
290 lEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3, JUNE 1992

Concise Papers

A Multilayer Perceptron Solution to the Match Phase
Problem in Rule-Based Artificial Intelligence Systems

Michael A. Sartori, Kevin M. Passino, and Panos J. Antsaklis,

Abstruct- In rule-based artificial intelligence (AI) planning, expert,
and learning systems, it is often the case that the left-hand-sides of the
rules must be repeatedly compared to the contents of some “working
memory.” Normally, the intent is to determine which rules are relevant
to the current situation (i.e., to find the “conflict set”). The traditional
approach to solve such a “match phase problem” for production systems
is to use the Rete Match Algorithm. Here, a new technique using a
multilayer perceptron, a particular artificial neural network model, is
presented to solve the match phase problem for rule-based AI systems.
A syntax for premise formulas (i.e., the left-hand-sides of the rules) is
defined, and working memory is specified. From this, it is shown how to
construct a multilayer perceptron that finds all of the rules which can be
executed for the current situation in working memory. The complexity of
the constructed multilayer perceptmn is derived in terms of the maximum
number of nodes and the required number of layers. A method for
reducing the number of layers to at most three is also presented.

Index Terns-Expert systems, multilayer perceptron, neural networks,
production systems, Rete Match Algorithm.

I. INTRODUCTION
N rule-based artificial intelligence (AI) systems, the problem of I finding which rules are executable from a given set of rules at

different instances in time is often encountered. At each time instant,
the left-hand-side of every rule of a given set of rules is compared
to the dynamically changing “working memory” of the system. The
rules whose left-hand-sides are satisfied by the current working
memory form the “conflict set” at that particular time. The problem
of determining the conflict set from the contents of working memory
at a particular time is referred to here as the match phase problem.
Some of the types of AI systems in which the match phase problem
occurs include rule-based expert, planning, and learning systems.
Typically, in such rule based systems, an “inference engine” or some
other suitable algorithm finds the rules which are executable (in the
“match phase”), chooses one (in the “select phase”), and executes
it (in the “act phase”). This paper focuses on a novel technique
to solve the match phase problem via a multilayer perceptron. The
problem of choosing which rule to execute (e.g., via an inference
engine using certainty factors or fuzzy logic) and the problem of
deciding the manner in which the chosen rule is to be executed are
not addressed here. Also, the actual implementation of such a system
is not treated. The purpose of this paper is to present an alternative
and new approach to performing the match phase for rule-based AI
systems. A brief overview of where the match phase problem is found
in rule-based AI systems is now given and is followed by a brief

Manuscript received October 25, 1989; revised June 4, 1990 and March
6, 1991. This work was supported in part by the Jet Propulsion Laboratory
under Contract 957856.

M. A. Sartori is with the David Taylor Research Center, Bethesda, MD

K. M. Passino is with the Department of Electrical Engineering, Ohio State

P. J. Antsaklis is with the Department of Electrical Engineering, University

IEEE Log Number 9106262.

20084-5000.

University, Columbus, OH 43210.

of Notre Dame, Notre Dame, IN 46556.

description of the Rete Match Algorithm, the conventional solution
to the match phase problem.

A rule-based expert system uses rules, sometimes referred to as
productions or production rules, to represent knowledge and uses
an inference engine to perform the actions of the expert system. In
general, a rule is of the form

IF (antecedent) THEN (consequence) (1)

Customarily, the antecedent is referred to as the left-hand-side, and
the consequence is referred to as the right-hand-side. The working
memory (data memory) contains dynamic data that is compared to
the left-hand-side of the rules. The individual elements of the working
memory are referred to as the working memory elements. The
inference engine performs the comparison of the working memory
elements to the left-hand-sides of the rules, chooses which rules are
executable for the given state of the expert system, chooses one of
the executable rules, and executes it. Often the inference engine is
viewed as having a three phase cycle [l] , [2]:

1) Match: Compare the left-hand-side of all of the rules to the
working memory elements. If the left-hand-side is satisfied,
include the rule in the conflict set, the set of satisfied rules for
the present working memory state.

2) Select: Choose one rule from the conflict set to execute.
3) Act: Execute the rule in accordance with the right-hand-side of

The results obtained here are applicable to rule-based expert
systems in which the match phase can be separated from the select
and the act phases. It is assumed, without loss of generality, that
forward chaining instead of backward chaining is used. Rule-based
expert systems developed with OPS5, EMYCIN, ROSIE, and KEE
as cited in [l] and Level 5 as described in [3] may benefit from a
multilayer perceptron implementation of the match phase as described
in this paper.

The match phase problem is also encountered in rule-based plan-
ning systems and rule-based learning systems. Often, such systems
can be implemented using the same tools that are listed above for rule-
based expert systems. In general, the match phase determines whether
or not certain patterns match, which is equivalent to finding which
formulas in a set of logical formulas are true. Such tasks are executed
by most AI systems including planning and learning systems. Thus,
the results here are generally applicable to the implementation of a
wide variety of AI systems.

