tions for increasingly complex dynamical systems has been
addressed by using more complex mathematical models
such as nonlinear and stochastic ones, and by develop-
ing more sophisticated design algorithms for, say, optimal
control. The use of highly complex mathematical models
however, can seriously inhibit our ability to develop control
algorithms. Fortunately, simpler plant models, for exam-
ple linear models, can be used in the control design; this
is possible because of the feedback used in control, which
can tolerate significant model uncertainties. Controllers
can then be designed to meet the specifications around an
operating point, where the linear model is valid and then
via a scheduler a controller emerges which can accomplish
the control objectives over the whole operating range. This
is, for example, the method typically used for aircraft flight
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Figure B.3: Highly Adaptive Controller for Autonomous Control

control. In autonomous control systems we need to signif-
icantly increase the operating range; we must be able to
deal effectively with significant uncertainties in models of
increasingly complex dynamical systems in addition to in-
creasing the validity range of our control methods. This
will involve the use of intelligent decision-making processes
to generate control actions so that a performance level is
maintained even though there are drastic changes in the
operating conditions.

There are needs today that cannot be successfully ad-
dressed with the existing conventional control theory. They
mainly pertain to the area of uncertainty. Heuristic meth-
ods may be needed to tune the parameters of an adaptive
control law. New control laws to perform novel control
functions should be designed while the system is in opera-
tion. Learning from past experience and planning control
actions may be necessary. Failure detection and identifi-
cation is needed. Many of these functions have been per-
formed in the past by human operators. To increase the
speed of response, to relieve the pilot from mundane tasks,
to protect operators from hazards, autonomy is desired. It
should be pointed out that several functions proposed in
later sections, to be part of the autonomous controller,
have been performed in the past by separate systems; ex-
amples include fault trees in chemical process control for
failure diagnosis and hazard analysis, and control reconfig-
uration systems in aircrafts, planning the sequence of order
execution in steel mills and setting control set-points.

In the next section the functions, characteristics, and
benefits of autonomous control are outlined. Next it is
explained that plant complexity and design requirements
dictate how sophisticated a controller must be. From this
it can be seen that often it is appropriate to use methods
from operations research and computer science to achieve
autonomy. An autonomous control functional architecture
for future space vehicles is then presented, which incor-
porates the concepts and characteristics described earlier.
The controller is hierarchical, with three levels, the exe-
cution level (lowest level), the coordination level (middle
level), and the management and organization level (highest
level). The general characteristics of the overall architec-
ture, including those of the three levels are explained, and
an example to illustrate their functions is given. In the
following section the fundamental issues and attributes of
intelligent autonomous systems are described. Then we
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discuss mathematical models for autonomous systems in-
cluding “logical” discrete event system models. A “hybrid’
approach that includes both conventional analysis tech-
niques based on difference and differential equations, to-
gether with new techniques for the analysis of systems de-
scribed with a symbolic formalism such as finite automata
appears to offer advantages.

B.3. Functional Architecture of an Autonomous Controller
Intelligent Autonomous Control Motivation: Sophisti-

cation and Complexity in Control. The complexity of a
dynamical system model and the increasingly demanding
closed loop system performance requirements, necessitate
the use of more complex and sophisticated controllers. For
example, highly nonlinear systems normally require the
use of more complex controllers than low order linear ones
when goals beyond stability are to be met. The increase in
uncertainty, which corresponds to the decrease in how well
the problem is structured or how well the control problem
is formulated, and the necessity to allow human interven-
tion in control, also necessitate the use of increasingly so-
phisticated controllers. Controller complexity and sophis-
tication is then directly proportional to both the complex-
ities of the plant model and of the control design require-
ments.

