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1 Introduction

In the area of Systems and Control theory, the emphasis has been on de-
signing feedback controllers, given a model of the process to be controlled.
Many powerful methodologies have been introduced in the past half century
to design controllers that stabilize the system, and achieve desired perfor-
mance in a robust way, being tolerant to classes of plant parameter variations
and external disturbances. Feedback or closed loop control is used, instead
of feedforward or open loop control, because of uncertainties in the plant and
its environment. Methods that optimize performance (LQR/LQG, H∞)
have also been used successfully for certain classes of systems. The mod-
els typically consists of sets of ordinary differential or difference equations
mostly linear and time-invariant but also time-varying, and nonlinear. Less
often the behavior of interest is described by partial differential equations.
Discrete event processes found for examples in communication and manu-
facturing systems are typically described by automata and Petri nets.

Significantly less effort has been spent in the past half century on under-
standing exactly how and why feedback works so well not only in the control
of engineered systems, but in natural systems as well (see Sidebar). What
are the fundamental principles, the fundamental mechanisms which make
feedback control so powerfully effective? These fundamental mechanisms
should be independent of the particular type of mathematical models used,
that is the system may be described by differential equations, by automata,
by logic expressions, by natural language, since we do know that feedback
is ubiquitous and works! What are these fundamental properties that are
present everywhere? Deeper understanding would make it possible to un-
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derstand better the mechanisms at work in natural systems and would lead
to designing better controllers.

So the question is whether there are intrinsic properties of feedback that
transcend particular applications and models and are present in electrical,
mechanical, physical, biological, social, economic systems. Is there a fun-
damental feedback property which is present always, independently of the
particular feedback used?

In this paper we argue that there exists such fundamental feedback prop-
erty, which is present independently of the strength of the feedback. Specif-
ically, when the loop closes, the plant’s behavior is dramatically altered, its
dynamics are cancelled automatically and this is independent of our knowl-
edge of the plant dynamics, independent of uncertainties in the plant and
environment, and independent of the type of plant whether it is engineered
or biological. By selecting the feedback control appropriately we assign new
dynamics for stability and performance; the old dynamics have been can-
celled already. When the plant’s behavior is static, that is its behavior does
not depend on its past, the main effect of feedback is that of reducing the
plant gain automatically. However this effect is influenced by the size of the
gain of the controller and so this property doesn’t exactly qualifies to be
a fundamental property which is independent of the strength of feedback.
Nevertheless, it is still a property very important in the control of systems.
In a plant with dynamics, feedback affects both the dynamics and the gains.
In fact, the effect of cancelling the dynamics automatically is of central im-
portance in the stability of the system, while reducing the gain is central
to reducing sensitivity to parameter variations and disturbances, that is in
improving performance.

Feedback’s Fundamental Property - Changing the Dynamics, Au-
tomatically

Feedback is a way to change behavior as if we were changing the plant itself,
but without actually doing so.

What are the feedback’s most fundamental ever present intrinsic proper-
ties? Is it its ability to reduce sensitivity of the behavior to uncertainties
in the plant parameters and external disturbances? This is appealing be-
cause the reasons for using feedback instead of open loop control are these
uncertainties. Unfortunately this is not so. Low sensitivity depends on the
particular choice for the controller and the choice may decrease or increase
sensitivity.
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For example the sensitivity S of a plant G = 1
s+1 in a unity (negative)

feedback configuration with a static controller Gc = k is S = (1+GGc)−1 =
s+1

s+1+k . Note that the plant is stable for 1+k > 0 or −1 < k. For −1 < k < 0
the sensitivity to parameter variations is greater than 1 that is the sensitivity
of the closed loop is worse than that of an open loop (see the discussion on
automatically changing the gains later in the paper). So reducing sensitivity
cannot be a property that is present independently of the particular feedback
controller used.

Is then stabilization the most fundamental feedback property? Simi-
larly, the choice of controller may stabilize or destabilize the system and so
stabilization cannot be the most fundamental ever present intrinsic feedback
property. Note that in the above example if k < −1 the closed loop system
is not stable.

A key feedback property, that transcends all applications and all choices
for the controller, is the ability of feedback to completely alter the plant
dynamic behavior when the loop closes no matter what the particular plant
dynamics are. This property is independent and distinct and separate from
the ability to assign new dynamics by selecting the controller appropriately
for stabilization and performance.

This cancellation of plant dynamics happens for any controller the mo-
ment the loop closes; the new behavior is determined by the particular
controller used, resulting to a stable or unstable system, of low or high per-
formance. Note that we also have the ability to easily assign new dynamics
in the open loop non-feedback case, but the problem there is cancelling ex-
isting dynamics, which is is not always possible (something which happens
automatically in the feedback case); open and closed loop control similarities
and especially differences are discussed in detail later in this paper.

Even small feedback gains can change the dynamic behavior. Consider
for example the root-locus of a LTI SISO plant. It is well known that as
the gain k increases (or decreases) from 0, even by a very small amount, the
closed loop poles are not the open loop poles any longer-the open loop poles
seem to vanish. For example consider the plant G(s) = 1

s(s+1)(s+2) and its
root locus for k ≥ 0. For k = 0 the closed loop poles are at the open loop
pole locations and for small positive k the closed loop poles are different
from the open loop poles. As k increases towards infinity the closed loop
poles move towards the finite zeros of the plant and to points at infinity
along the asymptotes. For very large gains k the plant dynamics seem to
cancel out completely; closed loop poles cancel with open loop zeros. These
are well known phenomena in the controls literature and provide the clues
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for the fundamental mechanisms of feedback.
Both feedback characteristics, automatic change of dynamics (poles) and

automatic change of the overall gain, are caused by the feedback interconnec-
tion, which can be expressed in terms of the return difference. Specifically, in
the unity negative feedback configuration, the output Y = −GGcY +GGcR
or (1+GGC)Y = GGcR where (1+GGc) is the return difference; see Section
11.

A valid question is why this mechanism has not surfaced earlier? The
reason for not having a clear explanation of the feedback mechanisms at
work after many decades of impressive developments in the mathematical
theory of control may perhaps be due to the fact that modern system and
control theories typically consider feedback to be already part of the setup
and study the behavior of the whole system. So the actual feedback mecha-
nisms have not been explored nearly as well as the effects of feedback on the
compensated systems, where selection of appropriate feedback gains are of
importance and of main interest for stability and performance. In the ear-
lier era of classical control where control specialists typically were closer to
applications, it was clearly seen that the control law is there to manipulate
the input u and produce the desired effect. The plant dynamics themselves
cannot be changed. So understanding exactly how u acts on the plant would
have been of great interest, but the understanding brought forth by internal
system descriptions was not readily available then. Today we can look at
this problem having the benefit of the insights developed over many years
since the classical era of control in the 1950s.

In the following sections the focus will be on Linear Time Invariant (LTI)
plants both Single-Input-Single-Output (SISO) and Multi-Input-Multi-Output
(MIMO) under open and closed loop control. We focus on the automatic
changes of dynamics when closing the loop. Some basic concepts will be
reviewed and presented in a way that sheds light into the basic fundamen-
tal mechanisms of feedback control. The Appendix contains discussion on
several related topics including pole/zero cancellation mechanisms, sampled
data and delay systems, and nonlinear systems. The effect of high gains is
first discussed in Section 2 for SISO systems. Open loop control is instro-
duced in in Section 3, and closed loop control in Sections 4 and 5 for SISO
systems. In Section 6, state space and polynomial matrix representations
for MIMO systems are used, and the two degrees of freedom configurations
are discussed in Sections 7 and 8. In section 9, open and closed loop control
are compared. In Section 9 changing the gain is discussed and in Section 11
the role of the return difference is discussed.

It will become clear in the following that feedback acts in two stages:
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First all, possibly undesirable, dynamics of the plant are changed (cancelled)
the moment the loop is closed. Second, for a very large range of feedback
controllers (but not all), the closed loop system is robustly stable with low
sensitivity to plant parameter variations and external disturbances.

SIDEBAR
FEEDBACK CONTROL

Feedback is a mechanism, ubiquitous in nature, that drastically and dra-
matically changes the behavior Of a system specifically of the process it is
applied to, of the system. By behavior we mean the observed response of
the system to stimulus such as an input or initial condition.

Feedback is everywhere. Feedback is all around us and inside us. Ex-
amples of feedback abound. Here, a familiar situation every car driver has
experienced, is described.

When driving and the slope of the road starts increasing, the car speed
starts decreasing. Typically the driver detects this by looking at the speedome-
ter and presses the gas pedal a bit more to increase the fuel rate and bring the
speed up again to the previous level. The driver detects-via the speedometer-
the difference between the desired and actual speeds (the error). When the
error is positive-meaning that the actual speed is less than the desired-the
driver increases the fuel to the engine; if negative-that is the actual speed
is higher than the desired speed (going downhill for example)- the driver
decreases the fuel input and the car slows down. Cruise (speed) controlers
in cars do the same thing but automatically.

In what way does feedback alter the behavior of a system? Consider the
system consisting of the car and the control fuel input set at certain level
that corresponds to the desired speed (here the output) when the road is
horizontal. When there is a positive road incline and no corrective action
is applied, the car normally will start slowing down, as its normal behavior
dictates. Consider now having as input the desired speed with its corre-
sponding fuel rate and adding to this an appropriate additional positive fuel
rate when the incline is positive (and the error is positive). Now the system
can be seen as having the same reference input (desired speed ) as before
but with feedback it exhibits a different behavior since now the car does
not slow down. So with the same desired speed as input, feedback makes it
possible for the car to have a different dynamic behavior!

Can this be done without feedback? If we do know the details of the
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incline and have an accurate model of the response of the car when the
fuel rate is increased, then the driver, or a machine, can apply just the right
additional fuel to do the job. However this implies knowledge we do not have.
How, for example, can we have such accurate knowledge so to tell exactly-
without using sensor information-when the incline starts and the car slows
down? How do we know that there will not be a sudden gust of headwind,
a disturbance, that will slow us down? In fact both such uncertainties in
the plant model and in disturbances are rather common in practice and so
open loop control typically does not work except in special cases.

The amazing thing is that with feedback the change of behavior is au-
tomatic. When feedback information is available the driver maintains the
desired speed, without intimate knowledge of the slope of the incline or of
the engine of the car, by just observing the speedometer and adding fuel
when the error is positive, and reducing fuel when the error is negative.
(Note that a more sophisticated controller may consider not only the error
in speed but also the rate of change of the actual speed so to react faster).

It would be truly interesting to find out how old feedback
is. How far back in time can we trace feedback mechanisms?
Certainly even single cell creatures react to sensory inputs, they
change direction, are attracted to light. The purpose of having
sensors is to use the information and act upon it to feed, to avoid
danger, to find shelter. This is feedback control. Single cell crea-
tures in addition to using feedback to react to external stimuli
they also have feedback to regulate internal functions. Is there
life without feedback? It is doubtful! Life functions and feed-
back go hand in hand! But even before the beginning of life, one
could imagine feedback playing a central role in physical phenom-
ena helping settle processes to equilibrium points. Feedback is a
fundamental mechanism in nature.

SIDEBAR

2 High Gains in the Feedback Loop - A First Glimpse
at the Feedback Mechanism

It is well known that feedback control can be seen as a mechanism that
approximately inverts the plant dynamics, producing an “approximate” in-
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verse of the plant at its control input. This can be seen for example using
the simple error feedback control systems in Figure 1. When H = 1, the
transfer functions are

Y

R
= T =

GGc

1 + GGc
and

U

R
= M =

Gc

1 + GGc
. (1)

–

YUE
G

H

R
Gc

Figure 1

If |GGc| >> 1 then

Y

R
= T ∼= 1 and

U

R
= M ∼=

1
G

. (2)

That is, at the control input u of the plant, the external input r acts through
an inverse of the plant G (U ∼= 1

GR) , so to cancel all plant dynamics and
produce an output y, which is approximately equal to the reference input r
(Y = GU ∼= G 1

GR ∼= R). In other words, the input to the plant u, generated
by the external input r, is such that when applied to the plant G causes the
plant output y to be (approximately) equal to the externally applied input
r. Note that in the case when Gc = k, a real gain, this effect can also be
seen from the Root Locus where as the gain increases the closed-loop poles
go towards the open-loop finite and infinite zeros along the asymptotes and
so for high gain, pole-zero cancellations do occur and the overall transfer
function is approximately 1.

If, in addition, there is a controller H, ( 6= 1) in the feedback path, then
again the plant and its inverse cancel, however the overall gain in this case
is (approximately) independent of the plant and equals 1

H :

Y

R
= T ∼=

1
H

and
U

R
= M ∼=

1
GH

. (3)

H is selected to have a precise value (typically less than 1) so the compen-
sated system has the desirable gain, while it remains robust to parameter
variations in GcG.
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Similar results can be shown in the nonlinear case (see for example [1]–
pp. 29-36). Again in this case, when high gains are applied, the external
input acts through an inverse of the plant on the plant’s input.
Remark : High gains of course can have undesirable effects such as ampli-
fication of measurement noise and even worse, they can cause instability.
The latter can be easily seen, for example, via the Root-Locus in the case of
non-minimum phase plants where the closed-loop poles approach right-half
plane zeros for high gains and so the closed-loop system becomes unstable.
Discussion: Can it then be said that the feedback mechanism always acts
by generating a plant “inverse” and canceling somehow the plant dynamics,
as it was shown to be true in the case of high-loop gains?

Although our intuition based conjecture is basically correct, it is not
exact. Explaining exactly how feedback acts on the plant is the goal of
the present work. Clear understanding of the feedback mechanism is very
important especially today when feedback is identified and used to explain
the development of a variety of processes found in diverse areas from biology,
to physics, to finance.

If we understand clearly how the feedback control produces all these
wonderful results, it will perhaps be easier to understand the cases when
feedback information is not readily available as it is the case, for example,
in networked control systems, where the plant may have to operate often in
an open-loop configuration.

In view of this, the closely related open-loop control versus closed-loop
control topic is discussed in detail in the following. Furthermore, as it was
discussed above, at the plant input u, the external input r acts through an
inverse of the plant that can be seen as an open-loop “equivalent” to feedback
configuration, and these mechanisms will also be discussed below. Note that
in the Appendix A.1 and A.2 a review of pole/zero cancellation mechanisms
(in both frequency and time domains) are given for completeness.

3 Open-loop Control (Feed-forward Control) - A
Simple SISO Example

We are interested in obtaining a desired transfer function (desired response
to any allowed input) from a given plant, the input of which is controlled
by a controller in series with the plant. We shall start with a simple case
which nevertheless contains the salient features of importance.

Consider a plant to be controlled described by the first-order differential
equation a(dy/dt) + y = u with initial condition y(0). If Y (s) and U(s) are

8



the Laplace transforms of the output and the input respectively, the transfer
function is

Y (s)/U(s) = G(s) =
1

as + 1
. (4)

Let the output disturbance be d(t), so that

Y(s)U(s)
G(s)

D(s)

Figure 2

From the differential equation it is easy to see that a(sYp(s) − y(0)) +
Yp(s) = U(s) (Yp is used here to distinguish it from Y that contains distur-
bance D) from which

Y (s) =
a

as + 1
y(0) +

1
as + 1

U(s) + D(s). (5)

If we consider the open-loop controller in series, in Figure 3,

U(s)R(s)
G (s)c

Figure 3

where

U(s)/R(s) = Gc(s) =
bs + 1
cs + 1

(c(du/dt) + u = b(dr/dt) + r), (6)

it can be shown that

U(s) =
cu(0)− br(0)

cs + 1
+

bs + 1
cs + 1

R(s). (7)

Y(s)U(s)R(s)
G(s)

D(s)

G (s)c

Figure 4
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The output of the compensated system, in Figure 4, is then

Y (s) =
(cs + 1)ay(0) + cu(0)− br(0)

(as + 1)(cs + 1)
+

bs + 1
(as + 1)(cs + 1)

R(s) + D(s). (8)

The behavior may be changed by canceling undesirable plant dynamics via
pole-zero cancellations. As it can be seen in Appendix A.2, in the time
domain, these cancellations correspond to making the coefficients of the
corresponding modes equal to zero (or making the modes uncontrollable
and/or unobservable). Consider the part of the output that is due solely to
the input R(s),

YR(s) = GGc(s) =
bs + 1

(as + 1)(cs + 1)
R(s). (9)

If we select b = a then the pole of the plant G at −1/a cancels out with
the zero of the controller Gc and the overall pole dynamics are completely
characterized by the pole of the controller at −1/c which can be chosen to
our liking. To illustrate, let r(t) = 1(t) the unit step; then R(s) = 1

s and

yR(t) = L−1
{

bs+1
(as+1)(cs+1)

1
s

}
= L−1

{
−a a−b

a−c

as+1 +
−c c−b

c−a

cs+1 + 1
s

}
=

[
b−a
a−ce

− t
a + c−b

a−ce
− t

c + 1
]
1(t).

(10)

When b = a then
yR(t) =

[
1− e−

t
c

]
1(t). (11)

If, however, a is not known exactly (i.e. the exact location of the pole of the
plant) and b is not taken to be exactly equal to a, but b = a + ε, then

yR(t) =
[

ε

a− c
e−

t
a +

[
1−

(
1 +

ε

a− c

)
e−

t
c

]]
1(t) (12)

where it can be seen that the plant pole at −1/a has not been cancelled.
If −1/a is positive (unstable pole) then the corresponding mode will grow
with time and the system will be unstable (see also Appendix A.2).

The part of the response due to initial condition YI(s) is in the time
domain (let a 6= c for simplicity)

yI(t) = L−1

{
a

as + 1
y(0) +

cu(0)− br(0)
a− c

(
a

as + 1
− c

cs + 1

)}
=

[[
y(0) +

cu(0)− br(0)
a− c

]
e−

t
a − cu(0)− br(0)

a− c
e−

t
c

]
1(t).

(13)
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When b, c, u(0), and r(0) are such that the coefficient of e−
t
a is zero, then

the plant dynamics are suppressed in the response. This happens when

(a− c)y(0) + cu(0)− br(0) = 0 (14)

which is exactly the condition in YI(s) for the factor as+1 in the denominator
to cancel with the numerator (the numerator should be zero for s = −1/a
which is the pole to be cancelled). Again, as in the yR(t) case above, if a
and y(0) are not exactly known then the possibly unstable mode will not be
eliminated from yI(t).

For completeness let us also find the expression for the input to the plant.
The control input u(t) to the plant when R(s) = 1/s is

u(t) = L−1 {U(s)} = L−1

{
cu(0)− br(0)

cs + 1
+

bs + 1
cs + 1

1
s

}
=

[
(u(0)− b

c
r(0))e−

t
c + (b− c)e−

t
c + 1

]
1(t).

(15)

Note that when b = a and u(0), r(0) are chosen to satisfy 14, then

u(t) =
[
−y(0)

c
(a− c)e−

t
c + (a− c)e−

t
c + 1

]
1(t) (16)

In view of the above analysis it is clear that in open loop control, in order
to change the plant poles and therefore the plant dynamic behavior, one
needs exact knowledge of the pole location (−1/a) and of the initial condition
(y(0)). Furthermore, the disturbance d(t) can only be suppressed if it is
measured directly. Uncertainties in the plant model and the environment
are part of almost every design and so −1/a, y(0), and d(t) are typically
not known exactly. So realistically it is impossible to stabilize an unstable
system using open-loop control.

Note: The open loop control has high “fragility”. It is very sensitive to
the location of the poles and the values of the initial conditions. The effect
of such errors in the location of unstable poles can be catastrophic.

4 Closed-loop Control (Feedback Control) - A Sim-
ple SISO Example

Consider now the unity (error) feedback configuration, in Figure 5 , where
the plant is described again by a(dy/dt) + y = u with initial condition y(0)
(same as in the previous section). The transfer function is G(s) = 1/(as+1).
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Figure 5

Here again

Y (s) =
a

as + 1
y(0) +

1
as + 1

U(s) + D(s) (17)

The control input U is now generated via a feedback mechanism. Specifically

U(s) = k(R(s)− Y (s)) = kR(s)− ka

as + 1
y(0)− k

as + 1
U(s)− kD(s) (18)

from which

U(s) = − kay(0)
as + 1 + k

+
k(as + 1)
as + 1 + k

R(s)− k(as + 1)
as + 1 + k

D(s) (19)

When this input is applied to the plant

Y (s) =
[

a

as + 1
y(0)− kay(0)

(as + 1)(as + 1 + k)

]
+

k(as + 1)
(as + 1)(as + 1 + k)

R(s)

− k(as + 1)
(as + 1)(as + 1 + k)

D(s) + D(s)

=
a(as + 1)y(0)

(as + 1)(as + 1 + k)
+

k(as + 1)
(as + 1)(as + 1 + k)

R(s)

(as + 1)2

(as + 1)(as + 1 + k)
D(s)

or
Y (s) =

ay(0)
as + 1 + k

+
k

as + 1 + k
R(s) +

as + 1
as + 1 + k

D(s) (20)

Observe that the factor (as+1) that corresponds to the possibly undesirable
open-loop dynamics was cancelled in all the terms. The denominator (as +
1 + k) that represents the desirable dynamics appears in all the terms.
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Note that the system is stable for all k such that 1+k
a > 0. (When a > 0

(stable plant) for k > −1 the closed-loop is stable; when a < 0 (unstable
plant) the closed-loop is stable for k < −1. The range of the acceptable
values for the gain k for stability or the stability robustness of the system
is remarkable and it is achieved with feedback. In the case of an unstable
plant for example, the gain k can be selected within a very wide range
(−∞ < k < −1) and the system will be stable even when the exact pole
location (− 1

a) and the initial condition (y(0)) are not known; see also the
discussion on robust stability later in this paper. This is not the case when
open-loop control is used as it was shown above.

The above discussion suggests that feedback acts in two distinct steps.
In the first step the plant dynamics are cancelled automatically. In the sec-
ond step new desirable dynamics are assigned by appropriately selecting the
feedback control law. In the following, these two fundamental feedback ac-
tions are discussed at length with the cancellation of plant dynamics shown
initially for a more general SISO case and for the general MIMO 2-degrees
of freedom controllers. The exact feedback mechanism that cancels the plant
dynamics is shown.

5 Open- and Closed-loop Control - A More Gen-
eral SISO Analysis

Similar results can be derived in the more general case when G(s) = n(s)
d(s) and

Gc(s) = nc(s)
dc(s)

, where n(s) and d(s) are polynomials with real coefficients and
G, Gc are rational proper transfer functions. Consider first the open-loop
control case of Figure 4. Here the plant output is

Y =
no

d
+

n

d
U + D (21)

where no is a polynomial term involving the initial conditions of the plant;
when the initial conditions are zero, no = 0. Similarly, the controller output
is

U =
nco

dc
+

nc

dc
R (22)

Therefore the overall system output in the open loop control case (in Fig-
ure 4) is

Y =
nodc + nnco

ddc
+

nnc

ddc
R + D. (23)

To change the plant behavior, all undesirable plant dynamics in the plant
denominator d must be cancelled via pole/zero cancellations. This can be
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accomplished by selecting nc and also the initial conditions in nco (for can-
cellation between d and nodc + nnco). It is clear that when there are un-
certainties in the undesirable plant pole locations and initial conditions, it
is not possible to select the open loop controller to cancel the undesirable
plant dynamics. So similar results as in the previous section are derived for
the open loop control case as expected.

Consider now the feedback case. Again, let G = n
d and Gc = nc

dc
and

consider the feedback interconnection of Figure 6, where D is the disturbance
(in the Laplace transform domain).

–
G

D

YUER
Gc

Figure 6

Then
Y =

no

d
+

n

d
U + D (24)

and U = nco
dc

+ Gc(R − Y ) = nco
dc

+ nc
dc

R − nc
dc

(
no
d + n

d U + D
)

from which(
1 + ncn

dcd

)
U = ncod−ncno

dcd + nc
dc

R− nc
dc

D or

U =
ncod− ncno

ddc + nnc
+

ncd

ddc + nnc
R− ncd

ddc + nnc
D. (25)

Also

Y =
[
no

d
+

n(ncod− ncno)
d(ddc + nnc)

]
+

ncdn

d(ddc + nnc)
R +

[
1− ncdn

d(ddc + nnc)

]
D

=
d(nodc + nnco)
d(ddc + nnc)

+
dncn

d(ddc + nnc)
R +

dddc

d(ddc + nnc)
D

or
Y =

nodc + nnco

dk
+

ncn

dk
R +

ddc

dk
D (26)

where
dk ,= ddc + nnc. (27)
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Here d, the denominator of the plant, was cancelled in all three terms. Note
that for internal stability dk must be a Hurwitz polynomial (all roots must
have strictly negative real parts). If d−1

k is stable, stability is guaranteed
independently of the initial conditions. Selecting nc and dc (with Gc = nc/dc

proper) to assign the closed-loop poles is straightforward. See the formulas
that characterize all solutions of the Diophantine equation (See for example
[2] section 7.2E).

Again here, in a more general case, it is seen that all the plant poles in d
are automatically cancelled when the loop is closed. That is, when feedback
is applied and the loop is closed, the input to the plant u is such that all the
plant modes automatically change completely. The closed loop characteristic
polynomial has roots (closed loop eigenvalues) that are different from the
poles (eigenvalues) of the plant G for almost any Gc (unless poles of G or
Gc cancel in the loop gain GGc in which case there are uncontrollable and/or
unobservable modes that cannot be altered via output feedback.)

Remarks:

(i) From (26) it can also be seen how to compensate for disturbances
such as step disturbances D(s) = 1

s while preserving internal stability.
Select ddc = s(·) for the numerator in the D term with dk remaining
Hurwitz. Clearly n should not have an s and this is a condition on the
plant for regulation with internal stability.

(ii) The error

E = R− Y = −nodc + nnco

dk
+

ddc

dk
R− ddc

dk
D

For zero steady-state error to a step input we must have ddc = sk(·)
k ≥ 1. (That is the system Type should be 1 or greater, a well known
result.)

(iii) If the disturbance D enters at the plant input instead of plant output,
then it can be seen that the disturbance term in (26) will be (ndc/dk)D.
Here, again, if D(s) = 1

s then the numerator should be chosen as
ndc = s(·) with dk remaining Hurwitz.

(iv) Also present is the corresponding analogous property that all the con-
troller poles in Gc are automatically cancelled when the loop is closed.
This can be seen from the expression for U in (see expression just above
(25)) where dc was cancelled in similar fashion as d was cancelled in
the expression for Y in (26).
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6 MIMO Systems - Internal State Variable and
Polynomial Matrix Representations

In this section state variable representations are used first and similar re-
sults are shown. In particular, it is shown that the plant dynamics cancel
out automatically when linear state feedback is used.

Consider the plant,
ẋ = Ax + Bu. (28)

Let the linear state feedback control law be given by

u = −Kx + r. (29)

The closed loop system is given by

ẋ = (A−BK)x + Br. (30)

In the Laplace Transform domain, this becomes

X(s) = (sI − (A−BK))−1x0 + (sI − (A−BK))−1BR(s) (31)

where x0 is the initial state.
The control input to the plant can be shown to be ([2] p. 327)

U(s) = −K(sI − (A−BK))−1x0 + (I + K(sI −A)−1B)−1R(s). (32)

In order to show how the control input acts on the plant, consider the open
loop plant state given by

X(s) = (sI −A)−1x0 + (sI −A)−1BU(s) (33)

Substituting the value of U(s) from (32) in the above equation, after
some manipulation we obtain

X(s) = (sI −A)−1
[
(sI −A)(sI − (A−BK))−1

]
x0

+
[
(sI − (A−BK))−1(sI −A)

]
(sI −A)−1BR(s)

= (sI − (A−BK))−1x0 + (sI − (A−BK))−1BR(s)
(34)

(which is exactly the result in (31)). This derivation shows that the open
loop dynamics included in (sI − A) cancel when feedback is applied. In
particular, at the input U(s), the factor (sI −A) is introduced and cancels
with (sI −A)−1 when X(s) is generated.
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The same result can be shown quite easily using polynomial matrix de-
scriptions (see [2]). In particular, consider the plant Dz = u where z is the
“partial state”, and D the polynomial matrix; u = Fz + r is the linear state
feedback control law (here Fz = −Kx, where F is a polynomial matrix).
The control input in the Laplace domain is

U = D(D − F )−1R = DD−1
F R. (35)

When this control input is applied to the system, we obtain

Z = D−1U = D−1
[
D(D − F )−1R

]
= (D − F )−1R = D−1

F R. (36)

D, which represents the open loop dynamics, cancels out. The control in-
put U always contains the factor D which cancels with D−1 of the plant. D
is the inverse of the map from input U to partial state Z given by Z = D−1U .

Remark: The linear state feedback gain may be chosen to satisfy additional
requirements beyond stabilization. Such requirements may impose the re-
strictions that certain open loop eigenvalues should become unobservable,
by canceling them with zeros (as, for example, is the case in the disturbance
decoupling problem). In this case, some of the closed loop eigenvalues are
equal to the open loop ones and so they are fixed. In this case, again, U is
given by (35) and

Y = ND−1U = (ND−1)(DD−1
F R) = ND−1

F R. (37)

Then if DF = D̂F Ng where N = N̂Ng,

Y = N̂Ng(D̂F Ng)−1R = N̂D̂F
−1

R. (38)

That is, the eigenvalues in Ng (in DF ) are unobservable and cancel out in
the transfer function.

Discussion

Considering the eigenvalues: Any arbitrary feedback will result into
a closed-loop system with dynamics (poles) different from the open-loop
dynamics (poles). This is true under the assumptions of controllability and
observability and for any initial conditions. This was demonstrated above in
this section for the LTI MIMO case using both state variable and polynomial
matrix descriptions; and using internal polynomial descriptions and transfer
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function factorizations in earlier sections for the LTI SISO case. It can also
be demonstrated as well using arguments directly involving the eigenvalues:

Given
ẋ = Ax + Bu, y = Cx + Du.

Consider a linear state feedback control law

u = −Kx + r

or a constant output feedback control

u = −HCx + r.

Then A−BK or A−BHC define the closed-loop dynamics.
It is known that the eigenvalues of A−BHC will be different from the

eigenvalues of A for almost any H; in fact the set of gain H that preserve
the eigenvalues of A in A−BHC has measure zero (they are roots of a mul-
tivariate polynomial in the gains in H). That is, generally the eigenvalues of
the closed-loop system will be different for any H, or equivalently the prop-
erty is true for almost any H. This is under the assumptions that (A,B)
and (A,C) are controllable and observable respectively. If they are not,
it is known that the uncontrollable and/or unobservable eigenvalues of the
system cannot be altered and they will appear as eigenvalues of A−BHC.
Corresponding results exist for A−BK where assuming that (A,B) is con-
trollable its eigenvalues are different from the eigenvalues of A for almost
any K.

This agrees with the fact seen from the Root Locus in the SISO case
where any feedback gain other than zero assigns the closed-loop poles at
locations different from the open-loop pole locations.

In the Diophantine equation under the assumptions of controllability
and observability controllers will assign the closed-loop poles to different
values from the open-loop poles almost always. In fact one can characterize
all the controllers that will result in a closed-loop system with poles and
pole directions that contain all the open-loop poles and directions. This
can be done for example using a methodology based on Polynomial Matrix
Interpolation in (see [2]; Appendix).

When the loop closes, for almost any feedback gains, the dynamics are
completely reassigned , that is the plant behavior drastically changes.

Remark: It is worth mentioning at this point that when H has a spe-
cial structure– for example a (block) diagonal structure as is the case in
decentralized control– even in the case of the system being controllable and

18



observable, the characteristic polynomial of A − BHC may contain some
fixed zeros which do not change with H.

Considering the trajectories: Feedback does not restrict the plant dy-
namics but it completely eliminates them and creates new ones almost al-
ways.
Using initial conditions: To show this using the plant trajectories, we start
with homogeneous LTI MIMO systems and we show that there are no initial
conditions for the closed loop system that can generate any of the trajectories
of the open loop system unless the condition

BK = 0

is satisfied. Note that typically rankB = m(< n,B is n×m) and K is m×n
and so in this case the only solution that satisfies BK = 0 is K = 0. BK = 0
means that the open and closed loop A and A− BK dynamics are exactly
the same (same “A” matrix).

To see that BK needs to equal 0 let φ(t, x0, 0) be the solution of the
open loop homogeneous equation

ẋ = Ax;x(0) = x0

and φc(t, x0, 0) be the solution of the closed loop homogeneous equation

ẋ = (A−BK)x;x(0) = xc0

We would like to have

φ(t, x0, 0) = eAtx0 = e(A−BK)txc0 = φc(t, x0, 0)

for any t. For t = 0 we need xc0 = x0 and for the relation to be true for
any t we need BK = 0 as above.
Using initial conditions and input: Is it possible using a combination

of initial conditions and inputs on the closed loop system to generate any
of the zero-input open loop responses? The answer is affirmative as we now
show:

In the transform domain, in view of (33) and (34), we would like to select
closed loop initial conditions xc0 and input R(s) so that

(sI −A)−1x0 = (sI − (A−BK))−1xc0 + (sI − (A−BK))−1BR(s) (39)

from which
BR(s) = (x0 − xc0) + BK(sI −A)−1x0 (40)
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If we select xc0 so that (x0 − xc0) = BL for some constant vector L then an
input

R(s) = L + K(sI −A)−1x0 (41)

makes it possible to obtain the same trajectory as in the open loop system.
Note that the choices for the initial conditions and input to generate the
same trajectory are limited; almost always the trajectories will be different.
Selecting the controller to obtain the same transfer function ma-
trix: We now show that in the LTI MIMO case of output feedback, see
Fig.1, it is possible to select the controller in a particular way so the closed
loop transfer function is exactly the same as the open loop one. In particular,
in view of Fig.1

Y = (I + GGcH)−1GGcR = GGc(I + HGGc)−1R = TR (42)

We want the closed loop transfer function matrix T = G the open loop
transfer function matrix. This will be true when

G[I − (I −HG)Gc] = 0 (43)

In the case when rankG = m(G is p×m) this is true when

Gc = (I −HG)−1 (44)

where H is such that the inverse exists.
Note again here that to obtain the same transfer function one needs to

select the controllers in a particular way. Any other choices will lead to
different responses to the same input. It is then clear that generically the
closed loop system will behave differently from the open loop system almost
always.

7 Two Degrees of Freedom Feedback Control

Consider a general 2-degrees of freedom feedback controller

u = [Cy, Cr]
[

y
r

]
= C

[
y
r

]
and the diagram in Figure 7 (see [2]-pp. 626). Note that in this section,
lower case symbols are used for the Laplace transformed variables; also zero
initial conditions are assumed.
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Figure 7

Here

u = [Cy, Cr]
[

y + dy + η
r

]
+ du. (45)

Then

y = G(I − CyG)−1 [Crr + Cydy + Cyη + du] (46)

u = (I − CyG)−1 [Crr + Cydy + Cyη + du] (47)

or

y = Tr + (So − I)dy + GQη + GSidu (48)
u = Mr + Qdy + Qη + Sidu (49)

where, for G = ND−1

T = G(I − CyG)−1Cr = GM = NX

M = (I − CyG)−1Cr = DX

Q = (I − CyG)−1Cy = DL

So = (I −GCy)−1 = I + GQ

Si = (I − CyG)−1 = I + QG

(50)

Si and So are the input and output comparison sensitivity matrices. Si

is the transfer function between u and du, and So is the transfer function
between dy and yo as it can be seen from

yo = y + dy = Tr + Sody + GQη + GSidu. (51)

M is the transfer function between r and u; Q is the transfer function
between dy and u or η.
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M and Q can be seen as design parameters. M is chosen primarily
to satisfy response requirements between r and y, while Q is selected to
satisfy feedback properties such as low sensitivity to parameter uncertainties,
disturbance attenuation, etc. In the 2-degrees of freedom controller, M and
Q maybe selected independently. This is not the case in more restricted
configuration (see [2]–pp. 629–632) when M and Q are related. For example,
in the unity feedback configuration M = Q.

M and Q can always be written as M = DX and Q = DL, where D is
the denominator of the plant (G = ND−1) and X, L are design parameters
(stable rational functions for internal stability). The part of u that is due
to the external input r is ur = Mr = DXr or D−1ur = Xr, and in view
of the plant description Dz = u, y = Nz, zr = Xr. That is X determines
the effect of r on the plant’s state z. Similarly, from ud = Qdy = DLdy,
zdy = Ldy that is L determines the effect of dy (or η) on z.

The expressions for u and y can be written as

u = D
[
Xr + Ldy + Lη + (I + LN)D−1du

]
(52)

y = N
[
Xr + Ldy + Lη + (I + LN)D−1du

]
. (53)

This shows that no matter what r, dy, η, du, Cr, and Cy are, u can always
be written as

u = D
[
X, L, L, (I + LN)D−1

] 
r
dy

η
du

 = Dξ (54)

where ξ is a signal generated by filtered combination of r, dy, η, and du

(note that all the filters in (54) will be stable for internal stability, see also
Appendix A.3).

The feedback mechanism always generates a signal u the behavior of
which is modified by D, the inverse of the map D−1 which is the trans-
fer function between z and u (z = D−1u) in the plant. D appears in the
numerator of the transfer function between r and u and it has the effect that
for such u the behavior of the plant state z = D−1u = D−1DXr = Xr is
completely freed from behavior determined by the plant modes.

So feedback does not really generate the inverse of the plant y = Gu
(or the map between u and y)—which may or may not be proper (causal)
after all—but it generates the inverse of the map between u and z, namely
z = D−1u which always exists.
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More specifically, the expression (52) points to the fact that the potential
is there for the feedback to generate the whole D at u. Depending on
the choices for X and L cancellations may take place between D and the
denominators of X and L.

To illustrate, consider the case where r is the only external input (dy,
du, and η are taken to be zero). If now Cy and Cr are chosen to stabilize the
system (see [2], p. 623, Theorem 4.21 and Appendix A.3) then X is stable
and can be chosen to cancel all stable poles of D. That is under stability,
if D = DbDg where Db contains all the unstable (bad) dynamics and Dg

contains all the stable (good) dynamics, X = D−1
g X̂ will produce

u = Mr = DXr = DbDgD
−1
g X̂r = DbX̂r (55)

i.e. only Db (the inverse of D−1
b ) will need to appear in u.

On the other hand, if the system G = ND−1 is stable, for stability one
can select X = D−1X̂ in which case

u = Mr = DXr = DD−1X̂r = X̂r (56)

and no inverse map of D need to be generated at u. So for stability u really
needs to contain only all the bad poles of the plant as zeros.

Note that in the case when G−1 = DN−1 exists and is stable, then if
X = N−1X̂

u = Mr = DXr = DN−1X̂r = G−1X̂r (57)

that is the inverse of the plant is generated.
So, the inverse of D−1 is generated in u as u = Dξ, as in (54), always.

In special cases G−1 is generated (assuming that the inverse of G exists
and is stable). When in addition specific goals are to be satisfied, such as
preserving the stable open loop poles in Dg, Db must be generated: see (55).

In Appendix A.3 the fundamental theorems for internal stability in the
2-degrees of freedom case are given for completeness. It is also shown there
that in the most general LTI case u = Mr = DXr and y = Tr = NXr
that is control implies the cancellation of the plant dynamics (poles). This
is done automatically via feedback when the loop is closed.

In summary, when the loop is closed, an inverse map is gen-
erated automatically to cancel all the pole dynamics of the plant.
The particular selection of Cy, Cr will determine properties such
as stability, and sensitivity, by generating new pole-zero dynamics
(via X and L).
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Feedback has the truly remarkable property of generating the
inverse of the actual plant dynamics (of D−1) exactly. In LTI,
this corresponds to generating zeros (in the map from R to U)
at the exact pole locations of the plant together with their associ-
ated directions. The particular values of the feedback gains that
are selected will determine the new dynamics introduced (recall
that u = DXr and X is stable for stability but otherwise (almost)
arbitrarily chosen); DX = M must be proper.

8 Two Degrees of Freedom Controllers - A Sum-
mary of the Analysis for MIMO Systems

Given a model of the process dynamics y = Gu, where G is the transfer
function, and u = Mr is the control input, then y = G(Mr) = Tr where
T = GM is the desired input r-output y response map. We typically choose
T and M to be stable.

Let now G = ND−1 a coprime fractional representation that corresponds
to the internal description Dz = u, y = Nz with z the partial state; D and
N are right coprime polynomial matrices. It is known that to obtain the
maps T and M with internal stability, T = NX and M = DX where X is
stable (see Appendix A.3). Note that the desired dynamics are introduced
via X and the existing dynamics are cancelled via D.

The input u = Mr = DXr can certainly be implemented via open-loop.
In fact the 2-degrees of freedom controller formulation allows that. The
examples in previous sections show the difficulties associated with open-loop
control when uncertainties in the process parameters and in the exogenous
influences—initial conditions, external disturbances—are present. Note also
the amount of dynamics in M = DX that are necessary to be generated,
include all the plant dynamics in the denominator of M (D) in addition to
all desired dynamics (in X).

The control action u = Mr can be generated via a combination of feed-
forward and feedback actions. It corresponds to appropriately selecting the
design parameters L and X; see Appendix A.3.

Now, the amazing fact is that feedback generates automatically abso-
lutely exact models of the existing dynamics in D. This was shown using
the 2-degrees of freedom controller configuration above that also contained
disturbances and noise signals. Note that, as it is well known, internal sta-
bility in the closed-loop system may be guaranteed by requiring that certain
maps between appropriate signals be stable—so in this case we omited the
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Figure 8

initial conditions in the expressions without loss of generality.
In the expressions for u and y in (52) and (53), first notice that u = D(.),

that is D−1u = z =(.) a function of the external inputs and disturbances. In
(.), the stable design parameter X = D−1M contains the desired dynamics
of the r to y response as discussed above, while L = D−1Q and also (I +
LN)D−1 must be stable for internal stability (in [2]–p. 625). Additional loop
properties such as sensitivity may be addressed by selecting L. Furthermore
by selecting L we can reduce the effect of the disturbances from the output
y and other signals in the loop.

It can be shown that Xr = z and so Tr = NXr = Nz = y and
Mr = DXr = Dz = u. A moment’s reflection reveals that the control
input u = Dz(= Mr), implements the inverse of the u to z (input
to state) map D−1 (z = D−1u). There are cases where u can insert an
(exact or approximate) inverse of the plant that is of the u, y map G. To
see this, assume G is invertible, and let X = N−1XN . Then, u = DXr =
DN−1XNr = G−1XNr. Clearly inverting the plant is a special case
that requires conditions on G and a especially chosen X. What u
always implements is the inverse of z = D−1u which contains all
needed information about the plant important dynamics. Recall
that the poles produce the dominant characteristics of the response—they
appear as exponents of the exponential terms in the modes—while the zeros
play an important but secondary role, that of characterizing the coefficients
in the modes. So the zeros cannot introduce new exponential terms but
they can only reduce the effect or eliminate the effect of existing ones via
pole-zero cancellations (see Appendix A.1).

9 Open vs Closed Loop Control

A summary comparison of open and closed loop control is given in this
section and their characteristics are briefly described and compared.
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Changing of Plant Dynamics

To control a plant, the input u should be so that the undesirable dynamics
are eliminated. In LTI systems, the mechanism can be seen as a pole/zero
cancellation mechanism which takes place automatically in feedback control.
In the open-loop case, for the changes to take place the controller needs to
know the exact pole locations and the exact initial conditions of the plant so
that exact cancellation of dynamics can take place. Although in the closed-
loop case all the plant dynamics are changed for almost all controllers, in
the open-loop case is the exact opposite and the plant dynamics do NOT
change for almost any controller.

Complete change of plant dynamics happens
a. almost always in closed-loop feedback control;
b. almost never in open-loop feedforward control.

Assigning Desirable Dynamics to the Compensated System

The reason for using control is to the make the plant behave in a desirable
manner. So one needs more than just closing the loop and applying an ar-
bitrary feedback, an action that can send the poles in an undesirable region
(unstable region for example) with disastrous consequences. If the undesir-
able plant dynamics have been cancelled, the assignment of new dynamics
is much easier in the open-loop case.

Complete change of the dynamics of the compensated system
to desirable dynamics is
a. easier in the open-loop feedforward control case;
b. relatively harder in the closed-loop feedback case, although typ-
ically there is a large range of controller choices that satisfy the
requirements for desirable dynamics (control specifications) as one
must consider the trade-offs.

In the open-loop after the current plant dynamics have been cancelled
out (which is the difficult part) one can simply choose the compensated
system dynamics by assigning them to the controller. So the open-loop
controller should contain all the desirable dynamics.

In the closed-loop control the choice of the appropriate controller is a
nontrivial matter and the field of control theory has been studying this
problem intensively for at least the past 50 years. Certainly it is a topic
that requires deep understanding. The following table summarizes the above
comments.
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Easier Harder
Open Loop Assign New Cancel Existing

Dynamics Dynamics
Closed Loop Cancel Existing Assign New

Dynamics Dynamics

10 Automatically Changing the Gain via Feedback

We have seen that a fundamental characteristic of feedback is changing
completely and automatically the dynamics (poles) of the system. A second
characteristic of feedback is changing the gain. It should be noted that in
contrast to the previous property of changing the dynamics, this property
is dependent on the selection of the feedback gain and strictly speaking it
may not qualify as a fundamental property. Never the less, as it will be
shown, it is directly related to a fundamental property of feedback, namely
the ability to reduce the sensitivity to parameter variations in the plant. As
it is discussed below, large gain variations inside the loop typically can only
cause small gain variations outside the loop and so the effect of uncertain-
ties may be much reduced. The automatic change in the plant dynamics
when closing the loop is essential to the resulting ability of appropriately
changing the feedback gains to stabilize the system in a robust way. In an
analogous fashion, the automatic change in the gain is essential to the ability
of appropriately choosing the feedback gain to reduce the dependence of the
system to uncertainties. So, in feedback, the automatic change of the plant
dynamics is related to stabilization, while the automatic change in the plant
gain is related to reduction of sensitivity to uncertainties.

The mechanism of changing the gain can be easily seen from a simple
feedback loop involving only static gains. Let the plant be an amplifier
of gain A, i.e. G(s) = A, and consider a unity negative feedback control
configuration with controller Gc = k, a static gain (see Fig.6).

Here the output of the closed loop system is given by

Y =
kA

1 + kA
R = TR (58)

with
U =

k

1 + kA
R, E =

1
1 + kA

R (59)

while the open loop gain is
Y = AU. (60)
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Sensitivity to plant parameter variations can be studied in detail using
the sensitivity function

S =
1

1 + kA
(61)

and the relation
∆T

T
≈ S

∆G

G
(62)

where G is the plant and T is the closed loop transfer functions.
The R to Y gain remains the same, equal to the plant’s gain A only

when k = 1
1−A ; in general the closed loop gain will be different from A. The

absolute value of the closed loop gain will be less than 1 for −1
2 < kA and

will be greater than 1 for kA < −1
2 . The sensitivity function S = 1

1+kA
will have absolute value |S| < 1 for kA > 0 and for kA < −2; it will have
|S| > 1 only for −2 < kA < 0. That is, for a very large range of the
gain the sensitivity |S| < 1. In fact, for any open loop gain kA that varies
from 0 to ∞ (kA > 0), the sensitivity S varies from 1 to 0 and the closed
loop gain T varies from 0 to 1. A consequence of this is that variations in
A (uncertainties) will not affect as much the overall R to Y gain, that is
feedback reduces the sensitivity to parameter variations, at the expense of
reducing the gain. As a specific example, consider k = 1 and A = 10000. In
this case the R to Y gain is

A

1 + A
=

10000
1 + 10000

≈ 1 (63)

which represents a great reduction in gain. The benefit is that if A changes
say by 20% then

A + .2A

1 + A + .2A
=

1.2A

1 + 1.2A
=

1.2
1
A + 1.2

≈ 1. (64)

That is, the overall gain is insensitive to variations in the open loop gain A.
Similar results may be seen in the more general case.
Here

Y =
GGc

1 + GGc
R = TR (65)

with
U =

Gc

1 + GGc
R, E =

1
1 + GGc

R (66)

Here the sensitivity function is

S =
1

1 + GGc
(67)
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For specific frequencies, when GGc > −1
2 the closed loop gain has abso-

lute value less than 1. When GGc > 0 or GGc < −2, the absolute value of
the sensitivity S is less than 1.

Feedback reduces the sensitivity function S to less than 1 automatically
for a large class of feedback gains. For example, here for any GGc > 0,
|S| < 1 but also |T | < 1. So the sensitivity function S maps all positive loop
gains to the 0...1 range for |S| at the expense of reducing the closed loop gain
|T | to the 0...1 range as well. This reduction of the overall R to Y gain of
the compensated system is the price to pay for low sensitivity.

11 On the Role of the Return Difference

The return difference in a feedback loop is the difference between the trans-
mitted (measured) and returned signals at the output of the plant. Both
feedback fundamental characteristics, automatic change of dynamics (poles)
and gains, are caused by the feedback interconnection, which can be ex-
pressed in terms of the return difference. Specifically, in the unity feedback
configuration, the output Y = −GGcY + GGcR or (1 + GGC)Y = GGcR
where (1 + GGc) is the return difference.

The return difference relation expresses the restrictions imposed on the
system by the feedback interconnection. The return difference relation forces
the cancellation of all plant (and controller) poles. It can be seen as the
underlying condition that causes the fundamental feedback property of can-
celing automatically the open loop plant dynamics.

Consider the unity feedback configuration as discussed in the section,
Open- and Closed-loop Control.

When the initial conditions and the external inputs are zero then the
return difference relation is Y = −GGcY or (1 + GGc)Y = 0 by considering
the signals at the output of the plant.

Considering initial conditions and the external input R, with Gc = nc
dc

,
G = n

d then:

Y =
n0

d
+ GU,U =

nc0

dc
+ Gc(R− Y )

from which the return difference relation now becomes

Y =
n0

d
+ G

[
nc0

dc
+ Gc(R− Y )

]
or
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Y = −GGcY + GGcR +
[
n0

d
+ G

nc0

dc

]
Then

(1 + GGc)Y =
n0dc + nnc0

ddc
+ GGcR

Y =
ddc

ddc + nnc

n0dc + nnc0

ddc
+

ddcnnc

ddc(ddc + nnc)
R

This last relation shows that ddc cancels throughout to obtain

Y =
n0dc + nnc0

ddc + nnc
+

nnc

ddc + nnc
R

That is, in order to satisfy the conditions on Y imposed by the return
difference relations, ddc must cancel and the new closed loop system has
new dynamics imposed by ddc + nnc (a Diophantine equation) instead of d
(and dc).

Imposing the conditions of the return difference also causes an automatic
change in the gain as discussed in the previous section. Consider Fig.5 with
k = 1 and G(s) = A. Here the return difference relations for the signals in
the loop are

U = −AU + R, Y = −AY + AR

The term −AY in the Y equation represents the feedback signal. For any
input R the signal Y in the output must equal the feedback signal −AY and
the signal R through the plant, AR. For large A this can only happen when
Y ≈ R since the left hand side (Y ) is much smaller than AY . In general,
from (1+A)Y = AR one can see that Y < R or the gain from R to Y is less
than 1 (since A > 0, A

1+A < 1 always). So the conditions imposed by the
return difference relations cause the overall gain to be less than 1. Similarly,
they cause the sensitivity S = 1

1+A to be less than 1 as well for any A > 0.
This automatic reduction in gain is the cause of lower sensitivity in the

feedback loop as opposed to the open loop. This is caused by the return
difference conditions imposed on the closed loop system by the feedback
interconnection.
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Appendix A

A.1 The Pole/Zero Cancellation Mechanism: A Review

The simplest way to describe the effect of pole/zero cancellation on the
system response is to start with a transfer function and/or a polynomial
description of the system. Here, this is done first and then the results are
also seen directly in the time domain using state variable descriptions. A
specific example is used for clarity. The same principles apply to the general
case.

In summary, what we conveniently describe as pole/zero cancellation (in
the frequency domain) is a fundamental mechanism of drastically altering
the behavior of a system by zeroing the coefficient of the corresponding
mode (in the time domain). The internal description interpretation is that a
pole/zero cancellation is making the mode (or the corresponding eigenvalue)
uncontrollable from an input or unobservable from an output and so invisible
from an input/output point of view.

Let a plant and a controller be given by

G(s) =
1

s + 1
, Gc(s) =

k(as + 1)
s + 10

(68)

connected in series as in Fig. 9.

G
YUR

Gc

Figure 9

The transfer function between Y and R is

Y/R = GGc =
k(as + 1)

(s + 1)(s + 10)
(69)

and the transfer function between U and R is

U/R = Gc =
k(as + 1)
(s + 10)

(70)

When a = 1 or a = .1 the zero of the plant at −1/a cancels with one of
the poles of the plant. The inverse Laplace transform of Y/R = GGc, which
is the impulse response of the closed-loop system, is given by

h(t) =
[
k

9
(1− a)e−t − k

9
(1− 10a)e−10t

]
1(t) (71)
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where 1(t) denotes the unit step function; this is the response y(t) to an
impulse at time zero, i.e. u(t) = δ(t) (R = 1), with all initial conditions
equal to zero. Note that the position of the zero of the plant (at −1/a)
affects the behavior, not directly, but via the coefficients of the modes.

As a approaches 1 the coefficient of the e−t mode becomes smaller and
the effect of the mode e−t on h(t) diminishes. When a = 1, a pole/zero (zero
at −1) cancellation occurs and the e−t mode disappears from h(t); in that
case h(t) =

[
ke−10t

]
1(t). Similarly when a = ·1 a pole/zero cancellation

(zero at −10) occurs and h(t) =
[
·1ke−t

]
1(t).

In the above, with R = 1, the input U = GcR = Gc which in the time
domain is u(t) = k

[
aδ(t) + (1− 10a)e−10t

]
1(t), is acting on the system and

producing the pole/zero cancellation in terms of the transfer function or the
zeroing of the coefficient of the corresponding mode.

If now r(t) is a unit step input r(t) = 1(t) (R(s) = 1/s )then the plant
output is given by (69) and in the time domain will be

y(t) =
[
−k(1− a)

9
e−t +

k(1− 10a)
90

e−10t +
k

10

]
1(t) (72)

and similar effects are observed when pole/zero cancellations occur, in the
cases when a = 1 and a = ·1.

The input U is given by (71) and in the time domain is in this case:

u(t) =
[
k(−1 + 10a)

10
e−10t +

k

10

]
1(t) (73)

These effects can be seen rather easily using polynomial descriptions for
the plant (q , d/dt, the differential operator)

(q + 1)z(t) = u(t), y(t) = z(t) (74)

and the controller

(q + 10)zc(t) = r(t), u(t) = k(aq + 1)zc(t). (75)

The overall system description is then[
q + 10 , 0

−k(aq + 1) , q + 1

] [
zc(t)
z(t)

]
=

[
1
0

]
r(t)

y =
[

0 1
] [

zc(t)
z(t)

] (76)
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from which when a = 1 the −1 eigenvalue is uncontrollable and when a = ·1
the −10 eigenvalue is unobservable (see [1], Sect. 3.4). Whether an eigen-
value is uncontrollable or unobservable depends on the polynomial realiza-
tions selected. The particular polynomial representations were chosen here
to match the state space development below where controllable realizations
are used.

The interpretation of pole/zero cancellations using state variable descrip-
tions is as follows:

The plant G(s) = 1
s+1 is described by

ẋ = −x + u, y = x (77)

and the controller Gc(s) = k(as+1)
s+10 is described by

ẋc = −10xc + r, u = k(1− 10a)xc + kar. (78)

The description of the overall system {A,B, C, D} is then[
ẋc

ẋ

]
=

[
−10 0

k(1− 10a) −1

] [
xc

x

]
+

[
1
ka

]
r

y = [0 1]
[

xc

x

] (79)

From the controllability matrix

C = [B, AB] =
[

1 −10
ka k − 11ka

]
(80)

detC = k(1 − 11a) + 10ka = k(1 − a). So for a = 1 the system is uncon-
trollable. In fact, the uncontrollable eigenvalue is at −1 (see [2]–Sect. 3.4).
From the observability matrix

O =
[

C
CA

]
=

[
0 1

k(1− 10a) −1

]
(81)

detO = −k(1− 10a). So for a = ·1 the system is unobservable. In fact, the
unobservable eigenvalue is at −10 (see [2]–Sect. 3.4). Again here in the state
space setting, pole/zero cancellations can be seen as cancellations between
eigenvalues and input or output decoupling zeros see (see [2]–Sect. 3.4) when
the cancelled eigenvalues (modes) become uncontrollable or unobservable.
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A.2 The Effects of Uncertainties in Pole Locations

If the pole of the plant is not exactly at −1 but is at −(1+ ε) then the term
in (72) that involves this pole of the plant becomes

y1(t) = − k(1− a + aε)
(9− ε)(1 + ε)

e−(1+ε)t. (82)

It is then clear that if a = 1 the coefficient will not become zero but will
be −k(aε)/(9− ε)(1 + ε). For ε very small the effect of this mode will still
be almost negligible. If, however, the pole of the plant were unstable, say
at +1 instead of −1, then the mode in this case would be (·)e(1+ε)t and no
matter how small the coefficient is, given enough time the term will grow
and so the system is unstable.

In summary, pole/zero cancellation of unstable poles will not work be-
cause of the inherent uncertainties in the pole location of the system. Even
if the location of the unstable poles were known exactly pole/zero cancella-
tion would not typically produce a stable system because of uncertainties in
the initial conditions since the cancelled unstable poles become uncontrol-
lable/unobservable modes (they do not really disappear) and they can be
excited by initial conditions. See also Section 2 for development involving
the initial conditions.

A.3 Fundamental Theorems for Internal Stability- 2-Degrees
of Freedom MIMO Controllers

Let G = ND−1 be the proper transfer function matrix of the plant; N and
D are right coprime polynomial matrices. Let a desirable stable transfer
funcion be T , y = Tr, obtained using control u = Mr, where M is also
stable. Proofs for the following theorems may be found in ([2]–Chapter 7
pp. 627-629).

Theorem 1. The stable rational function matrices T and M are realizable
via a two degrees of freedom control configuration with internal stability if
and only if there exists stable X so that[

T
M

]
=

[
N
D

]
X (83)

Theorem 2. T , M ∈ RH∞ are realizable with internal stability by means
of a two degrees of freedom control configuration if and only if there exists
X ′ ∈ RH∞ so that [

T
M

]
=

[
N ′

D′

]
X ′ (84)
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Here RH∞ denotes the set of proper and stable rational function matri-
ces. Let also S denote the desired stable sensitivity matrix (it is denoted as
So in (1.52) in section 7).

Theorem 3. T , M , S ∈ RH∞ are realizable with internal stability by a
two degrees of freedom control configuration if and only if there exists X ′,
L′ ∈ RH∞ so that T

M
S

 =

 N ′ 0
D′ 0
0 N ′

[
X ′

L′

]
+

 0
0
I

 , (85)

where (I + L′N ′)D′−1 ∈ RH∞. Similarly, T , M , Q ∈ RH∞ (see section 7)
are realizable if and only if there exists X ′, L′ ∈ RH∞ so that T

M
Q

 =

 N ′ 0
D′ 0
0 D′

[
X ′

L′

]
, (86)

where (I + L′N ′)D′−1 ∈ RH∞.
D in u = DXr introduces zeros in the transfer function which cancel out

to produce a desired response as in:

T = GMR = ND−1DXr = NXr. (87)

The following two theorems are the basic internal stability theorems for
2-degrees of freedom feedback control (see [2]–pp. 623-625). They give
parameterizations of all stabilizing controllers and show that via two design
parameters X,L (or M ,Q) the feedforward and feedback control actions can
be appropriately assigned.

Theorem 4. Let the plant y = Gu have a proper transfer function and let

u = C

[
y
r

]
= [Cy Cr]

[
ŷ
r̂

]
(88)

be a proper 2-degrees of freedom controller. Let det(I − CyG) 6= 0. The
closed-loop system in internally stable if and only if

1. û = Cyŷ internally stabilizes the system ŷ = Gû,

2. Cr is such that the rational matrix M = (I − CyG)−1Cr satisfies
D−1M = X, a stable rational matrix, where Cy satisfies (1) and
G = ND−1 is a right coprime polynomial matrix factorization.
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Theorem 5. Given that the plant y = Gu is proper with G = ND−1 =
D̃−1Ñ doubly coprime polynomial MFDs, all internally stabilizing proper

controllers C in u = C

[
y
r

]
are given by:

C = (I + QH)−1[Q,M ] = [(I + LN)D−1]−1[L,X], (89)

where Q = KD and M = DX are proper with L, X, and D−1(I + QH) =
(I + LN)D−1 stable, so that (I + QH)−1 exists and is proper; or by

C = (X1 −KÑ)−1[−X2 + KD̃,X], (90)

where K and X are stable so that (X1 −KÑ)−1 exists and C is proper.
Also X1 and X2 are determined from

UU−1 =
[

X1 X2

−Ñ D̃

] [
D −X2

N X1

]
=

[
I 0
0 I

]
with U unimodular.
If G = N ′D′−1 = D̃′−1Ñ ′ are doubly coprime MFDs in RH∞, then all

stabilizing proper C are given by

C = (X ′
1 −K ′Ñ ′)−1[−X ′

2 + K ′D̃′
1), X

′], (91)

where K ′, X ′ ∈ RH∞ so that (X ′
1 −K ′Ñ ′)−1 exists and is proper. Also

U ′U ′−1 =
[

X ′
1 X ′

2

−Ñ ′ D̃′

] [
D′ −X ′

2

N ′ X ′
1

]
=

[
I 0
0 I

]
with U ′, U ′−1 ∈ RH∞; or by

C = (I + QH)−1[Q,M ] = [(I + L′N ′)D′−1]−1[L′, X ′], (92)

where Q = D′L′, M = D′X ′ ∈ RH∞ with L′, X ′, and D′−1(I + QH) =
(I + L′N ′)D′−1 ∈ RH∞ and so that (I + QH)−1 or (I + L′N ′)−1 exists and
is proper.

A.4 Comments on Stability Robustness

Given a plant G(s) there is an infinite number of controllers Gc(s) that
stabilize the system in a feedback configuration. They are all given by the
Youla parameterization (see [2]–p. 615). To get a sense of how robust the
stability of a system is, note that all plants G(s) that are stabilized by a
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fixed constant gain controller Gc = k in a feedback configuration are given
by

G = Q(1− kQ)−1 (93)

where Q is any proper and stable matrix (which is a large class of plants).
The closed loop transfer function Y/R in Fig. 5 is then given by

Y/R = T =
kG

1 + kG
=

kQ

(1− kQ) + kQ
= kQ (94)

and
U/R = M =

k

1 + kG
=

k(1− kQ)
(1− kQ) + kQ

= k(1− kQ). (95)

Note that the sensitivity S to parameter variations is

S =
1

1 + kG
=

1− kQ

(1− kQ) + kQ
= 1− kQ. (96)

The poles of Q are the closed-loop poles. If, for example, Q is selected to
be Q = 1/(as + 1 + k) then (93) becomes G = 1

as+1 which was used in
previous sections. If Q is chosen to be stable (that is as + 1 + k Hurwitz
or (1 + k)/a > 0) then the closed-loop is stable as before. (In this case
S = as+1

as+1+k which for all k > 0 is less than 1 as desired.)

A.5 Sampled Data Systems

Similar fundamental properties can be stated for sampled data systems,
namely that the plant poles also cancel in the case of sampled data systems
as the following example illustrates.

Example 1 Consider the plant G(s) = 1
s in a unity feedback configura-

tion as in Fig.10.

k

Figure 10
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The overall transfer function is found from

Y = GU = GkE = kG(R− Y )

from which
(1 + kG)Y = kGR

and
Y

R
=

kG

1 + kG
=

k

s + k

The closed-loop system has a pole at −k and it is stable for all k > 0.
Now if a ZOH and an ideal sampler are used,

G Samplerk ZOH

Figure 11

then

H(z) = (1− z−1)Z{[L−1(
G(s)

s
)]t=kT }

= (1− z−1)Z{[L−1(
1
s2

)]t=kT }

= (1− z−1)Z{(kT )}

= (1− z−1)
Tz

(z − 1)2
=

T

z − 1

The closed-loop transfer function is kT
z−1+kT , and so the system is stable

when

|1− kT | < 1
−1 < 1− kT < 1
−2 < −kT < 0

0 < k <
2
T
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which is much more restrictive than before (k > 0). As T becomes larger,
the range for acceptable K becomes smaller as expected.

The control input is

U(z) =
k

1 + kH(z)
R(z) =

k(z − 1)
z − 1 + kT

R(z)

and

Y (z) = H(z)U(z) =
T

z − 1
k(z − 1)

z − 1 + kT
R(z) =

kT

z − 1 + kT
R(z)

Notice that U(z) acts on the plant H(z) and cancels the plant dynamics
by the (pole/zero) cancellation of the factor z − 1. The remarkable fact
is that this cancellation happens independently of the sampling period T .
Even when T is large, as long as T is finite, the feedback cancels the plant
dynamics.

Example 2 Consider
G(s) =

a

s + a

in a unity feedback configuration with gain k (Fig. A.3). For a > 0, the
closed loop is stable when k > −1.

When a < 0 (G(s) is unstable), the closed loop is stable for k < −1.
The corresponding sampled data system with T as the sampling period

is given by

H(z) =
1− e−aT

z − e−aT
.

The closed loop system is then stable for

−1 < k <
1 + e−aT

1− e−aT

when a > 0 (case when open loop is stable). As T becomes larger the right
hand side goes to 1. When a < 0 (open loop is unstable), the closed loop
system is stable when k satisfies

1 + e−aT

1− e−aT
≤ k < −1.

As T becomes larger, the left hand side goes to −1 and clearly the range of
k for stability is much reduced.
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The examples illustrate what happens in the discrete time case with
respect to the effect of feedback; they also show how the stability range for
k is reduced in the sampled data case compared to the continuous case. In
the discrete time case, every instant of time k, k + 1, k = 2, ... the input to
the plant is such that the plant dynamics cancel out automatically. This can
also be shown directly using the transfer function H(z) and the numerator
and denominator polynomials (polynomial matrices) n(z), d(z) or via the
state variable description x(k +1) = Ax(k)+Bu(k) in a manner completely
analogous to the continuous case.

In the sampled data case, the cancelations happen every T units of time.
In between time instants T, 2T, ... the continuous plant is running open loop
and no plant pole cancelations are taking place. As T becomes larger, the
plant is running open loop for longer time and so it is harder to stabilize it
by applying feedback at such infrequent instants in time.

A.6 Systems With Delays

Similar results can be shown for systems with delays. Note that the delay

e−Ts can be approximated by 1−T
2

s

1+T
2

s
(first order approximations) and if this

is done it is clear that similar results regarding open loop pole cancelations,
when feedback is used, can be derived. These results can also be shown
directly.

As an example, consider

G(s) =
1

s + 1
(97)

in a unity feedback configuration with gain k. Without delay, if k satisfies
−1 < k, the system is stable. With delay T , i.e.

G(s) =
e−Ts

s + 1
(98)

k must approximately satisfy −1 < k < 1+ 2
T for stability. As T becomes

larger, the range of k becomes smaller. Here again the poles of the plant in
s + 1 cancel when the input U is applied to the plant.

A.7 Nonlinear Systems

The fundamental feedback property discussed above is applicable to more
general systems as well, for example to nonlinear systems: ẋ = f(x, u).
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The case of high gain is examined in ([1]–pp.29-36), and it is shown that
an inverse of the plant is generated by the control input. In general, when
feedback u = h(x, r) is applied, the closed loop system is ẋ = f(x, h(x, r))
which almost always, for almost all h, has different behavior from the open-
loop system ẋ = f(x, u) assuming the plant is controllable.

For example, in the special case of ẋ = f(x) + g(x)u with feedback
u = h(x) the closed loop systems is ẋ = f(x) + g(x)h(x) and for the
solution of the open loop homogeneous equation ẋ = f(x);x(t0) = x0

φ(t, x0, t0) to be the same as the solution of the closed loop homogeneous
equation ẋ = f(x) + g(x)h(x);x(t0) = xc0 φc(t, xc0, t0) we need to have
f(φ(t, x0, t0) = f(φ(t, xc0, t0)) + g(φ(t, xc0, t0))h(φ(t, xc0, t0)) for all t which
is a very restrictive condition. When xc0 = x0 then we need to have
g(φ(t, x0, t0))h(φ(t, x0, t0)) = 0 for any t, for having the trajectories be the
same.

So when feedback is applied, the closed loop dynamics are different from
the open loop dynamics almost always, which is exactly the same conclusion
we arrived at before in the linear systems case.
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