Currently, the match phase problem (particularly for rule-based
expert systems) is often solved via the Rete Match Algorithm [4].
If a rule-based expert system’s rules are of the form depicted in (1)
and if the inference engine explicitly follows the three phase cycle,
the rules are referred to as “productions” and the inference engine is
referred to as the “production interpreter.” Of the three phases, the
match phase traditionally consumes the most time of the production
interpreter. Using conventional approaches, a production interpreter
can spend more than 90% of its time in the match phase of the
cycle [4]. The Rete Match Algorithm, introduced in [4] and [5] and
implemented in the OPS5 expert system building tool in [l] , avoids
the brute force approach by manipulating the rules and the working
memory elements to form a software tree structure to increase the
speed of the interpreter. In [5], it was reported that the processing

the chosen rule.

1041-4347/92$03.00 0 1992 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

I

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3. JUNE 1992

-

291

TABLE I
SUMMARIZED RESULTS OF SPECIAL HARDWARE IMPLEMENTATIONS.

Architecture WME Production Hardware
Changes/Sec Cycles/Sec Needed Reference

CMU-PMS 9400 - 32 PS [lo1

DADO 215 85 1023 PE’s [21], [lo]

MAPPS 10000 - 128 PE’s [18]

NON-VON 2000 903 16032 PE’s [18]

Olfazer’s 4500 - 5 1 2 P ~ [lo1

PESA-1 25 000 8000 32 PE’s (191

WME = working memory element. - = not available. Ps = processors.
PE’s = processing elements

time for a production interpreter using the Rete Match Algorithm
for the match phase is dependent on both the number of working
memory elements and the number of rules. For a production system,
if W is the number of working memory elements in the working
memory and A is the number of atomic propositions per rule, the
effect of the working memory size on the time for one firing using
the Rete Match Algorithm is O(1) for the best case and O(WZ4-’)
for the worst case [5] (where the “0” notation denotes “on the order
of‘ and is the standard one defined in [6]). If R is the number of
rules in the production system, the effect of the number of rules on
the time for one firing using the Rete Match Algorithm is O(log, R)
for the best case and O (R) for the worst case [5]. So, the time for
one firing of the match phase using the Rete Match Algorithm is
dependent on both the number of rules and the number of working
memory elements. In the following, it will be shown that when the
proposed multilayer perceptron solution to the match phase problem
is used, the processing time is in fact independent of both the number
of working memory elements and the number of rules.

Since the introduction of the original Rete Match Algorithm, other
algorithms, some of which are based on the Rete Match Algorithm,
have been introduced to increase the speed of the interpreter [7]-[14].
To accelerate the performance of the interpreter in the match phase,
parallel hardware solutions have been developed [lo], [E]-[23]. The
Rete Match Algorithm has also been implemented on a multiprocessor
machine, and an increase in speed was reported for specific rule-based
systems [24]. It should be noted that some of these attempts are based
on the Rete Match Algorithm. These architectures, as reported in the
literature, strive to decrease the time required in the match phase
by attempting to match as many rules as possible in parallel and
by attempting to fire as many rules as possible in parallel. Using
the YES/OPS production system language and advances in the Rete
Match Algorithm, a drop in CPU time was reported in [7]. Using
partitioning of the productions, a reduction in production cycles was
reported in [l l] , [12], and [14]. The results from the literature of using
special hardware are summarized in Table I. The current hardware
implementations cited in Table I use either many processors or many
processing elements.

The method proposed here for the match phase is quite dif-
ferent from the Rete Match Algorithm and the above mentioned
modifications. The novel approach presented in this paper takes
advantage of the inherent parallelism of the multilayer perceptron
by simultaneously matching all of the rules to all of the working
memory elements. By first defining “premise formulas” that represent

the left-hand-sides of the rules, the match phase problem is defined
as the determination of the truth of the premise formulas for the
current working memory. The multilayer perceptron is the vehicle
used to accomplish this. The input to the multilayer perceptron is
the working memory, and the output is the conflict set. The specially
designed multilayer perceptron simultaneously finds all of the rules
which are executable at any particular time by matching all of the
rules in parallel to the current working memory.

The work described in this paper is the first of its kind, and many
future directions stem from this initial investigation. For instance,
there are many different models of artificial neural networks that
could be used for the match phase instead of the chosen multilayer
perceptron. As an example, the multilayer perceptron trained with the
Back Propagation Algorithm of [25] appears promising although there
exist numerous difficulties with such an approach (e.g., convergence,
the number of nodes and the number of layers to use, and a long
training time). Another possible artificial neural network model to use
is the Hopfield model [26]. If the minima of the energy surface can be
chosen such that they correspond to the appropriate selection of rules
given a set of working memory elements, the Hopfield model could
replace the multilayer perceptron proposed here provided that the
global stability of the net is ensured and that the number of spurious
states is minimized. The proposed multilayer perceptron is also rigid
and not fault tolerant. An investigation into alleviating this is a future
direction. One possibility might be to use a Hopfield model instead
of the multilayer perceptron for the match phase. As another future
direction, the use of the multilayer perceptron, or any other artificial
neural network model, to implement the other two phases (i.e., the
select phase and the act phase) is a possibility. Perhaps an artificial
neural network could even be trained to mimic an entire rule-based AI
system. Also, the actual implementation of the solution proposed here
for the match phase problem is an important future direction, as well
as an investigation of the interfacing of the multilayer perceptron
with other hardware. In addition, the automation of the design of
the multilayer perceptron as discussed in Section 111-B could be a
valuable contribution. Next, the contents of the paper are summarized.

In Section 11, premise formulas and the match phase problem are
defined in precise mathematical terms. In Section 111, a procedure
for designing a multilayer perceptron for a single premise formula is
described, extended to one for designing a multilayer perceptron for
a set of given premise formulas, and related to its use as a solution
to the match phase problem. The number of nodes and the number of
layers needed to implement the multilayer perceptron are discussed. A
method to reduce the number of layers in any multilayer perceptron
to at most three and a formula for the number of nodes required
to do so is also presented in this section. Finally in Section IV,
concluding remarks are made including a citing of some of the
potential limitations in using the multilayer perceptron solution for
the match phase. This work is an extension of the research reported
in [27] via the results in [28] and [29]. The artificial neural network
used in the previous work was the model termed the “ProNet,” which
was obtained by modifying the Hamming net of [30]. The multilayer
perceptron was used rather than the ProNet because the multilayer
perceptron is better able to address a greater diversity of types of
rules as well as rules which contain real numbers. A shorter version
of this paper appears in [31], and an example of the forming of
a multilayer perceptron for a particular rule-based expert system’s
rules (the “Monkey and Bananas Problem” [l]) is included in [32],
but excluded here due to space limitations.

11. THE MATCH PHASE PROBLEM
In this section, the premise formulas for the left-hand-sides of the

AI system’s rules are defined, and the match phase problem is defined

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

292 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3, JUNE 1992

Match Phase
Rule Changes I I

I - 1
Fig. 1. The multilayer perceptron implementation of the match phase in a rule-based AI system.

in terms of the premise formulas and the working memory. Rule-
based systems with left-hand-sides which can be described using the
premise formulas described below can have the match phase of their
inference engine performed by a multilayer perceptron as discused
in the following sections.

The following describes the syntax of the premise formulas.
Let IS1 denote the number of elements in the set S. Let A =
{ a1 , a2, . . . , a , } be a nonempty finite set of atomic propositions
a, , where]AI = n. Such propositions will represent facts that are
stored in working memory. Let X C IRp, where IR denotes the set
of real numbers. Each z = [ZI , .CZ, . . . , rPlt E X (where “t” denotes
transpose) represents numeric information in working memory. The
standard Boolean connectives (1 (negation), A (disjunction), and V
(conjunction)) are used. The rules for forming the premise formulas
are as follows:

1) A single atomic proposition a E A is a premise formula.
2) If U is a premise formula, then T U is a premise formula.
3) If U and 4 are premise formulas, then so are (a A 4) and

(U v 9).
4) If z E X, z = [s1,22 ,... ,spit, and T E R, then (2, > T) ,

(sz < T) , (s, 2 T) , and (z~ 5 T) for any I such that 1 5 i 5 p
are premise formulas.

5) Nothing is a premise formula unless it can be obtained by
finitely many applications of 1)-4) above.

If some left-hand-side of a rule has either the Boolean connective
a (implication) or a (equivalence), then the following substitutions
can be made. If u and 4 are premise formulas, then (U + 4) can be
replaced by the equivalent premise formula (T U V 4), and (U a 4)
by the equivalent premise formula ((U A 4) V (-U A 74)). If some
left-hand-side of a rule has either the predicate symbol = (equal)
or # (not equal), then the following substitutions can be made. If
z E X, z = [r~,sp,...,.r~]*, and T E R, then (r , = T) can be
replaced by the equivalent premise formula ((r , 2 T) A (T , 5 r)) ,
and (xl # T) by the equivalent premise formula ((rz > r)V(.r , < T))

for 1 5 i 5 p .
Assume that the working memory for the rule-based system is

composed of atomic propositions a E A and the current working
memory information z E X. The output of the working memory is
specified next. Define the function

I.’ : A + {0,1}

where V (a) = 1 indicates “ a is true” and V (a) = 0 indicates that
“ a is fake.” Let the n-vector wk = [V(al) , V (a 2) L’(a,)It with
components V (a ,) representing the truth values of all of the atomic
propositions at step k . Let Zk E x denote the value of z at step
k . At step k , the output of the working memory is defined to be
the (n +p)-vector uk = [v i , which contains information about
both the truth values of atomic propositions and the numeric values of
the working memory elements. Let U denote the set of all possible
working memory outputs.

= { $ 1 , $ 2 , . . . , dm } denote a finite set of premise formulas.
Let Y C (0, l}m. Number the rules in the rule base from 1 to m. For

Let

the zth rule in the rule base form the premise formula dt and associate
Q~ with a component y2 of yk = [y ~ , yz, . . . , ymIt for 1 5 i 5 m.
If ys = 1 for 1 5 i 5 m, then the premise formula dL is true, and
the ith rule is executable and included in the conflict set. If yt = 0,
then the corresponding rule is not included in the conflict set. Hence,
at step k , yk E Y represents the conflict set.

The match phase problem can be solved by implementing the
function

P : U x + Y . (3)

Here, the focus is on the use of the multilayer perceptron to implement
the function P of (3) (i.e., to perform the match phase in a rule-based
AI system). This is illustrated in Fig. 1. The input to the multilayer
perceptron, which describes the working memory, is the vector uk.
The input vector is compared to the left-hand-sides of the entire set
of rules described by the set 9 which is stored in the multilayer
perceptron as its weights, biases, and interconnections. The output of
the multilayer perceptron is the vector yk, which denotes the conflict
set. Thus, the multilayer perceptron specifies the conflict set yk E Y
at each time instant k for all possible inputs Uk E U and premise
formulas 4 E 9, and hence implements the function P.

Following Fig. 1, from the output vector yk, the conflict set is
placed in a form which is usable by the select phase. The select
phase can be implemented in numerous ways; for an explanation of
some of the possibilities for accomplishing this, see [l], [2], and [33].
Once the rule is chosen by the select phase, it is executed via the act
phase. The execution of a rule causes changes to the working memory.
The vector uk+l is produced by altering the vector v k such that
some of the elements V (a ,) are changed from one to zero (indicating
that a, becomes false) and others from zero to one (indicating that
a, becomes true). The vector zk can also be changed according to
the fired rule to produce the vector ~ k + ~ . So, the working memory
is updated, and the input vector uk is changed to 7 1 k + ~ . The new
input vector uk+l is used as an input to the multilayer perceptron
which gives the output yh+l, and the process is repeated. Next, it
is shown how to construct a multilayer perceptron which implements
the function P and hence solves the match phase problem.

111. A MULTILAYER PERCEF’TRON SOLUTION
TO THE MATCH PHASE PROBLEM

Artificial neural networks are used to perform computations in
a massively parallel fashion. They are processing models which
derive their structure and functionality as an interconnected network
of neurons from models of biological neurons. Each neuron of the
artificial neural network has many inputs and one output. The output
of each neuron is generally considered to be the weighted sum of its
inputs passed through a nonlinear function. The output is then used as
inputs to other neurons. Artificial neural networks are characterized
by the type of neurons used, the way in which the weights are
selected, and the types of interconnections that are allowed between
neurons. Here, a specific artificial neural network called the multilayer
perceptron is used as the model for solving the match phase problem.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

I

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3, JUNE 1992 293

u1

u2

Fig. 2. The multilayer perceptron for two nodes at each layer.

The multilayer perceptron is a feedforward model which is restricted
here so that it is partially connected and also so that it does not
self-adjust its weights or learn.

As discussed at the end of Section I, instead of using the multilayer
perceptron, other artificial neural network models may be used for the
match phase problem, but these do not appear to be as favorable. For
example, the Hopfield network may be considered [26], but because it
uses feedback to determine its output, it requires time to converge to
a minimum. The multilayer perceptron always determines its outputs
immediately since it is a feedforward network with theoretically no
significant delays. Also, if the weights for the Hopfield network
are not chosen properly, spurious states may result. Artificial neural
networks which use unsupervised training, such as the Kohonen
network [34], may not be as useful as the multilayer perceptron
since the input and output relationships for the artificial neural
network are known a priori , and thus the clustering methodology
of the unsupervised training is not needed. Artificial neural networks
that use supervised training, such as the Back Propagation Training
Algorithm applied to the multilayer perceptron [25], also may not
be as useful since the weights for the network can be selected as
explained in Section 111-B, and so the training of the weights of the
multilayer perceptron is not required. The method specified here to
construct the multilayer perceptron takes advantage of the special
nature of the match phase problem. In addition, problems that occur
in learning algorithms that adjust the weights do not occur for the
weight selection procedure proposed here. For example, in the Back
Propagation Training Algorithm, the convergence of the weights does
not always occur, and when they do, it is often after a long time
[25]. In addition, there exist neither rules nor accurate guidelines
for choosing the number of nodes and the number of layers needed
to properly implement the Back Propagation Algorithm. For these
reasons, the multilayer perceptron was judged to be the most suitable
artificial neural network model for use in the match phase. This brief
discussion about artificial neural networks and the various neural
network models is not meant to be encompassing; the interested
reader may examine [30] for further information on a number of
different artificial neural networks used for other applications.

A. The Multilayer Perceptron

The multilayer perceptron is a feedforward artificial neural network
considered here to contain at least one hidden layer between the input
and the output layers. A multilayer perceptron with one hidden layer
and with two nodes in each layer is illustrated in Fig. 2. The output
of one layer is cascaded to the input of the next one. In general, the
input layer feeds the first hidden layer, and the last hidden layer feeds
the output layer. The input of the multilayer perceptron is applied to
the input layer. The input to the multilayer perceptron considered
here is the vector U with components u t , which contains (n + p)
continuous real valued elements. The vector z’ with components z : ,
which contains q binary elements, is the output of the input layer and
the input to the hidden layer. The vector zrr , which contains r binary
elements, is the output of the hidden layer and the input to the output
layer. The vector y with components yn, which contains m binary

(a) (b)
Fig. 3. Threshold nonlinearities for the multilayer perceptron.

elements, is the output of the multilayer perceptron.
In Fig. 2, the nodes are denoted with circles and the biases with

arrows that point downward. The biases on the input layer are denoted
by b, , on the hidden layer by b: and on the output layer by bv. The
weights are denoted by all of the other arrows (which are labeled with
the weights) that are between U and the input nodal layer, between z’
and the hidden nodal layer, and between z” and the output layer. Note
that unlike the traditional three layer perceptron used with the Back
Propagation Algorithm, the input layer can assume nonunity valued
weights. The element wLJ of the (n + p) x q matrix W denotes the
weight on the arc from u t to the node with z: as its output. The q x r
matrix W‘ denotes the weights on the arcs from each 2: to the node
with 2:’ as its output. The r x m matrix W“ denotes the weights on
the arcs from each 2:’ to the node with y, as its output. The weights
on the arcs connecting the output nodal layer to the outputs y2 are
unity. For convenience, if the weight of any arc is zero the arc will
be omitted from the graphical representation of the perceptron, and
if the weight of any arc is unity, the arc will be represented with no
weight denoted.

