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On Passivity of Networked Nonlinear Systems with

Packet Drops

Yue Wang, Vijay Gupta, and Panos J. Antsaklis

Abstract

We analyze passivity for a class of discrete-time switched nonlinear systems that switch between two modes

- an uncontrolled mode in which the system evolves open loop,and a controlled mode in which a control input

is applied to the system. Such a model has recently been used for a network controlled system in the presence

of packet drops introduced by a communication channel. For the case when the open loop system is non-passive,

classical passivity theory considers the switched system to be non-passive as well. We give a new generalized

definition of passivity for such a system and show that if the ratio of the time steps for which the system evolves

open loop versus the time steps for which the system evolves closed loop is bounded below a critical ratio, then

the nonlinear system is locally passive in this sense. Moreover, we show that this generalized definition is useful

since it preserves two important properties of the classical passivity concept - that passivity implies asymptotic

stability for zero state detectable systems using feedbackand that passivity is preserved in parallel and feedback

interconnections.

I. INTRODUCTION

Networked control systems is now an established area of research [1]. In this paper, we consider a

process being controlled across a communication channel that drops control packets in a non-deterministic

fashion [2], [3]. In particular, we are interested in a system that is open loop non-passive, but is passive

when in closed loop. Because of the control packets being dropped by the communication channel, the

system switches between two modes, in one of which the increase in storage function is not bounded by

the energy supplied to the system at each time step.

Passivity is one of the most useful forms of dissipativity and is widely used for analyzing the stability

of interconnected dynamical systems [4]–[7]. Two of the properties that make passivity particularly useful
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are that (i) passivity implies asymptotic stability for zero state detectable (ZSD) system using feedback

[7], and (ii) both negative feedback and parallel interconnections of passive systems are passive. Due to

its importance, the classical notion of passivity has been extended to consider systems with delays [8],

[9], event-triggered systems [10], discrete-time piecewise affine hybrid systems [11], general nonlinear

hybrid systems [12] and switched systems [13].

Nevertheless, the above literature considers systems in which all the modes of the system are individually

passive. Since in our application, the open loop mode of the system is not passive; hence, this framework

does not hold. The main contribution of this paper is to extend the passivity concept to this case and to

show that if the frequency of the time steps at which the system is in open loop (and hence non-passive)

is bounded, the switched system remains passive. The closest work to our presentation is [13] from which

we borrow the concept of allowing the increase in storage function to be not necessarily bounded by the

energy supplied at every time step. However, unlike [13], wedo not assume each mode of the system to be

passive. Also related is [14] that considered the asymptotic stability analysis of continuous time systems

where the Lyapunov function is non-increasing only on certain unbounded discrete time sets. However,

unlike [14], the passivity analysis is complicated by the fact that passivity is an input-output property and

both the inputs and the outputs are time varying. Due to this difficulty, we analyze the passivity properties

of a switched system based on its zero dynamics ([6], [15], [16], and in particular, [17]) which is the

internal dynamics of the system that is consistent with constraining the system output to zero.

The remainder of the paper is organized as follows. In Section II, we define the problem framework.

Section III-A analyzes the passivity properties of the zerodynamics of the controlled mode of the switched

systems. In Section III-B, the passivity of the original switched system is investigated based on the results

from its zero dynamics. Numerical examples are provided in Section IV. We conclude the paper with

a summary and a list of future work in Section V. Some background on classical passivity theory in

discrete-time setting [18] is provided in the Appendix.

Notation: An m-dimensional real vector is denoted byRm. The space of positive integers is denoted

by Z
+. By a smooth vector field, we mean a field that is inC∞. Bold-face symbols are used for vectors.

In particular, if a scalarm has value zero, we denotem = 0; while if a vectorm has value zero, we

denotem = 0. The Kronecker delta function is denoted byδrs, which is 0 if r 6= s and1 otherwise.
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II. PROBLEM FORMULATION

Consider a discrete-time nonlinear system described by theequation

x(k + 1) = f(x(k),u(x(k))) (1)

y(k) = h(x(k),u(x(k))),

wherek ∈ Z
+ is the time index,x(k) ∈ R

n is the state,u(x(k)) ∈ R
m is the control input generated

by a given state feedback controller,y(k) ∈ R
m is the output, and bothf : R

n × R
m → R

n and

h : Rn×R
m → R

m are smooth vector fields. We will assume that the system has relative degree zero [6],

i.e., ∂h(x,u)
∂u

is non-singular. The system is also assumed to be locally zero state detectable (ZSD) [19],

i.e., there exists a neighborhoodN of the origin such that∀x(0) = x0 ∈ N,

y(k)|u(k)=0 = h(φ(k;x0; 0)) = 0, ∀k ∈ Z
+ implies lim

k→+∞
φ(k;x0; 0) = 0,

whereφ(k;x0; 0) is a trajectory of the uncontrolled systemx(k + 1) = f(x(k), 0)) from x(0) = x0.

We consider such a system being controlled across a communication channel that drops packets. At

the instants at which the control packet is transmitted successfully, the system evolves as in (1). At the

instants at which the control packet is dropped, we assume for concreteness that zero control is applied

and the system evolves as

x(k + 1) = f(x(k), 0) (2)

y(k) = h(x(k), 0).

Denote the switched system evolving as in (1) and (2) byS. We make no conditions on the packet drops

(i.e., whether they are stochastic or periodic). We refer tosystem evolution according to (1) as Mode 1

and according to (2) as Mode 2 of the switched system. The modeswitching sequence for the system

is defined as the specification of the valued(k) for every k ∈ Z
+, whered(k) ∈ {1, 2} is the mode

active at timek. We assume that the closed-loop system (1) is passive while the open loop system (2) is

non-passive. Passivity of a switched system with at least one non-passive mode has not been defined in

the literature. We propose such a definition in this paper. Wewill assume without loss of generality that

at timek = 1, the system is in Mode 1.

Clearly, any passivity property of the switched system willdepend on the relative frequency with which
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the two modes are active. Consider the system evolution overT time steps. Letτ(T ) denote the total

number of uncontrolled (open loop) time steps when the system is in Mode 2 during this time period,

andT − τ(T ) the total number of controlled (closed-loop) time steps when the system is in Mode 1. Let

the ratio between the controlled time steps and the uncontrolled time steps ber(T ) = T−τ(T )
τ(T )

. When the

context is clear, we will abuse the notation and suppress thedependence ofτ and r on T . We consider

the following definition of passivity.

Definition 2.1: A nonlinear systemS is said to beglobally passiveif there exists a positive semidefinite

storage functioñ̃V (x(.)) ≥ 0 ( ˜̃V (x(.)) = 0 if and only if x(.) = 0) such that for anyx(k) ∈ R
n, u(k)Rm,

and any givenT ∈ Z
+, the following passivity inequality holds:

˜̃
V (x(T ))− ˜̃

V (x(1)) ≤
T−1
∑

k=1

uT(k)y(k). (3)

The system is said to belocally passiveif there exists a neighborhood of the equilibrium point(x∗(k),u∗(k))

such that for any(x(k),u(k)) in the neighborhood, the inequality (3) holds.

Note that this definition reduces to the classical passivitydefinition for a non-switched system. However,

for a switched system that can operate for some time in a non-passive mode, Definition 2.1 allows the

increase in storage functioñ̃V to be greater than the supplied energy at particular time steps, as long as

the overall increase over the period[1, T ] is bounded by the total supplied energy within that period.

With this definition, we answer two questions in this paper. First, we show that this definition is useful

for cases such as systemS in the sense that it can be used to show intuitive results suchas if the

open loop system is active only infrequently, the switched system should be expected to remain passive.

More precisely, we prove that there is a ratior?, such that if for everyT , r(T ) > r?, then the system is

passive. Secondly, we show that this definition preserves the following two properties of classical passivity

definition:

• A passive system can achieve asymptotic stability using feedback if it is ZSD.

• Parallel or negative feedback interconnections of passivesystems are passive.

III. M AIN RESULTS

A. Passivity Analysis for Zero Dynamics

We begin by considering the zero dynamics of the systemS. Since (1) has relative degree zero, the

implication function theorem [17], [20] implies that for any given bounded vector sequencev(k) ∈ R
m,
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there exists a control law̄uv(k)(x(k)) (that depends on bothv(k) andx(k)) such that the resulting output

y(k) is identically equal tov(k) and the corresponding inputs are bounded. With this controllaw, the

system in Mode 1 evolves as the transformed system

x(k + 1) = f(x(k), ūv(k)(x(k)) , f̄v(k)(x(k)) (4)

y(k) = v(k).

The evolution in Mode 2 is still governed by (2). Denote the switched system defined by (4) and (2) by

S1. For simplicity and without loss of generality, we assume that the origin(x(k),v(k)) = (0, 0) is one

equilibrium state of the process (4), i.e.,f̄v(k)(x(k))
∣

∣

∣

x(k)=0,v(k)=0

= 0.

In the particular case whenv(k) is identically zero, let the control law be given bỹu(k). Then, the

system in Mode 1 evolves as the zero dynamics of the closed loop system or as

x(k + 1) = f(x(k), ũ(x(k)) , f̃(x(k)) (5)

y(k) = 0.

Denote the switched system defined by (5) and (2) byS2. We note that since system (1) is passive, the

zero dynamics of system (5) are also passive and hence stable[15], [16]. Since for the systemS2, either

the inputũ(k) or the outputy(k) is zero at every time step, Definition 2.1 implies that the systemS2 is

passive if there exists a positive semidefinite storage function V (x(.)) ≥ 0 (V (x(.)) = 0 if and only if

x(.) = 0) such that for any givenT ∈ Z
+, the following inequality holds:

V (x(T ))− V (x(1)) ≤

T−1
∑

k=1

uT(k)y(k) = 0. (6)

From now on, we will additionally assume that the determinant of Hessian matrix (square matrix of

second-order partial derivatives) of the storage functionV (x) at x = 0 is non-zero.

Our first result shows that there is a frequency of the steps atwhich the systemS2 evolves in closed

loop that guarantees that the system remains passive.

Lemma 3.1:Consider the switched systemS2. Let there exists a positive semidefinite storage function
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V (x) ≥ 0, V (x) = 0 if and only if x = 0, and constantsζ > 1 and0 < σ < 1 such that

V (f(x(k), 0)) ≤ ζV (x(k)) (7)

V (f̃(x(k))) ≤ σV (x(k)).

If for any timeT , the ratior(T ) satisfies

r(T ) >
(T − 1) ln ζ

ln ζ − T ln σ
, (8)

the systemS2 is passive according to Definition 2.1.

Proof: For any timeT , (7) implies thatV (x(T )) ≤ σT−τζτ−1V (x(1)). Since (8) impliesσT−τζτ−1 <

1, we obtain thatV (x(T ) < V (x(1)) for any T , if the conditions (7) in the theorem are met. From

Definition 2.1, the systemS2 is passive.

Remark 3.1:As discussed earlier, the system (5) is locally stable. A natural candidate forV is the

Lyapunov function for the system. Note that the storage function for S2 may not be the storage function

for the original systemS.

Remark 3.2:The choice ofζ andσ determines how conservative the condition (8) is. The minimum ζ

andσ that satisfy the inequality (7) will result in the least conservative bound.

Remark 3.3:Note that the right hand side of the equation (8) is an increasing function ofT . Thus, the

condition on the frequency of Mode 2 becomes progressively less stringent. Note also that the condition

does not require a constant ratior(T ).

We now prove an intuitive result on the effect of increasingr(T ).

Corollary 3.1: Consider the systemS2 with the conditions (7) being satisfied. If the system is passive

with a ratior(T ), it is passive with a ratior′(T ) > r(T ). Thus, decreasing the frequency of uncontrolled

time steps preserves passivity.

Proof: At time T , denote the number of time steps for which the system evolvesopen loop with the

ratio r(T ) by τ(r, T ) and with the ratior′(T ) by τ(r′, T ). Conditions (7) yield

V (x(T )) ≤ σT−τ(r,T )ζτ(r,T )−1V (x(1)) and V (x(T )) ≤ σT−τ(r′,T )ζτ(r
′,T )−1V (x(1)).

Since the system is passive with ratior(T ), σT−τ(r,T )ζτ(r,T )−1 < 1. The proof follows by noting that

τ(r′, T ) < τ(r, T ) and thus,σT−τ(r′,T )ζτ(r
′,T )−1 < σT−τ(r,T )ζτ(r,T )−1 < 1.
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B. Passivity Analysis for the Original System

We now prove that if the zero dynamics are passive, then the original switched systemS is locally

passive near the equilibrium point(x(k),v(k)) = (0, 0). To this end, we first prove the following result.

Theorem 3.1:Let the systemS2 be passive such that the inequalities (7) hold. Furthermore, let the

systemS1 evolve from the same initial condition and with the same modeswitching signal as the system

S2. Then, for the systemS1 there exists a positive semidefinite storage functionṼ (x(k)) = aV (x(k)) ≥ 0

(Ṽ (x(.)) = 0 if and only if x(.) = 0, anda > 0), such that for anyT ∈ Z
+, the following inequality is

true in a neighborhood of the equilibrium point(x(k),v(k)) = (0, 0).

Ṽ (x(T ))− Ṽ (x(1)) ≤
∑

k:d(k)=2
k≤T−1

vT(k)v(k). (9)

Proof: SinceS2 is passive, there exists a positive semidefinite storage functionV (x(.)) ≥ 0 (V (x(.)) =

0 if and only if x(.) = 0), such that for anyT ∈ Z
+, V (x(T ))−V (x(1)) ≤ 0, whenx evolves according

to the switched systemS2. For systemS1, consider the storage functioñV (x(.)) = aV (x(.)) for a constant

a > 0. We first prove that with a suitable choice of the constanta, this storage function guarantees that,

for every vector sequence{v(k)}, if time k is such that the moded(k) = 2, then

Ṽ (f̄v(k)(x(k)))− Ṽ (x(k)) ≤ vT(k)v(k). (10)

For the timesk where the moded(k) = 2, define the function

φ(x(k),v(k)) =

m
∑

i=1

v2i (k) + Ṽ (x(k))− Ṽ (f̄v(k)(x(k)). (11)

We shall prove thatφ(x(k),v(k)) has a local minimum atx(k) = 0 and v(k) = 0. For notational

convenience, we denote this pair by(0, 0) and suppress the dependence onk of the terms in (11). Thus,

consider the first order derivatives ofφ(x,v) at (0, 0). We have fori = 1, · · · , n, r = 1, · · · , m,

∂φ(x,v)

∂xi

∣

∣

∣

∣

∣

x=0,v=0

=

[

∂Ṽ

∂xi
−

n
∑

h=1

∂Ṽ

∂f̄
v(k)
h

∂f̄
v(k)
h (x,v)

∂xi

]

x=0,v=0

∂φ(x,v)

∂vr

∣

∣

∣

∣

∣

x=0,v=0

=

[

2vr −
n

∑

h=1

∂Ṽ

∂f̄
v(k)
h

∂f̄
v(k)
h (x,v)

∂vr

]

x=0,v=0

.

The storage functionV (x(k)), and hence the functioñV (x(k)) = aV (x(k)) has a local minimum at

x(k) = 0 becauseV is positive semidefinite withV (x) = 0 if and only if x = 0. Moreover, origin is a
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local equilibrium of the system; thus, atx(k) = v(k) = 0, f̄v(k)(x(k),v(k)) = 0. Combining these facts,

we see that

∂φ(x,v)

∂xi

∣

∣

∣

∣

∣

x=0,v=0

= 0, i = 1, · · · , n

∂φ(x,v)

∂vr

∣

∣

∣

∣

∣

x=0,v=0

= 0, r = 1, · · · , m.

Next, we check the elements of the Hessian matrix ofφ(x,v) at (0, 0). We have fori, j = 1, · · · , n and

r, s = 1, · · · , m,

∂2φ(x,v)

∂xj∂xi

∣

∣

∣

∣

∣

x=0,v=0

= a

[

∂2V

∂xj∂xi
−

n
∑

h,l=1

∂2V

∂f̄
v(k)
h ∂f̄

v(k)
l

∂f̄
v(k)
h

∂xi

∂f̄
v(k)
l

∂xj

]

x=0,v=0

∂2φ(x,v)

∂vr∂xi

∣

∣

∣

∣

∣

x=0,v=0

= −a

[

n
∑

h,l=1

∂2V

∂f̄
v(k)
h ∂f̄

v(k)
l

∂f̄
v(k)
h

∂xi

∂f̄
v(k)
l

∂vr

]

x=0,v=0

∂2φ(x,v)

∂vs∂vr

∣

∣

∣

∣

∣

x=0,v=0

= 2δrs − a

[

n
∑

h,l=1

∂2V

∂f̄
v(k)
h ∂f̄

v(k)
l

∂f̄
v(k)
h

∂vr

∂f̄
v(k)
l

∂vs

]

x=0,v=0

.

Denoteφ̃(x(k)) = φ(x(k), 0) = a
(

V (x(k))− V (f̄0(x(k))
)

, so that

∂2φ(x,v)

∂xj∂xi

∣

∣

∣

∣

∣

x=0,v=0

=
∂2φ̃(x)

∂xj∂xi

∣

∣

∣

∣

∣

x=0

. (12)

Since φ̃(x) has a local minimum atx = 0, and by assumption, the determinant of Hessian matrix of

the storage functionV (x) at x = 0 is non-zero, we obtain that the eigenvalues of the Hessian matrix

of φ̃(x) at x = 0 are all positive. Denote these eigenvalues byλi, ∀i = 1, 2, · · · , n. Furthermore, the

Hessian matrix of̃φ(x) at x = 0 is symmetric and can be diagonalized. Thus, with an appropriate choice

of coordinates, the Hessian matrix ofφ(x,v) at (0, 0) can be evaluated to be of the form































aλ1 · · · 0 ab11 · · · ab1m
...

. . .
...

...
. . .

...

0 · · · aλn abn1 · · · abnm

ab11 · · · abn1 2 + ac11 · · · ac1m
...

. . .
...

...
. . .

...

ab1m · · · abnm acm1 · · · 2 + acmm































. (13)
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Now, we apply [17, Lemma 12] which states that forλi > 0 and∀a = (0, â), â = minj a
u
j where

auj = min

{

1,
2jλ1 · · ·λn − ε

|α1|+ · · ·+ |αj|

}

, j = 1, · · · , m (14)

with 0 < ε � 1 andαl, l = 1, · · · , j being some constants related toλi, bil and crl, i = 1, · · · , n, r =

1, · · · , j, l = 1, · · · , j, the determinant of matrix (13) is greater than zero. Sylester’s criterion now readily

yields that the Hessian matrix ofφ(x,v) at (0, 0) as evaluated in (13) is positive definite. Therefore,

φ(x,v) has a local minimum at(0, 0). Thus, at the times whend(k) = 2, the relation (10) holds.

Summing (10) for all the time stepsk in the closed loops, we then obtain the following inequality

∑

k:d(k)=2
k≤T−1

Ṽ (f̄v(k)(x(k))− Ṽ (x(k)) ≤
∑

k:d(k)=2
k≤T−1

vT(k)v(k). (15)

with the equality holds at(0, 0).

Whend(k) = 1, systemsS1 andS2 evolve in an identical manner and therefore (7) yields that

Ṽ (f̄0(x(k)))− Ṽ (x(k)) = Ṽ (f(x(k), 0))− Ṽ (x(k)) = a (V (f(x(k), 0))− V (x(k)))

≤ a(ζ − 1)V (x(k)). (16)

We now choosea in the interval(0, ã) where

ã = min
T

∑

k:d(k)=2
k≤T−1

φ(x(k),v(k))

(ζ − 1)
∑

k:d(k)=1
k≤T−1

V (x(k))
, ∀T ∈ Z

+,

then the following inequality is satisfied,

a(ζ − 1)
∑

k:d(k)=1
k≤T−1

V (x(k)) +
∑

k:d(k)=2
k≤T−1

[

Ṽ (f̄v(k)(x(k))− Ṽ (x(k))
]

≤
∑

k:d(k)=2
k≤T−1

vT(k)v(k). (17)

Since
∑

k:d(k)=1
k≤T−1

[

Ṽ (f̄0(x(k)))− Ṽ (x(k))
]

+
∑

k:d(k)=2
k≤T−1

[

Ṽ (f̄v(k)(x(k))− Ṽ (x(k))
]

= Ṽ (x(T ))− Ṽ (x(1)),

then according to the inequalities (16) and (17), there exists a ∈ (0,min(â, ã)), such that the inequality

(9) holds with the equality holding if and only if(x,v) = (0, 0).

Given this result, we can now establish that passivity ofS2 implies local passivity ofS.

Theorem 3.2:Let systemS2 be passive such that the inequalities (7) hold. Furthermore, let systemS



10

evolve from the same initial condition and with the same modeswitching signal as the systemS2. Then,

the systemS is locally passive.

Proof: Under the stated assumptions, we know from Theorem 3.1 that for the systemS1 there exists a

positive semidefinite storage functioñV (x(k)) ≥ 0 with Ṽ (x(k)) = 0 if and only if x(k) = 0, such that for

anyT ∈ Z
+, Ṽ (x(T ))− Ṽ (x(1)) ≤

∑

k:d(k)=2
k≤T−1

vT(k)v(k). For the systemS, consider the storage function

˜̃
V = ρṼ whereρ > 0 is a constant to be suitably designed. Also, define the termη(T ) =

∑T−1
k=1 u

T(k)y(k).

Since bothu(k) andy(k) are bounded in the neighborhood ofx(k) = 0 andv(k) = 0, we see thatη(T )

is also bounded. Now, there are two cases.

1) If η(T ) ≥ 0, we have˜̃V (x(T ))− ˜̃
V (x(1)) = ρ(Ṽ (x(T ))− Ṽ (x(1))) ≤ ρ

∑

k:d(k)=2
k≤T−1

vT(k)v(k). The

inequality (3) holds if0 < ρ ≤ η(T )∑
k:d(k)=2
k≤T−1

vT(k)v(k)
.

2) If η(T ) < 0, this corresponds to the case when the systemS is Lyapunov stable as well. Because

η(T ) is bounded, we can guarantee that with a sufficiently large choice of ρ (that depends on

x(1) and{v(k)}), the following inequality holds:̃̃V (x(T ))− ˜̃
V (x(1)) = ρ(Ṽ (x(T ))− Ṽ (x(1))) ≤

η(T ) =
∑T−1

k=1 u
T(k)y(k) ≤ 0, ∀ρ > 0, where we chooseρ

ρ ≥
η(T )

Ṽ (x(T ))− Ṽ (x(1))
. (18)

Thus, given anyT , we can design the constantρ > 0 and the corresponding storage function˜̃V = ρṼ , ρ >

0 such that the systemS is locally passive in the neighborhood ofx(k) = 0 andv(k) = 0.

C. Stability and Interconnections of Passive Systems

We now prove that the Definition 2.1 preserves some of the important properties of the classical passivity.

Theorem 3.3:If system S is passive and locally ZSD, under a feedback control law of the form

u(k) = −ψ(y(k)) whereψ(0) = 0 andyT(k)ψ(y(k)) > 0, ∀y 6= 0, then the equilibrium(0, 0) is locally

asymptotically stable.

Proof: According to the passivity definition, for every time stepk in the closed loop, we have

˜̃
V (f(x(k),u(x(k))))− ˜̃

V (x(k)) ≤ uT(k)y(k) = −yT(k)ψ(y(k)) ≤ 0

with equality holding if and only ify(k) = 0. The total increase in the storage function during open loops

in a period[1, T ] is always bounded (conditions (7)). Under the controlu(k), we have ˜̃V (f(x(T ))) −

˜̃
V (x(1)) ≤ 0 i.e., the storage function is non-increasing as compared with its initial value. Therefore, the
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systemS is stable asT → +∞. Moreover, according to ZSD,y(T ) = 0 implies thatx(T ) → 0 and the

system is locally asymptotically stable.

Theorem 3.4:If two switched nonlinear systemsS1 andS2 are both passive, then their parallel and

negative feedback interconnections (as defined in Figure 1)are both passive.

S

u
S1

S2

u1

u2

y1

y2

y

(a)

S
r1

r2

S1

S2

u1

u2

y1

y2

(b)

Fig. 1. (a) Parallel, and (b) negative feedback interconnections for two passive switched nonlinear systemsS1 andS2.

Proof: Let the control inputs forSi be ui(k), the corresponding output beyi(k) and the storage

function be ˜̃
Vi(k). For the parallel interconnection, we have for the interconnected systemS, the control

input u(k) = u1(k) = u2(k) and the outputy(k) = y1(k) + y2(k). For S, consider the storage function

˜̃
V (k) = ˜̃

V1(k) +
˜̃
V2(k). For any timeT ∈ Z

+, we have

˜̃
V (x(T ))− ˜̃

V (x(1)) = ( ˜̃V1(x(T ))−
˜̃
V1(x(1))) + ( ˜̃V2(x(T ))−

˜̃
V2(x(1)))

≤

T−1
∑

k=1

uT
1(k)y1(k) +

T−1
∑

k=1

uT
2(k)y2(k) ≤

T−1
∑

k=1

uT(k)y(k).

Similarly, for the negative feedback interconnection, we have for the interconnected systemS, the control

inputs and outputs asr1(k) = u1(k) + y2(k) and r2(k) = u2(k) + y1(k). Consider the storage function

˜̃
V (k) = ˜̃

V1(k) +
˜̃
V2(k). For any timeT ∈ Z

+, we have ˜̃
V (x(T )) − ˜̃

V (x(1)) ≤
∑T−1

k=1 (r
T
1(k)y1(k) +

rT
2(k)y2(k)).

Remark 3.4:The main results in this section can be shown to hold as long asthe switched systemS

satisfies Equation (3) at a given time instantT . In this case, the value of̃a can be chosen as

ã =

∑

k:d(k)=2
k≤T−1

φ(x(k),v(k))

(ζ − 1)
∑

k:d(k)=1
k≤T−1

V (x(k))
.

This implies a more general case when the increase in storagefunction may exceed the accumulated

energy supplied to it at closed loops as well. The results canbe applied to a periodically controlled
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system that achieves passivity periodically [21].

IV. NUMERICAL EXAMPLE

Consider a closed loop system of the form

x1(k + 1) = −0.3x21(k)x2(k) + 1.5x2(k) + u(k)

x2(k + 1) = x1(k)− u2(k)

y(k) = 2x2(k) + u(k),

with the controlleru(k) = −y(k) = −x2(k). Note that the system is locally ZSD and has zero relative

degree. The evolution of the system in Mode 2 is given whenu(k) = 0. The transformed dynamics

and the zero dynamics remain identical in Mode 2. In Mode 1, the transformed dynamics and the zero

dynamics can be obtained as Equations (4) and (5) in Section III-A. Given the zero dynamics, we choose

a quadratic storage functionV (x(k)) = x(k)TPx(k) = x21 + 0.5x22. We can verify that the determinant

of the Hessian matrix ofV (x(k)) at x(k) = [0 0]T is not zero. The parameters in the condition (7) are

ζ = 2.8 andσ = 0.6. According to (8) then,

r(T ) >
1.0296(T − 1)

1.0296 + 0.5108T
(19)

would guarantee system passivity. This condition is satisfied, e.g., by a periodic system in which at every

third time step (i.e., atk = 3, 6, 9, · · · ) the system is in Mode 2. However, the system need not be periodic

to satisfy (19). If the system starts in Mode 1, then any communication protocol that guarantees that out

of every 3 consecutive control packets, at most one packet isnot delivered would guarantee passivity.

Thus the maximum allowable transmission interval (MATI) is2 [22], [23].

The storage functioñV (x(k) for the transformed system is chosen as0.48V (x(k)) with â = 0.48 and

ã = 0.9939. The storage function for the original switched nonlinear system can be chosen as12Ṽ (x(k))

with ρ = 8 satisfies inequality (18) under the case whenη(T ) < 0.

More insight can be obtained if we consider the system to operate over a finite horizon. Consider the

system operation fromk = 1 to 30. We consider the system to be in Mode 2, i.e., non-passive according to

the classical passivity definition, at time stepsk = 4, 5, 8, 9, 11, 14, 15, 16, 19, 20 as shown in Figure 2(a).

Figure 2(b) shows the corresponding passivity inequality for the system. We can see that unlike the

classical case, the storage function is now allowed to increase; however, all the passivity inequalities are
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satisfied at every time tillT . Figure 2(c) shows the evolution of the state dynamics of theswitched system.

Both states are locally asymptotic stable at the origin.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
−8

−6

−4

−2

0

2

4
x 10

−3 Original Switched System

t

 

 
˜̃
V (x(T + 1)) − ˜̃

V (x(T ))

u
T (T )y(T )

(a)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
−0.015
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0
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V (x(T )) − ˜̃

V (x(1))
∑

T

k=1u
T (k)y(k)

(b)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
−0.05

0

0.05
Original Switched System

t

 

 
x1
x2

(c)

Fig. 2. (a) Passivity check for the switched system in Example 1 in the time interval[1, 30] according to classical passivity definition, (b)
Passivity check for the switched system according to the generalized passivity definition (3), and (c) State dynamics ofthe switched system.

V. CONCLUSIONS AND FUTURE WORK

We analyzed passivity for a class of discrete-time switchednonlinear systems that switch between two

modes - an uncontrolled mode in which the system evolves openloop, and a controlled mode in which a

control is applied to the system. This situation is of interest in, e.g., networked control systems where the

communication network can erase control packets transmitted to the plant. For the case when the open

loop system is non-passive, classical passivity theory considers the switched system to be non-passive

as well. We give a new generalized definition of passivity forsuch a system and show that if the ratio

of the time steps for which the system evolves open loop versus the time steps for which the system

evolves closed loop is bounded below a critical ratio, then the system is locally passive in this sense.

Moreover, we show that this generalized definition is usefulsince it preserves two important properties of

the classical passivity concept - that passivity implies asymptotic stability for zero state detectable systems

using feedback and that passivity is preserved in parallel and feedback interconnections.

There are multiple directions in which this work can be extended. The most obvious is relaxing the

requirement for systems to have relative degree zero. More general hybrid system, including systems with

state dependent and event-triggered switching modes can also be considered. Finally, networked control

systems with random delays and data loss can also be considered under this framework.
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APPENDIX

BACKGROUND ON PASSIVITY

Consider a system of the form







x(k + 1) = f(x(k),u(k))

y(k) = h(x(k),u(k))
, (20)

where x ∈ X = R
n, u ∈ U = R

m and y ∈ Y = R
m are the state, input, and output variables,

respectively.X,U and Y are the state, input, and output spaces, respectively.k ∈ Z
+, f and h are

smooth. All consideration are restricted to an open set ofX×U containing the equilibrium point(x∗,u∗)

havingx∗ = f(x∗,u∗). Without loss of generality, it is assumed that(x∗,u∗) = (0, 0) andh(0, 0) = 0.

Definition A.1. (Dissipative Systems) [18]A system of the form (20) is said to bedissipativewith respect

to thesupply ratew ∈ U×Y → R if there exists a positive semidefinite functionV : X → R
+, V (0) = 0,

called thestorage function, such that

V (f(x(k),u(k)))− V (x(k)) ≤ w(y(k),u(k)), ∀(x(k),u(k)) ∈ X×U, ∀k.

Note that the above inequality holds if and only if

V (f(x(k),u(k)))− V (x(0)) ≤

k
∑

θ=0

w(y(θ),u(θ)), ∀(x(k),u(k)) ∈ X×U, ∀k.

Definition A.2. (Passive Systems) [18]A system of the form (20) is said to bepassiveif it is dissipative

with respect to the supply ratew(y(k),u(k)) = uT(k)y(k). That is,

V (f(x(k),u(k)))− V (x(k)) ≤ uT(k)y(k), ∀(x(k),u(k)) ∈ X×U, ∀k.
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