Based on these ideas, Saridis in Saridis (1979, 1989)
suggested a hierarchical ranking of increasing controller
sophistication on the path to intelligent controls. At the
lowest level, deterministic feedback control based on con-
ventional control theory is utilized for simple linear plants.
As plant complexity increases, such controllers will need
for instance, state estimators. When process noise is sig-
nificant, Kalman or other filters may be needed. Also, if it
is required to complete a control task in minimum time or
with minimum energy, optimal control techniques are uti-
lized. When there are many quantifiable, stochastic char-
acteristics in the plant, stochastic control theory is used. If
there are significant variations of plant parameters, to the
extent that linear robust control theory is inappropriate,
adaptive control techniques are employed. For still more
complex plants, self-organizing or learning control may be
necessary. At the highest level in their hierarchical rank-
ing, plant complexity is so high, and performance specifi-
cations so demanding, that intelligent control techniques
are used. In the hierarchical ranking of increasingly sophis-
ticated controllers described above, the decision to choose
more sophisticated control techniques is made by studying
the control problem using a controller of a certain com-
plexity belonging to a certain class. When it is determined
that the class of controllers being studied (e.g., adaptive
controllers) is inadequate to meet the required objectives,
a more sophisticated class of controllers (e.g., intelligent
controllers) is chosen. That is, if it is found that certain
higher-level decision-making processes are needed for the
adaptive controller to meet the performance requirements,
then these processes can be incorporated. These intelligent
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Learning, and Algorithms
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Coordination Level

Algorithms in
Hardware and SoftwareExecutive Level

Vehicle and Environment

Pilot and Crew/Ground Station/Onboard Systems

Figure B.4: Autonomous Controller Functional Architecture —
Spacecraft JPL

autonomous controllers are the next level up in sophistica-
tion. They are enhanced adaptive controllers, in the sense
that they can adapt to more significant global changes in
the plant and its environment than conventional adaptive
controllers, while meeting more stringent performance re-
quirements. One turns to more sophisticated controllers
only if simpler ones cannot meet the required objectives.
The need to use intelligent autonomous control stems from
the need for an increased level of autonomous decision-
making abilities in achieving complex control tasks.

A brief literature overview of the early literature on
autonomous intelligent control may be found in Antsaklis
et al. (1989, 1991); Antsaklis (1999). The architecture in
Figure B.4 has three levels. At the lowest level, the ex-
ecution level, there is the interface to the vehicle and its
environment via the sensors and actuators. At the high-
est level, the management and organization level, there
is the interface to the pilot and crew, ground station, or
onboard systems. The middle level, called the coordina-
tion level, provides the link between the execution level
and the management level. Note that we follow the some-
what standard viewpoint that there are three major levels
in the hierarchy. It must be stressed that the system may
have more or fewer than three levels. Some characteristics
of the system, which dictate the number of levels, are the
extent to which the operator can intervene in the system’s
operations, the degree of autonomy or level of intelligence
in the various subsystems, the dexterity of the subsystems,
the hierarchical Characteristics of the plant. Note however
that the three levels shown here in Figure B.4 are appli-
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cable to most architectures of autonomous controllers, by
grouping together sublevels of the architecture if necessary;
the levels are the lower execution level, the higher manage-
ment level with everything else in between being included
in the mid coordination level. Notice that as it is indicated
in the figure, the lowest, execution level involves conven-
tional control algorithms, while the highest, management
and organization level involves only higher-level decision-
making methods. The middle, coordination level is the
level, which provides the interface between the actions of
the other two levels and it uses a combination of conven-
tional and intelligent decision-making methods. The sen-
sors and actuators are implemented mainly with hardware.
They are the connection between the physical system and
the controller. Software and perhaps hardware are used
to implement the execution level. Mainly software is used
for both the coordination and management levels. There
are multiple copies of the control functions at each level,
more at the lower and fewer at the higher levels. For ex-
ample, there may be one control manager, which directs a
number of different adaptive control algorithms to control
the flexible modes of the vehicle via appropriate sensors
and actuators. Another control manager is responsible for
the control functions of a robot arm for satellite repair.
The control executive issues commands to the managers
and coordinates their actions. Note that the autonomous
controller is only one of the autonomous systems on the
vehicle. It is responsible for all the functions related to
the control of the physical system and allows for continu-
ous online development of the autonomous controller and
to provide for various phases of mission operations. The
tier structure of the architecture allows us to build on ex-
isting advanced control theory. Development progresses,
creating each time, higher level adaptation and a new sys-
tem, which can be operated and tested independently. The
autonomous controller performs many of the functions cur-
rently performed by the pilot, crew, or ground station. The
pilot and crew are thus relieved from mundane tasks and
some of the ground station functions are brought aboard
the vehicle. In this way the degree of autonomy of the
vehicle is increased.

Functional Operation: Commands are issued by higher
levels to lower levels and response data flows from lower
levels upwards. Parameters of subsystems can be altered
by systems one level above them in the hierarchy. There
is a delegation and distribution of tasks from higher to
lower levels and a layered distribution of decision-making
authority. At each level, some preprocessing occurs before
information is sent to higher levels. If requested, data can
be passed from the lowest subsystem to the highest, e.g.,
for display. All subsystems provide status and health in-
formation to higher levels. Human intervention is allowed
even at the control implementation supervisor level, with
the commands however passed down from the upper levels
of the hierarchy.

The specific functions at each level are described in de-
tail in Antsaklis et al. (1989); Antsaklis & Passino (1993).

Here we present a simple illustrative example to clarify the
overall operation of the autonomous controller. Suppose
that the pilot desires to repair a satellite. After dialogue
with the control executive, the task is refined to “repair
satellite using robot A’. This is arrived at using the ca-
pability assessing, performance monitoring, and planning
functions of the control executive. The control executive
decides if the repair is possible under the current per-
formance level of the system, and in view of near term
planned functions. The control executive, using its plan-
ning capabilities, sends a sequence of subtasks, sufficient to
achieve the repair, to the control manager. This sequence
could be to order robot A to: “go to satellite at coordi-
nates xyz”, “open repair hatch”, “repair”. The control man-
ager, using its planner, divides say the first subtask, “go
to satellite at coordinates xyz”, into smaller subtasks: “go
from start to x1y1z1,” then “maneuver around obstacle,”
“move to x2y2z2.”. . . “arrive at the repair site and wait.”
The other subtasks are divided in a similar manner. This
information is passed to the control implementation super-
visor, which recognizes the task, and uses stored control
laws to accomplish the objective. The subtask “go from
start to x1y1z1” can for example, be implemented using
stored control algorithms to first, proceed forward 10m, to
the right 15”, etc. These control algorithms are executed
in the controller at the execution level utilizing sensor in-
formation; the control actions are implemented via the
actuators.

Some Design Guidelines for Autonomous Controllers:
There are certain functions, characteristics, and behav-
iors that autonomous systems should possess. These are
outlined below. Some of the important characteristics of
autonomous controllers are that they relieve humans from
time consuming mundane tasks thus increasing efficiency,
enhance reliability since they monitor health of the system,
enhance performance, protect the system from internally
induced faults, and they have consistent performance in
accomplishing complex tasks. There are autonomy guide-
lines and goals that should be followed and sought after
in the development of an autonomous system. Autonomy
should reduce the work-load requirements of the opera-
tor or, in the space vehicle case discussed here, of the
pilot/crew/ground station, for the performance of routine
functions, since the gains due to autonomy would be super-
ficial if the maintenance and operation of the autonomous
controller taxed the operators. Autonomy should enhance
the functional capability of the system. Since the au-
tonomous controller will be performing the simpler rou-
tine tasks, persons will be able to dedicate themselves to
even more complex tasks. There are certain autonomous
system architectural characteristics that should be sought
after in the design process. The autonomous control archi-
tecture should be amenable to evolving future needs and
updates in the state of the art. The autonomous control
architecture should be functionally hierarchical; for lower
level subsystems to take some actions, they have to clear it
with a higher-level authority. The system must, however,
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be able to have lower level subsystems, that are monitor-
ing and reconfiguring for failures, and act autonomously
to certain extent to enhance system safety. There are
also certain operational characteristics of autonomous con-
trollers. Human operators should have ultimate supervi-
sory override control of autonomy functions. Autonomous
activities should be highly visible, “transparent”, to the
operator at the maximum extent possible. Finally, there
must be certain features inherent in the autonomous sys-
tem design. Autonomous design features should prevent
failures that would jeopardize the overall system mission
goals or safety. These features should enhance safety, and
avoid false alarms and unnecessary hardware reconfigura-
tion. This implies that the controller should have self-test
capability. Autonomous design features should also be tol-
erant to transient errors, they should not degrade the reli-
ability or operational lifetime of functional elements, they
should include adjustable fault detection thresholds, avoid
irreversible state changes, and provide protection from er-
roneous or invalid external commands.

B.4. Characteristics of Autonomous Control Systems
Based on the architecture described above we identify

the important fundamental concepts and characteristics
that are needed for an autonomous control theory. Note
that several of these have been discussed in the literature
as outlined above. Here, these characteristics are brought
together for completeness. Furthermore, the fundamental
issues which must be addressed for a quantitative theory
of intelligent autonomous control are introduced and dis-
cussed. There is a successive delegation of duties from the
higher to lower levels; consequently, the number of distinct
tasks increases as we go down the hierarchy. Higher levels
are concerned with slower aspects of the system’s behav-
ior and with its larger portions, or broader aspects. There
is then a smaller contextual horizon at lower levels, i.e.
the control decisions are made by considering less infor-
mation. Also notice that higher levels are concerned with
longer time horizons than lower levels. Due to the fact that
there is the need for high-level decision-making abilities at
the higher levels in the hierarchy, there is increasing intel-
ligence as one moves from the lower to the higher levels.
This is reflected in the use of fewer conventional numeric-
algorithmic methods at higher levels as well as the use of
more symbolic-decision making methods. This is the “prin-
ciple of increasing intelligence with decreasing precision”
described in Saridis (1979, 1989). The decreasing precision
is reflected by a decrease in time scale density, decrease in
bandwidth or system rate, and a decrease in the decision
(control action) rate. All these characteristics lead to a de-
crease in granularity of models used, or equivalently, to an
increase in model abstractness. Model granularity also de-
pends on the dexterity of the autonomous controller. The
execution level of a highly dexterous controller is very so-
phisticated and it can accomplish complex control tasks.
The control implementation supervisor can issue high level
commands to a dexterous controller, or it can completely

dictate each command in a less dexterous one. The sim-
plicity, and level of abstractness of macro commands in
an autonomous controller depends on its dexterity, which
really corresponds to its level of autonomy. The more able
the execution level is, the simpler are the commands that
the control implementation supervisor needs to issue. No-
tice that a very dexterous robot arm may itself have a
number of autonomous functions. If two such dexterous
arms were used to complete a task, which required the
coordination of their actions then the arms would be con-
sidered to be two dexterous actuators and a new super-
visory autonomous controller would be placed on top for
the supervision and coordination task. In general, this can
happen recursively, adding more intelligent autonomous
controllers as the lower level tasks, accomplished by au-
tonomous systems, need to be supervised.

There is an ongoing evolution of the intelligent func-
tions of an autonomous controller and this is now dis-
cussed. It was pointed out above that complex control
problems required a controller sophistication that involved
the use of AI methodologies. It is interesting to observe the
following: Although there are characteristics, which sepa-
rate intelligent from non-intelligent systems, as intelligent
systems evolve, the distinction becomes less clear. Sys-
tems, which were originally considered intelligent evolve
to gain more character of what are considered to be non-
intelligent, numeric algorithmic systems. An example is
a route planner. Although there are AI route planning
systems, as problems like route planning become better
understood, more conventional numeric-algorithmic solu-
tions are developed. The AI methods which are used in
intelligent systems, help us to understand complex prob-
lems so we can organize and synthesize new approaches
to problem solving, in addition to being problem solving
techniques themselves. AI techniques can be viewed as re-
search vehicles for solving very complex problems. As the
problem solution develops, purely algorithmic approaches,
which have desirable implementation characteristics, sub-
stitute AI techniques and play a greater role in the solution
of the problem. It is for this reason that we concentrate
on achieving autonomy and not on whether the underlying
system can be considered “intelligent”.

B.5. Mathematical Models for Autonomous Systems
For autonomous control problems, normally the plant

is so complex that it is either impossible or inappropriate
to describe it with conventional system models such as dif-
ferential or difference equations. Even though it might be
possible to accurately describe some system with highly
complex nonlinear differential equations, it may be inap-
propriate if this description makes subsequent analysis too
difficult to be useful. The complexity of the plant model
needed in design depends on both the complexity of the
physical system and on how demanding the design specifi-
cations are. There is a tradeoff between model complexity
and our ability to perform analysis on the system via the
model. However, if the control performance specifications
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are not too demanding, a more abstract, higher level, model
can be utilized, which will make subsequent analysis sim-
pler. This model intentionally ignores some of the system
characteristics, specifically those that need not be consid-
ered in attempting to meet the particular performance spec-
ifications. For example, a simple temperature controller
could ignore almost all heat related dynamics of the house
or the office and consider only a temperature threshold
model of the system to switch the furnace off or on. Logi-
cal discrete event system (DES) models and Petri nets are
quite useful for modeling the higher-level decision-making
processes in the autonomous controller together with log-
ics, semantic networks, rule-based descriptions etc. Queu-
ing network models, Markov chains, etc. will be useful in
the study. The choice of whether to use such models will,
of course, depend on what properties of the autonomous
system need to be studied.

The quantitative, systematic techniques for modeling,
analysis, and design of control systems are of central and
utmost practical importance in conventional control the-
ory. Similar techniques for autonomous controllers do not
exist to a similar degree. This is of course because of
their novelty, but for the most part, it is due to the “hy-
brid” structure (nonuniform, nonhomogeneous nature) of
the dynamical systems under consideration. The systems
are hybrid since in order to examine autonomy issues, a
more global, macroscopic view of a dynamical system must
be taken than in conventional control theory. Modeling
techniques for autonomous systems must be able to sup-
port this macroscopic view of the dynamical system, hence
it is necessary to represent both numeric and symbolic in-
formation. We need modeling methods that can gather all
information necessary for analysis and design. For exam-
ple, we need to model the dynamical system to be con-
trolled (e.g., a space platform), we need models of the fail-
ures that might occur in the system, of the conventional
adaptive controller, and of the high-level decision-making
processes at the management and organization level of the
intelligent autonomous controller (e.g., an AI planning sys-
tem performing actions that were once the responsibility
of the ground station). The heterogeneous components of
the autonomous controller all take part in the generation
of the low-level control inputs to the dynamical system,
therefore they all must be considered in a complete anal-
ysis. It is our viewpoint that research should begin by
using different models for different components of the au-
tonomous controller. Full hybrid models that can repre-
sent large portions or even the whole autonomous system
should be examined but much can be attained by using the
best available models for the various components of the
architecture and joining them via some appropriate inter-
connecting structure. For instance, research in the area of
systems that are modeled with a logical DES model at the
higher levels and a difference equation at the lower level,
that is hybrid dynamical systems, should be used. In any
case, our modeling philosophy requires the examination of
hierarchical models. Much work needs to be done on hi-

erarchical DES modeling, analysis, and design, let alone
the full study of hybrid hierarchical dynamical systems.
Abstractions are of course at the center of any such study.
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