Each node produces at its output a summation of its weighted
inputs and its bias. This summation is passed through a threshold
nonlinearity. The result is a binary output for each layer. The two
threshold nonlinearities used in this paper are illustrated in Fig. 3,
where fl(z) = 1 if L 2 0 and 0 if 2 < 0 and f ~ (z) = 1 if z > 0
and 0 if z 5 0. In this paper, nodes which use the threshold of Fig.
3(a) are unshaded and those which use the threshold of Fig. 3(b) are
shaded.

The input to the j t h threshold nonlinearity of the input layer,
denoted by i j (k) , is the weighted sum of the inputs added to the
bias

/ M \

(4)

If ft, denotes a threshold nonlinearity of type t (where here t = 1
or 2 following Fig. 3) for the j t h node, then the output of the input
nodal layer is given by

(5)

The outputs of the hidden layers and the output layer are given by
similar relations. With these equations the input-output relationship
for the multilayer perceptron is specified. Using this description of
the multilayer perceptron, the technique to determine the weights,
biases, and number of nodes for the multilayer perceptron used in
solving the match phase problem is given next.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

294 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3, JUNE 1992

-2

(a) (b) (c)
Fig. 4. The multilayer perceptron for premise formulas (a) @a = 70, (b) = ((a1 A az) A Q) , and (c) 4, = ((XI 2. 2) V (22 < -4)) .

B. Construction of the Multilayer Perceptron for the Match Phase

The construction of a multilayer perceptron for one premise
formula is examined first. Given a single premise formula c$ E @,
an artificial neural network is constructed to indicate whether or not
Q is true for a given situation in working memory uk E U. The
construction of the multilayer perceptron has two steps: forming the
nodes and connecting the nodes. The nodes can be one of three types,
each of which corresponds to a different premise formula type (i.e.,
2, 3, and 4 in the rules for forming premise formulas).

Negation of Formulas: For a premise formula formed by rule 2,
form a node with one input and one output. The weight is -1, the
bias is 0.5, and the nonlinearity used is in Fig. 3(a). The network for
the premise formula

Qa = T U (6)

is shown in Fig. 4(a), where U is a premise formula.
Disjunction and Conjunction of Formulas: For a premise formula

defined by rule 3, let U , be a premise formula for i = 1, . . . , j , and
consider premise formulas either of the type (a1 A uz A . . . A U,)
or ((TI V uz V . . . V u ~) . Form a node with j inputs and 1 output.
The weights are unity and the nonlinearity used is in Fig. 3(a). If
the Boolean connector is A, then the bias of the node is - (j - 0.5)
where j is the number of premise formulas in the conjunction. If the
Boolean connector is V, then the bias of the node is -0.5 no matter
how many formulas are in the disjunction. The network formed for
the premise formula

is shown in Fig. 4(b), where 01, UZ, and 03 are premise formulas.
Relational Formulas: For a premise formula formed by rule 4 of

the syntax (e.g., (2, > r) , (s, < r) , (T , 2 r) , and (I, 2 r)
for 1 5 i 5 p , where z = [s1.~2,...1~]~ and r E IR) form a
node with one input and one output. Connect the node’s input to
the appropriate element of the vector z in the input vector U of the
multilayer perceptron. If the predicate symbol is > or 2, then the
weight is 1 and the bias is --T. If the predicate symbol is < or 5, the
weight is -1 and the bias is r . If the predicate symbol is 5 or 2, use
the nonlinearity of Fig. 3(a). If the predicate symbol is < or >, use
the nonlinearity of Fig. 3(b). The network for the premise formula

is shown in Fig. 4(c), where z E X, z = [X I . 221‘.

Once the nodes of the multilayer perceptron are formed, the
connections between them are specified by an inductive process.
The output of the node describing the outermost parentheses of the
premise formula is the output of the multilayer perceptron. Let this
node be the first layer (i.e., the output layer). The connections between
the first layer and the second layer (i.e., the last hidden layer) are made
between the inputs of the first layer’s node and the outputs of the
nodes formed for the premise formulas of the second layer. If the first
layer’s node requires an element of the input vector as an input, the
appropriate connection between the input vector and the node’s input

0.5

a
1

0,5 \ -0.5

a2

a3

x1

Fig. 5. The multi-layer perceptron for the premise formula of (9).

is made. Next, the connections between the first and second layer and
the third layer (i.e., the second to the last hidden layer) are made. If
the second layer’s node requires an element of the input vector as
an input, the appropriate connection between the input vector and
the node’s input is made. This process continues for each successive
layer until all inputs for all nodes are connected. Notice that given
any premise formula, the method used here to form the nodes and the
interconnections of the multilayer perceptron can be mechanized. The
entire process for constructing a multilayer perceptron for a premise
formula is illustrated in Fig. 5 with the premise formula

$9 = ((ai A (2 1 < - T I)) V ai A a z) V -ai V a31 (9)

where A = { a l , a z r a 3 } and z = [XI].

Using the steps detailed above to produce a neural network for
an individual premise formula, the multi-layer perceptron for every
premise formula C#J E @ is formed by repeating the above procedure
for every premise formula. If two or more premise formulas share
a similar premise formula, the node for that premise formula can
be shared by the other premise formulas. For example, if premise
formulas 09 and

910 = (-(a1 A a z) V a31 (10)

are given, the node formed for the premise formula -(a1 A a2) can
be shared by the multilayer perceptrons constructed for both 9 9 and
610. Thus one combined multilayer perceptron implements all of the
premise formulas in the set a. Notice that the possibility exists for
automating the development of the multilayer perceptron once the set
@ of premise formulas is given, but this is left as a future research
direction.

As stated in Section I, the time for the multilayer perceptron to
process the match phase is independent of both the number of working
memory elements and the number of rules. Using the multilayer
perceptron solution to the match phase problem, the working memory
size does not affect the time required to perform the match phase.
This is the case because the working memory is processed in parallel
as the input vector U k of the multilayer perceptron, and thus the
working memory size does not affect the time required to process the
match phase. In addition, the number of rules (premise formulas) also

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

I

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VI&. 4, NO. 3, JUNE 1992

~

295

does not affect the time required to perform the match phase since the
truth value of the rules with regard to the current working memory
are represented as the parallel elements in the output vector yk of
the multilayer perceptron. If the multilayer perceptron is physically
implemented, only the number of layers adversely affects the time
needed for the multilayer perceptron to process. This problem is
addressed in Section 111-C.

Given any premise formula, the maximum number of nodes needed
to implement the premise formula with a multilayer perceptron can
be found. This is accomplished by using the function

: @ + IR (11)

which is defined to represent the maximum number of nodes needed
to implement the match phase for one 6 E @. Let 0, a , and 9 be
premise formulas.

1) If 4 = n where n E A, then W (4) = 0.
2) If 9 = l a , then X(O) = 1 + -V(a) .
3) If o = (a V 9) or 9 = (a A s) , then N(@) = l + Y (a) + A 7 (Q) .
4) If o = (s , A r) where x = [S~.T~.....S~]~. 1 5 i 5 p , r E

The number S (0) does not include subtracting the number of
nodes shared by premise formulas. Hence, the number AV(@) is
the maximum number of nodes needed to implement a multilayer
perceptron for the premise formula @. Using (9) as an example,
N (4 9) = 6. Clearly, the maximum number of neurons needed to
implement the function P for the entire match phase is given by

IR , and A E {<,>.<.>}, then = 1.

-

If = {&,OIO}, then

If the node for the premise formula -.(a1 A (12) is shared by 09

and 410, then the actual number of nodes needed to implement the
multilayer perceptron is 8, which is less than the maximum predicted
in (13).

The match phase problem as formulated here appears to be
implementable with standard logic gates. This is not true since
premise formulas following rule 4 of the syntax are allowable. If
premise formulas following rule 4 are not allowed, then clearly
this solution to the match phase problem can be implemented using
Boolean logic gates. The multilayer perceptron proposed here is also
similar to the threshold logic circuits (networks) described in [35],
except that in these circuits the theory only allows a finite number
of discrete inputs. However, such threshold logic networks could be
used to implement the match phase.

C. Reducing the Number of Layers in the Multilayer Perceptron

One problem with the multilayer perceptron solution is the potential
for many hidden layers in the multilayer perceptron. For example, a
multilayer perceptron which implements the premise formula

0 1 4 = ((((l a A b A e A (d 2 5)) V e) A f) V g) (14)

where A = { U . b. c. e, f, g} and x = [d] would require five layers
and six nodes. The more layers a multilayer perceptron has, the
longer it will take the multilayer perceptron to process an output.
If a fast processing time is an important design criterion for the
finding of the conflict set, then any possible reduction in the number
of layers needed to implement the multi-layer perceptron should be
used (provided that it does not require the addition of too many more
nodes).

One way to reduce the number of layers is to place all of
the premise formulas in an equivalent disjunctive or conjunctive
normal form. By doing this, the maximum number of layers for any
premise formula is guaranteed to be at most three. This however may
increase the number of nodes per layer. Regardless of this possible
increase, the processing time for the multilayer perceptron will not
increase beyond that of one with three layers and a single node
per layer. Intuitively, converting premise formulas to a disjunctive
or conjunctive normal form places the premise formulas in a form
most suitable for exploring the parallel processing capabilities of the
multilayer perceptron in finding the conflict set.

By using existing algorithms, a premise formula can (off-line) be
placed in disjunctive or conjunctive normal form [36]. Note that the
algorithm in [36] does not produce a unique disjunctive or conjunctive
normal form. In using these algorithms, treat both a single proposition
symbol a E A as a proposition symbol and a premise formula (cc,Ar)
wherez E X,x= [Z I , X Z , . . . , X ~] ~ , T E IR,and A E {<,>,>,<}
for 1 5 i 5 p is a proposition symbol. If 0, = -.(ztAr) is a
resultant premise formula, then interchange < with 2; and > with 5;
and remove the negation. For example, (zI 2 T) becomes (zc < T) .

Following the algorithm in [36], an equivalent disjunctive normal
form for the premise formula in (12) is

(15) 0 1 4 d = ((~ a A b A c A (d 2 5) A f) V (e A f) V g) ,

and an equivalent conjunctive normal form is

4 1 4 ~ =((-.a V e V g) A (b V e V g) A (c V e V g)

A ((d 2 5) v e v 9) A (f v 9)). (16)

Finding the number of layers and the maximum number of nodes
needed to implement the premise formulas of (15) and (16) with a
multilayer perceptron, both equations require a three layer perceptron
and, using the function N in (l l) , N(d14d) = 5 and N (4 1 4 ~) = 8.
For this example, the disjunctive normal form requires less layers and
less nodes compared to the original form (14), while the conjunctive
normal form needs less layers and more nodes. As another example,
a disjunctive and a conjunctive normal form for the premise formula

417 = ((((l a V b V c V (d 2 5)) A e) V f) A g) (17)

are

and

respectively. If all three were implemented with multilayer percep-
trons, $17 would require five layers while and c$lic would
require only three, and N(417) = 6 while N (4 1 7 d) = 8 and
N (d l i c) = 5. In this example, the disjunctive normal form requires
less layers and more nodes compared to the original form, while the
conjunctive normal form needs less layers and less nodes. These two
examples illustrate that placing a formula in either a disjunctive or
conjunctive normal form reduces the number of layers to a maximum
of three but does not necessarily guarantee a reduction in the total
number of nodes.

Next, for a premise formula already in the disjunctive or con-
junctive normal form, the maximum number of layers required for
the premise formula's multilayer perceptron is shown to be three,
and the maximum number of nodes needed is explicitly stated. If
a premise formula 4 d E @ is in disjunctive normal form, then

1 5 i 5 k , and ,!%,3 = a or pt,3 = -.U where a E A for 1 5 j 5 h,
@ d = (71 v "12 v ' .. v Yk) ,Yz = (pt ,~ A p z , ~ A A Ps,hr) for

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

296

a1

a2

x 1

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3, JUNE 1992

0.5 0.5

4 2 1

a l

a2

x1

(a) (b)

Fig. 6. The multilayer perceptrons for (21) and (22).

or ,Jt,, = (. r T A r) where z E X, z = [X I . J'L.. I.,]'. r E IR,
and A E {<.>.<.>} for 1 5 j 5 h , and for 1 5 T 5 p . For
further simplification, if ,J,,, = l(,r t Ar), interchange the appropriate
predicate symbols and remove the negation as described above.
Therefore, if the premise formula is in disjunctive normal form, a
maximum of three layers are needed in the multilayer perceptron:
the output layer for the disjunction of formulas, one hidden layer for
the conjunction of formulas, and the input layer for the negation of
formulas and relational formulas. The number three is a maximum
since a premise formula is not required to have a conjunction, a
disjunction, and either a negation or a relational formula in its
structure.

Using (12), the maximum number of nodes needed by a premise
formula in disjunctive normal form is derived. The output layer has
one node with k inputs corresponding to the conjunction of the
premise formula, so

- y (O d) = 1 + - \ - (- ; 1) + - \ - (- ~ 2) + . " + - \ - (- , h .) .

The hidden layer has a maximum of k nodes with 1 1 , inputs for
1 5 i 5 k for each node corresponding to the disjunctions of premise
formulas, so

The input layer has a maximum of (h l + ha + . . . + l t k) one input
nodes where each node either corresponds to a negation of a premise
formula or a relational premise formula. Thus, the maximum number
of nodes needed to implement a premise formula in disjunctive
normal form is

- V (O ~) = 1 + [I + h i] + [I + h z] + . . . + [1+ hk.1
k

= 1 + k + E h , . (20)
1=1

As an example, the formation of a multilayer perceptron for a premise
formula in the disjunctive normal form is illustrated in Fig. 6(a) for
the premise formula

021 = ((T a l A 0 2) V l a 2 V (, r 1 > - .5)) (21)

where A = { u l . a 2 } and z = [.1.1].

is in conjunctive normal form, then
O, = A -lz A . . . A - , k) , 7 t = (,j l . l V , J , 2 V . . . V , J z , / L l) for
1 5 i 5 k , and #Jz,, for 1 5 j 5 h , are the same as above for the
disjunctive normal form. Clearly, as stated above for the disjunctive
normal form, if the premise formula is in conjunctive normal form, the
multilayer perceptron has a maximum of three layers: the output layer

If a premise formula 0,- E

for the conjunction of formulas, one hidden layer for the disjunction
of formulas, and the input layer for the negation of formulas and
relational formulas. In addition, the maximum number of nodes which
are needed to construct a multilayer perceptron for a conjunctive
normal premise formula, -\-(a), is given by (20). As an example,
the formation of a multilayer perceptron for a conjunctive normal
form premise formula is illustrated in Fig. 6(b) for

0 2 2 = ((1 0 I V (fl) A l c f l A (X I 2 3)) (22)

where A = { u 1 . n 2 } and z = [. r ~] .
So, given a premise formula, it has been shown that the number

of layers in the multilayer perceptron implementation can be reduced
to at most three if the premise formula is placed in a disjunctive
or conjunctive normal form. In doing this, the processing time for
the conflict set is inherently decreased if the number of layers in the
original premise formula was greater than three. Although the number
of layers can always be decreased to three or less, the possibility of
increasing the number of nodes per layer may exist.

IV. CONCLUDING REMARKS
This paper presented the use of a multilayer perceptron to perform

the match phase of rule-based AI systems (which include rule-based
expert, planning, and learning systems). Using the proposed approach,
the match phase is performed by matching in parallel all of the rules
to all of the working memory elements. The result is the formation of
the conflict set for the current situation of working memory. Given
a set of rules with left-hand-sides following the prescribed syntax,
the construction of a multilayer perceptron which implements the
match phase was described. In addition, a formula for the maximum
number of nodes needed to implement the multilayer perceptron
and a procedure to reduce the number of layers of the multilayer
perceptron were also given. The multilayer perceptron match. phase
approach was compared to a conventional match phase interpreter for
production systems, the Rete Match Algorithm. As an example, the
process for forming the multilayer perceptron is illustrated using a
rule-based expert system in [32]. Next, some potential limitations to
the multilayer perceptron approach are discussed.

Comparing the types of rules used by the multilayer perceptron
match phase to the types of rules used by the Rete Match Algorithm
match phase, the multilayer perceptron approach is able to represent
many rules that can be described in OPS5. This approach can thus
be used as the match phase for many production systems which have
been described using OPS5. For a description of OPS5 rules, see [l] .
To use the multilayer perceptron approach, an OPS5 rule's left-hand-
side needs to be transformed into the appropriate premise formula.
One limitation of this approach is that the left-hand-side of an OPS5
rule cannot contain certain variables (for example, a symbolic variable
which takes on an infinite number of values). This limitation can
be overcome, however, if these variables can be redefined so that

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

I

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 3, JUNE 1992

~

297

they take on only a finite number of values, and new rules formed
per the finite values. Hence, the multilayer perceptron approach can
implement the matching of variables for this case, but the number of
new rules may become large, which does not decrease the speed of
the multilayer perceptron but does increase its size.

Another potential limitation of the multilayer perceptron solution
to the match phase problem, as well as another difference between
the two match phase implementations (the multilayer perceptron
and the Rete Match Algorithm), is the procedure for the adding of
new working memory elements and new rules (sometimes referred
to as “learning rules” or “automatic knowledge acquisition”) while
the inference process is executing. The Rete Match Algorithm uses
extensive changes in its underlying software tree structure to represent
added working memory elements and rules (as well as deleted rules).
When a completely new working memory element or rule is added
using the multilayer perceptron approach, new arcs, nodes, weights,
and biases are augmented to the existing multilayer perceptron as
required by the new working memory element or rule. (In a similar
manner, old rules can be deleted by removing the appropriate parts of
the multilayer perceptron.) When a new working memory element or
rule is added, the time for the multilayer perceptron to process may
not be affected because the depth of the network may not increase,
but the size of the neural network will increase. If a rule needs to be
changed, arcs, nodes, weights, and biases associated with the changed
rule are affected, and the time and space required by the multilayer
perceptron may increase. If the multilayer perceptron is implemented
with hardware, as discussed in the future directions section of the
Introduction, the adding, changing, or even deleting of a rule could
be costly. For this reason, a rule-based AI system which requires a
fast match phase should first be developed using software. Then once
it is in its final form, the rule-based AI system can be implemented
with a multilayer perceptron for greater processing efficiency.

REFERENCES

[l] L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Ex-
pert systems in OPS5: An Introduction to Rule-Based Programming.
Reading, M A Addison-Wesley, 1985.

[2] B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert Systems. Read-
ing, MA: Addison-Wesley, 1984.

[3] Level 5 Expert System Software, Information Builders Inc., New York,
NY, 1989.

[4] C. L. Forgy, “On the efficient implementation of production systems,”
Ph.D. dissertation, Dep. Comput. Sci., Carnegie-Mellon Univ., Feb.
1979.

[5] -, “Rete: A fast algorithm for the many pattern/many object pattern
problem,” Art$ Intell., vol. 19, pp. 17-37, 1982.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms.

[7] M. I. Schor, T. P. Daly, S . L. Ho, and B. R. Tibbitts, “Advances in Rete
pattern matching,” in Proc. I986 Nut. Conf: Artif Intell., 1986, pp.
226-232.

[8] S. J. Stolfo, “Five parallel algorithms for production system execution
on the DADO machine,” in Proc. Nut. Conf Artif Intell., 1984, pp.

[9] D.P. Miranker, “Performance estimates for the DADO machine: A
comparison of TREAT and RETE,” in Proc. Int. Con$ Fifrh Generation
Comput. Syst., 1984, pp. 449-457.

[101 A. Gupta, C. L. Forgy, A. Newell, and R. Wedig, “Parallel algorithms
and architectures for rule-based systems,” in Proc. 13th Int. Symp.
Comput. Architecture, 1986, pp. 28-37.

Reading, M A Addison-Wesley, 1974.

300 -307.

(111 T. Ishida and S. Stolfo, “Toward the parallel execution of rules in pro-
duction system programs,” in Proc. 1985 Int. Conf Parallel Processing,
1985, pp. 568-575.

[121 K. Oflazer, “Partitioning in parallel processing of production systems,”
in Proc. I984 Int. Conf: Parallel Processing, 1984, pp. 92-100.

[13] D.I. