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Abstract

We analyze passivity for a class of discrete-time switchedlinear systems that switch between two modes
- an uncontrolled mode in which the system evolves open laog, a controlled mode in which a control input
is applied to the system. Such a model has recently been osa rietwork controlled system in the presence
of packet drops introduced by a communication channel. F®@rcase when the open loop system is non-passive,
classical passivity theory considers the switched sysieret non-passive as well. We give a new generalized
definition of passivity for such a system and show that if thiorof the time steps for which the system evolves
open loop versus the time steps for which the system evolesed loop is bounded below a critical ratio, then
the nonlinear system is locally passive in this sense. M@eave show that this generalized definition is useful
since it preserves two important properties of the clabfeasivity concept - that passivity implies asymptotic
stability for zero state detectable systems using feedbadkthat passivity is preserved in parallel and feedback

interconnections.

. INTRODUCTION

Networked control systems is now an established area oamesdl]. In this paper, we consider a
process being controlled across a communication chanaetitbps control packets in a non-deterministic
fashion [2], [3]. In particular, we are interested in a systéhat is open loop non-passive, but is passive
when in closed loop. Because of the control packets beingpdid by the communication channel, the
system switches between two modes, in one of which the isergmastorage function is not bounded by
the energy supplied to the system at each time step.

Passivity is one of the most useful forms of dissipativityl as widely used for analyzing the stability

of interconnected dynamical systems [4]—[7]. Two of thepamties that make passivity particularly useful
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are that (i) passivity implies asymptotic stability for aestate detectable (ZSD) system using feedback
[7], and (ii) both negative feedback and parallel interagstions of passive systems are passive. Due to
its importance, the classical notion of passivity has bedaeneled to consider systems with delays [8],

[9], event-triggered systems [10], discrete-time piesewaffine hybrid systems [11], general nonlinear
hybrid systems [12] and switched systems [13].

Nevertheless, the above literature considers systemsighwal the modes of the system are individually
passive. Since in our application, the open loop mode of yseem is not passive; hence, this framework
does not hold. The main contribution of this paper is to edtdre passivity concept to this case and to
show that if the frequency of the time steps at which the systein open loop (and hence non-passive)
is bounded, the switched system remains passive. The tlwedsto our presentation is [13] from which
we borrow the concept of allowing the increase in storagetfan to be not necessarily bounded by the
energy supplied at every time step. However, unlike [13]dwenot assume each mode of the system to be
passive. Also related is [14] that considered the asynpsatibility analysis of continuous time systems
where the Lyapunov function is non-increasing only on ¢ertmmbounded discrete time sets. However,
unlike [14], the passivity analysis is complicated by thet flnat passivity is an input-output property and
both the inputs and the outputs are time varying. Due to ftifficulty, we analyze the passivity properties
of a switched system based on its zero dynamics ([6], [15],[&nd in particular, [17]) which is the
internal dynamics of the system that is consistent with taimgng the system output to zero.

The remainder of the paper is organized as follows. In Sedtiowe define the problem framework.
Section IlI-A analyzes the passivity properties of the z#yynamics of the controlled mode of the switched
systems. In Section IlI-B, the passivity of the original &lied system is investigated based on the results
from its zero dynamics. Numerical examples are providedentiSn IV. We conclude the paper with
a summary and a list of future work in Section V. Some backgdoan classical passivity theory in
discrete-time setting [18] is provided in the Appendix.

Notation: An m-dimensional real vector is denoted By*. The space of positive integers is denoted
by Z*. By a smooth vector field, we mean a field that iCiff. Bold-face symbols are used for vectors.
In particular, if a scalam has value zero, we denote = 0; while if a vectorm has value zero, we

denotem = 0. The Kronecker delta function is denoted by, which is0 if » # s and 1 otherwise.



[I. PROBLEM FORMULATION

Consider a discrete-time nonlinear system described bydation

x(k +1) = f(x(k), u(x(k))) 1)

wherek € Z* is the time indexx(k) € R™ is the stateu(x(k)) € R™ is the control input generated
by a given state feedback controller(k) € R™ is the output, and bottf : R” x R™ — R" and
h :R™x R™ — R™ are smooth vector fields. We will assume that the system hatsveedegree zero [6],

i.e., bW i non-singular. The system is also assumed to be locally geate detectable (ZSD) [19],

i.e., there exists a neighborho®d of the origin such thatx(0) = x, € N,
Y(F)lutw=o = A(¢(k:x0;0)) = 0, ¥k € Z7 implies  lim ¢(k; xo30) =0,
— 400

where¢(k;xq; 0) is a trajectory of the uncontrolled systenik + 1) = f(x(k),0)) from x(0) = xo.

We consider such a system being controlled across a comatiamcchannel that drops packets. At
the instants at which the control packet is transmitted essfully, the system evolves as in (1). At the
instants at which the control packet is dropped, we assumediocreteness that zero control is applied

and the system evolves as

X(k+1) = f(x(k),0) (2)

Denote the switched system evolving as in (1) and (2SbyWe make no conditions on the packet drops
(i.e., whether they are stochastic or periodic). We refesytstem evolution according to (1) as Mode 1
and according to (2) as Mode 2 of the switched system. The msadkehing sequence for the system
is defined as the specification of the valdg:) for every k € Z*, whered(k) € {1,2} is the mode
active at timek. We assume that the closed-loop system (1) is passive wialepen loop system (2) is
non-passive. Passivity of a switched system with at leastrmm-passive mode has not been defined in
the literature. We propose such a definition in this paperwileassume without loss of generality that
at timek = 1, the system is in Mode 1.

Clearly, any passivity property of the switched system dépend on the relative frequency with which



the two modes are active. Consider the system evolution dvéme steps. Letr(7') denote the total
number of uncontrolled (open loop) time steps when the systein Mode 2 during this time period,

andT — 7(7T) the total number of controlled (closed-loop) time steps mifee system is in Mode 1. Let

the ratio between the controlled time steps and the undéedréme steps be (7)) = T;(TT@. When the

context is clear, we will abuse the notation and suppressliépendence of andr on 7. We consider
the following definition of passivity.

Definition 2.1: A nonlinear systens is said to beglobally passivef there exists a positive semidefinite
storage functioﬁ:/(x(.)) >0 (X:/(x(.)) = 0 if and only if x(.) = 0) such that for ank (k) € R", u(k)R™,

and any giveril” € Z*, the following passivity inequality holds:

~

V(x(T)) — V(x(1) < 3 u Ry (k). 3)

B
Il

The system is said to Becally passivef there exists a neighborhood of the equilibrium pdixt(k), u*(k))
such that for any(x(k),u(k)) in the neighborhood, the inequality (3) holds.
Note that this definition reduces to the classical passigfynition for a non-switched system. However,
for a switched system that can operate for some time in a agsie mode, Definition 2.1 allows the
increase in storage functid;i to be greater than the supplied energy at particular timgsstes long as
the overall increase over the perifid 7] is bounded by the total supplied energy within that period.

With this definition, we answer two questions in this papéstFwe show that this definition is useful
for cases such as systefin the sense that it can be used to show intuitive results sschf the
open loop system is active only infrequently, the switchgstesm should be expected to remain passive.
More precisely, we prove that there is a ratig such that if for everyl’, »(7') > r*, then the system is
passive. Secondly, we show that this definition preservesalfowing two properties of classical passivity
definition:

« A passive system can achieve asymptotic stability usinglfaek if it is ZSD.

. Parallel or negative feedback interconnections of passpgéems are passive.

[1l. M AIN RESULTS
A. Passivity Analysis for Zero Dynamics

We begin by considering the zero dynamics of the systensince (1) has relative degree zero, the

implication function theorem [17], [20] implies that for ygiven bounded vector sequeneék) € R™,
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there exists a control law¥*) (x(k)) (that depends on botir(k) andx(k)) such that the resulting output
y(k) is identically equal tov(k) and the corresponding inputs are bounded. With this cordxel the

system in Mode 1 evolves as the transformed system

x(k +1) = f(x(k), 0" ® (x(k)) & F* (x(k)) (4)

y(k) = v(k).

The evolution in Mode 2 is still governed by (2). Denote thatslaed system defined by (4) and (2) by
S;. For simplicity and without loss of generality, we assumat tthe origin(x(k), v(k)) = (0,0) is one
equilibrium state of the process (4), i.¢~%®) (x(k)) =0.

x(k)=0,v(k)=0

In the particular case whew(k) is identically zero, let the control law be given k). Then, the

system in Mode 1 evolves as the zero dynamics of the closqu dgstem or as

x(k +1) = f(x(k), a(x(k)) = f(x(k)) (5)

y(k) =0.

Denote the switched system defined by (5) and (2)ShyWe note that since system (1) is passive, the
zero dynamics of system (5) are also passive and hence $i&lylg16]. Since for the systens,, either
the inputu(k) or the outputy (k) is zero at every time step, Definition 2.1 implies that theteaysS, is
passive if there exists a positive semidefinite storagetfomd’(x(.)) > 0 (V(x(.)) = 0 if and only if

x(.) = 0) such that for any givefl” € Z*, the following inequality holds:

~

V(x(T)) - Vix(1) < S uT(K)y (k) = 0. 6)

B
Il

From now on, we will additionally assume that the determinaihHessian matrix (square matrix of
second-order partial derivatives) of the storage funcligs) at x = 0 is non-zero.

Our first result shows that there is a frequency of the stepghath the systens, evolves in closed
loop that guarantees that the system remains passive.

Lemma 3.1:Consider the switched systefa. Let there exists a positive semidefinite storage function



V(x) >0, V(x) =0 if and only if x = 0, and constantg > 1 and0 < ¢ < 1 such that

V(f(x(k),0)) < V(x(k)) (7)

If for any time 7', the ratior(7") satisfies

(T'—1)In¢

In¢ —Tlno’ ®)

r(T) >

the systemsS, is passive according to Definition 2.1.

Proof: For any timeT’, (7) implies thatV (x(T)) < o7-7¢""'V(x(1)). Since (8) impliesr! ("~ <
1, we obtain thatV (x(7") < V(x(1)) for any 7', if the conditions (7) in the theorem are met. From
Definition 2.1, the systen$, is passive. [ |

Remark 3.1:As discussed earlier, the system (5) is locally stable. Ainghtcandidate for/ is the
Lyapunov function for the system. Note that the storage tiandor S may not be the storage function
for the original systens.

Remark 3.2:The choice of¢ ando determines how conservative the condition (8) is. The mummg
and o that satisfy the inequality (7) will result in the least censtive bound.

Remark 3.3:Note that the right hand side of the equation (8) is an inangafsinction of 7". Thus, the
condition on the frequency of Mode 2 becomes progressivesg ktringent. Note also that the condition
does not require a constant ratigl’).

We now prove an intuitive result on the effect of increasif@).

Corollary 3.1: Consider the systeri, with the conditions (7) being satisfied. If the system is pa&ss
with a ratior(7'), it is passive with a ratie’(7") > r(7"). Thus, decreasing the frequency of uncontrolled
time steps preserves passivity.

Proof: At time 7', denote the number of time steps for which the system evapes loop with the

ratio r(7") by 7(r,T") and with the ratio’(T") by 7(r', T"). Conditions (7) yield

V(x(T)) < o770 D7 D=1 (x(1)) and V(x(T)) < o7 70D D=1y (x(1)).

Since the system is passive with rati¢l’), o777 ¢7"T")=1 < 1, The proof follows by noting that

7(r',T) < 7(r, T) and thusg? 70" Dm0 D=1 o T=r(nD)er(nD)=1 1, |



B. Passivity Analysis for the Original System

We now prove that if the zero dynamics are passive, then tlggnal switched systend is locally
passive near the equilibrium poitk(k), v(k)) = (0,0). To this end, we first prove the following result.
Theorem 3.1:Let the systemS, be passive such that the inequalities (7) hold. Furthermetethe
systemsS; evolve from the same initial condition and with the same medéching signal as the system

S,. Then, for the systers, there exists a positive semidefinite storage functigm(k)) = aV (x(k)) > 0
(V(x(.)) = 0 if and only if x(.) = 0, anda > 0), such that for anyI" € Z*, the following inequality is
true in a neighborhood of the equilibrium poift(k), v(k)) = (0, 0).
V(D) =VxD) < Y vik)v(k). 9)
iy

Proof: SincesS, is passive, there exists a positive semidefinite storageiuml’ (x(.)) > 0 (V(x(.)) =
0 if and only if x(.) = 0), such that for any" € Z*, V(x(T)) — V(x(1)) < 0, whenx evolves according
to the switched systei,. For systemsS,, consider the storage functidn(x(.)) = aV (x(.)) for a constant
a > 0. We first prove that with a suitable choice of the constanthis storage function guarantees that,

for every vector sequencgv(k)}, if time £ is such that the modé(k) = 2, then
V("™ (x(k) = V(x(k)) < v (k)v(k). (10)
P(x(k),v(k)) = va(k‘) + V(x(k) = V(YW (x(k)). (11)

We shall prove that)(x(k),v(k)) has a local minimum ak(k) = 0 and v(k) = 0. For notational

convenience, we denote this pair (¥, 0) and suppress the dependencekoof the terms in (11). Thus,

consider the first order derivatives ofx, v) at (0,0). We have fori=1,--- ;n,r=1,--- ,m,
Jp(x,V) B K% B i oV 8f,f(k)(x, V)]
ox; 0ve0 _8@ — 9 ﬁ:(k) ox; —0ve0
i n ) v(k)
Ip(x,V) oy - Z ?V af, " (x,v) .
v, — 9fy v,
x=0,v=0 L h=1 h x=0,v=0

The storage functior/’(x(k)), and hence the functiol(x(k)) = aV(x(k)) has a local minimum at

x(k) = 0 becausé/ is positive semidefinite with/(x) = 0 if and only if x = 0. Moreover, origin is a



local equilibrium of the system; thus, &tk) = v(k) = 0, f¥*®) (x(k), v(k)) = 0. Combining these facts,

we see that

96(x, V) -
axi Y Y

dp(x,v)
ov,

x=0,v=0
Next, we check the elements of the Hessian matrix(©f, v) at (0,0). We have fori,j = 1,--- ,n and

T78:17"'7m7

9*¢(x, v)
8@8@

= a

8@-8@- B i1 8ffj(k)8ﬁv(k) 8@ 8.Tj

x=0,v=0

02V i PV af,ﬂ’“)aﬁ“’f’]
x=0,v=0

h,i=1

Tl |y e M
4 “v(k rv(k .
8'[1,»81} X=0,v=0 3 h( )8fl *) 8ZE'Z 8'[1,» x=0,v=0

Po(x v) PSS b Qi ) ) i
Bo.dv, c A oo™ o ou |

Denotes(x(k)) = d(x(k),0) = a (V(x(k)) — V(f°(x(k))), so that

Po(x,v)
09:j8xi

_ 0%(x)
N 09:j8xz

x=0,v=0

(12)

x=0

Since ¢(x) has a local minimum ak = 0, and by assumption, the determinant of Hessian matrix of
the storage functio'(x) at x = 0 is non-zero, we obtain that the eigenvalues of the Hessiamnixma
of gg(x) at x = 0 are all positive. Denote these eigenvaluesyVv: = 1,2,--- ,n. Furthermore, the
Hessian matrix of%(x) at x = 0 is symmetric and can be diagonalized. Thus, with an appatgdhoice

of coordinates, the Hessian matrix ofx, v) at (0,0) can be evaluated to be of the form

a)\l s 0 abll cee Cl,blm

0 - a\, aby, . abym
(13)

ab11 s Cl,bnl 24 acyp - aCim

abyy, -+ abp,  aCm e 24 acmm




Now, we apply [17, Lemma 12] which states that for> 0 andVa = (0,a), a = min; aj where

2Ny -\, —
a;:min{l, ! 6},j:1,-~',m (24)
o]+ + o]
with0 <e< 1landq, [ =1,---,j being some constants relatedXg b; andc¢,, i =1,--- ,n, r =
1,---,4,1l=1,---, 4, the determinant of matrix (13) is greater than zero. Sgl&striterion now readily

yields that the Hessian matrix of(x,v) at (0,0) as evaluated in (13) is positive definite. Therefore,
¢(x,v) has a local minimum at0,0). Thus, at the times whed(k) = 2, the relation (10) holds.

Summing (10) for all the time stepsin the closed loops, we then obtain the following inequality

D VW) - Vxk) < DY vIk)v(E). (15)
k:d(k)=2 K:d(k)=2

with the equality holds ato, 0).

Whend(k) = 1, systemsS; and S, evolve in an identical manner and therefore (7) yields that

V(O (x(k) = V(x(k)) = V(f(x(k),0)) = V(x(k)) = a(V(f(x(k),0)) = V(x(k)))
< a(C =DV (x(K)). (16)

We now choose: in the interval(0,a) where

Zk:d(k):2 o(x(k), v(k))
a = min el | NT € Z7,

T (¢ —1) X kam=1 V(x(k))

k<T-1

then the following inequality is satisfied,

AN
<
_‘
—~
7
N
<
~—~
w
~—
—~
=
~
~

aC—=1) 3 V) + D VIO R) - Vxk)] <
k:d(k)=1 k:d(k)=2 k:d
k<T-1 k<T-1 k<T-1
since > [V(FO(x(k) — VEx(k)] + 3o [VIFExR) — Vx(k)] = Vx(T) = V(x(1)),
k:d(k)=1 k:d(k)=2
k<T-1 k<T-1
then according to the inequalities (16) and (17), theretexis (0, min(a, a)), such that the inequality
(9) holds with the equality holding if and only {&,v) = (0, 0). [ |
Given this result, we can now establish that passivityspimplies local passivity ofS.

Theorem 3.2:Let systemS, be passive such that the inequalities (7) hold. FurthermetesystemS
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evolve from the same initial condition and with the same medé#ching signal as the systeffy. Then,
the systen® is locally passive.

Proof: Under the stated assumptions, we know from Theorem 3.1dh#ihé systens; there exists a
positive semidefinite storage functidf(x(k)) > 0 with V (x(k)) = 0 if and only if x(k) = 0, such that for
anyT e Z+, V(x(T)) - V(x(1)) < Zkﬂ?f vT(k)v(k). For the systens, consider the storage function

V = pV wherep > 0 is a constant to be suitably designed. Also, define the tgfiy = S, u (k)y (k).
Since bothu(k) andy(k) are bounded in the neighborhoodxaft) = 0 andv(k) = 0, we see that)(T")

is also bounded. Now, there are two cases.
1) If 9(T) > 0, we haveV’(x(T)) — V(x(1)) = p(V(x(T)) — V(x(1))) < p ka2 v (k) v (k). The

k<T—1
n(T)

Lzd(k)=2 V' )V (k)"
k<T—1 ]
2) If n(T) < 0, this corresponds to the case when the sysfeia Lyapunov stable as well. Because

inequality (3) holds if0 < p <

n(T) is bounded, we can guarantee that with a sufficiently largeicehof p (that depends on

x(1) and {v(k)}), the following inequality holdsV (x(T')) — V' (x(1)) = p(V (x(T)) — V(x(1))) <
n(T) =S 1— u"(k)y(k) <0, ¥p > 0, where we choosg

p> M0 (18)

V(x(T)) = V(x(1))

Thus, given anyl’, we can design the constgnt- 0 and the corresponding storage functl%n: oV, p>

0 such that the systei§ is locally passive in the neighborhood ®fk) = 0 andv(k) = 0. u

C. Stability and Interconnections of Passive Systems

We now prove that the Definition 2.1 preserves some of the rlapbproperties of the classical passivity.

Theorem 3.3:If system S is passive and locally ZSD, under a feedback control law ef fibrm
u(k) = —(y(k)) wherey(0) = 0 andy ' (k)¢ (y(k)) > 0, Yy # 0, then the equilibriun{0, 0) is locally
asymptotically stable.

Proof: According to the passivity definition, for every time stepn the closed loop, we have

with equality holding if and only ify(k) = 0. The total increase in the storage function during opendoop

in a period[1, 7] is always bounded (conditions (7)). Under the conuék), we havef/(f(x(T))) -

V(x(1)) <0 i.e., the storage function is non-increasing as comparéil itsi initial value. Therefore, the
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systems is stable asl" — +o0o0. Moreover, according to ZSDy;(7") = 0 implies thatx(7") — 0 and the
system is locally asymptotically stable. [ ]
Theorem 3.4:If two switched nonlinear system$' and S? are both passive, then their parallel and

negative feedback interconnections (as defined in Figuard poth passive.

'S v [ s
I uz 2 I

| 82 | gjou—1> Sl

[ [ _

[ [ :

[ [ |

| +| \

ul u yi4 1y \ Y2

1 St OI ? S2

[ [ \

_______ @ [ () R

Fig. 1. (a) Parallel, and (b) negative feedback intercotioes for two passive switched nonlinear systefilsand S2.

Proof: Let the control inputs forS® be u;(k), the corresponding output be (k) and the storage
function beX:/Z-(k;). For the parallel interconnection, we have for the intensmted systens, the control
input u(k) = u; (k) = uz(k) and the outpuy (k) = yi(k) + y2(k). For S, consider the storage function

V(k) = IZ(I{:) + XZ/Z(k:). For any timeT € Z*, we have

V(x(T)) — V(x(1)) = (Vi (x(T)) — Vi(x(1))) + (Va(x(T) — Va(x(1)))

<D ul(k)yi(k) + ) uj(k)yz(k) < Y u'(k)y(k).

Similarly, for the negative feedback interconnection, ve@ehfor the interconnected systefnthe control

inputs and outputs as (k) = u; (k) + y»(k) andry(k) = uy(k) + y1(k). Consider the storage function

V(k) = Vi(k) + Va(k). For any timeT € Z*+, we haveV(x(T)) — V(x(1)) < 37— (eT(k)y1(k) +
vy (k)ya(k)). n
Remark 3.4:The main results in this section can be shown to hold as lonpeaswitched syster§

satisfies Equation (3) at a given time instdnhtin this case, the value a@f can be chosen as

2 kd(ry=2 P(x(k), v(K))

<T—

(€= 1) Xkag=1 V(x(k))

<T1

a=

This implies a more general case when the increase in stdtag#ion may exceed the accumulated

energy supplied to it at closed loops as well. The results lwarapplied to a periodically controlled
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system that achieves passivity periodically [21].

IV. NUMERICAL EXAMPLE

Consider a closed loop system of the form

z1(k+1) = —0.327 (k)a2 (k) + 1.525(k) + u(k)
wo(k + 1) = 21(k) — u*(k)

y(k) = 2a(k) + u(k),

with the controlleru(k) = —y(k) = —x2(k). Note that the system is locally ZSD and has zero relative
degree. The evolution of the system in Mode 2 is given whéh) = 0. The transformed dynamics
and the zero dynamics remain identical in Mode 2. In Mode &,ttansformed dynamics and the zero
dynamics can be obtained as Equations (4) and (5) in Sedti#n Given the zero dynamics, we choose
a quadratic storage functiovi(x(k)) = x(k)"Px(k) = 2? + 0.52%. We can verify that the determinant
of the Hessian matrix ot/ (x(k)) at x(k) = [0 0]" is not zero. The parameters in the condition (7) are
¢ =2.8 ando = 0.6. According to (8) then,

1.0296(7 — 1)
1.0296 + 0.5108T

r(T) > (19)

would guarantee system passivity. This condition is satisfe.g., by a periodic system in which at every
third time step (i.e., at = 3,6, 9, - - -) the system is in Mode 2. However, the system need not begerio
to satisfy (19). If the system starts in Mode 1, then any comication protocol that guarantees that out
of every 3 consecutive control packets, at most one packebtiglelivered would guarantee passivity.
Thus the maximum allowable transmission interval (MATIRi$22], [23].

The storage functioi (x(k) for the transformed system is chosen0as8V (x(k)) with & = 0.48 and
a = 0.9939. The storage function for the original switched nonlinegstem can be chosen a8V (x(k))
with p = 8 satisfies inequality (18) under the case whg') < 0.

More insight can be obtained if we consider the system toaipesver a finite horizon. Consider the
system operation frorh = 1 to 30. We consider the system to be in Mode 2, i.e., non-passivardicgy to
the classical passivity definition, at time stéps- 4,5,8,9, 11, 14, 15, 16, 19, 20 as shown in Figure 2(a).
Figure 2(b) shows the corresponding passivity inequality the system. We can see that unlike the

classical case, the storage function is now allowed to asgghowever, all the passivity inequalities are
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satisfied at every time till". Figure 2(c) shows the evolution of the state dynamics obthiéched system.

Both states are locally asymptotic stable at the origin.

- Original Switched System Original Switched System Original Switched System
0.05

V(T + 1) = V(x(T)) V(1)) - V(x(1))
= = - Ty (1) ] = = =iy (k)

-8 -0.015 -0.05
12345678 9101112131415161718192021222324252627282930 12345678 9101112131415161718192021222324252627282930 123456 78 9101112131415161718192021222324252627282930

t t t

@ (b) ()

Fig. 2. (a) Passivity check for the switched system in Ex&ndpin the time interva|l, 30] according to classical passivity definition, (b)
Passivity check for the switched system according to thegdized passivity definition (3), and (c) State dynamicshef switched system.

V. CONCLUSIONS ANDFUTURE WORK

We analyzed passivity for a class of discrete-time switaheclinear systems that switch between two
modes - an uncontrolled mode in which the system evolves ty®y and a controlled mode in which a
control is applied to the system. This situation is of instii@, e.g., networked control systems where the
communication network can erase control packets transthtti the plant. For the case when the open
loop system is non-passive, classical passivity theorysidens the switched system to be non-passive
as well. We give a new generalized definition of passivity $ach a system and show that if the ratio
of the time steps for which the system evolves open loop eetise time steps for which the system
evolves closed loop is bounded below a critical ratio, thes $ystem is locally passive in this sense.
Moreover, we show that this generalized definition is ussiinte it preserves two important properties of
the classical passivity concept - that passivity impliggrgstotic stability for zero state detectable systems
using feedback and that passivity is preserved in paratidifaedback interconnections.

There are multiple directions in which this work can be egisgh The most obvious is relaxing the
requirement for systems to have relative degree zero. Memergl hybrid system, including systems with
state dependent and event-triggered switching modes sanbal considered. Finally, networked control

systems with random delays and data loss can also be coegidader this framework.
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APPENDIX
BACKGROUND ON PASSIVITY

Consider a system of the form
, (20)

wherex €¢ X = R", u € U =R" andy € Y = R™ are the state, input, and output variables,
respectively.X, U andY are the state, input, and output spaces, respectikely. Z*, f and h are
smooth. All consideration are restricted to an open s& of U containing the equilibrium poinix*, u*)
havingx* = f(x*, u*). Without loss of generality, it is assumed thHat', u*) = (0,0) andh(0,0) = 0.
Definition A.1. (Dissipative Systems) [18A system of the form (20) is said to lokssipativewith respect

to thesupply ratew € UxY — R if there exists a positive semidefinite functibh: X — R*, V(0) =0,

called thestorage functionsuch that
V(f(x(k),u(k))) = V(x(k)) < w(y(k),u(k)), V(x(k),u(k)) € X x U, Vk.

Note that the above inequality holds if and only if

V(f(x(k),u(k) = V(x(0)) < Y w(y(8),u(®)), V(x(k),u(k)) € X x U, Vk.

Definition A.2. (Passive Systems) [18) system of the form (20) is said to massivef it is dissipative

with respect to the supply rate(y(k),u(k)) = u'(k)y(k). That is,
V(f(x(k),u(k))) — V(x(k)) < u'(k)y(k), Y(x(k),u(k)) € X x U, Vk.

REFERENCES

[1] J. Baillieul and P. J. Antsaklis, “Control and Commuriioa Challenges in Networked Real-Time Systeni®dceedings of the IEEE
vol. 95, no. 1, pp. 9-27, 2007.



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

15

M. Yu, L. Wang, T. Chu, and F. Hao, “An LMI Approach to Netw@d Control Systems with Data Packet Dropout and Transomiss
Delays,”43rd IEEE Conference on Decision and Conjrebl. 4, pp. 3545 — 3550, December 2004.

J. Xiong and J. Lam, “Stabilization of Linear Systems oietworks with Bounded Packet Lossfutomatica vol. 43, pp. 80-87,
January 2007.

J. C. Willems, “Dissipative Dynamical Systems Part I:r@eal Theory,”Archive for Rational Mechanics and Analysi®l. 45, no. 5,
pp. 321-351, 1972.

J. C. Willems, “Dissipative Dynamical Systems Part linkar Systems with Quadratic Supply Rate&ithive for Rational Mechanics
and Analysisvol. 45, no. 5, pp. 352-393, 1972.

H. K. Khalil, Nonlinear SystemsPrentice Hall, 2002.

J. Bao and P. L. LeeRrocess Control: the Passive Systems Appro&pringer, 2007.

X. Koutsoukos, N. Kottenstette, J. Hall, P. J. Antsaklid J. Sztipanovits, “Passivity-Based Control Design @Ggber-Physical
Systems,’International Workshop on Cyber-Physical Systems Chg#lsrand ApplicationsJune 2008.

M. J. McCourt and P. J. Antsaklis, “Stability of Networkéassive Switched Systemd9th IEEE Conference on Decision and Control
pp. 1263-1268, December 2010.

H. Yu and P. J. Antsaklis, “Event-Triggered Real-Timeh&8duling for Stabilization of Passive/Output FeedbacksRe Systems,”
American Control Conferencep. 1674-1679, 2011.

R. Naldi and R. G. Sanfelice, “Passivity-based Comgrsl for a Class of Hybrid Systems with Applications to Meuital Systems
Interacting with their EnvironmentProc. Joint Conference on Decision and Control and Europ€antrol Conferencegpp. 7416-7421,
December 2011.

M. Zefran, F. Bullo, and M. Stein, “A Notion of Passivity for Hytd Systems,"40th IEEE Conference on Decision and Conti2001.
J. Zhao and D. J. Hill, “Dissipativity theory for swited systems,/IEEE Transactions on Automatic Contralol. 53, pp. 941-953,
May 2008.

A. N. Michel and L. Hou, “Relaxation of Hypotheses in Isafie-Krasovskii Type Invariance Result§TAM Journal on Control and
Optimization vol. 49, pp. 1383—-1403, July 2011.

C. I. Byrnes, A. Isidiri, and J. C. Willems, “Passivityeedback Equivalence, and the Global Stabilization of Minh Phase Nonlinear
Systems,"IEEE Transactions on Automatic Contralol. 36, pp. 1228-1240, November 1991.

E. M. Eavarro-LopezDissipativity and Passivity-Related Properties in Noahn Discrete-Time SystemsPhD thesis, Universitat
Politecnica de Catalunya, 2002.

E. M. Eavarro-Lopez and E. Foddas-Colet, “FeedbacksRiy of Nonlinear Discrete-Time Systems with Direct iyDutput Link,”
Automatica vol. 40, no. 8, pp. 1423-1428, 2004.

C. I. Byrnes and W. Lin, “Lossless, Feedback Equivaterend the Global Stabilization of Discrete-Time Nonlin&ystems,"IEEE
Transactions on Automatic Controlol. 39, pp. 83—98, January 1994,

W. Lin and C. I. Byrness, “Passivity and Absolute Staaition of a Class of Discrete-time Nonlinear Systenfsjtomatica vol. 31,
no. 2, pp. 263-267, 1995.

R. C. James and G. Jamédathematics Dictionary Springer, 1992.



16

[21] Y. Wang, V. Gupta, and P. J. Antsaklis, “Passivity Argdyfor Discrete-Time Periodically Controlled SystemA&rherican Control

Conference (ACC)June 2012. under review.
[22] D. Nesi¢c and A. R. Teel, “Input-Output Stability Prenpies of Networked Control System3$EEE Transactions on Automatic Contyol

vol. 49, pp. 1650-1667, October 2004.
[23] X. Wang and M. Lemmon, “Event-Triggering in DistribatéNetworked Control SystemslEEE Transactions on Automatic Contyol

vol. 56, pp. 586-601, March 2011.



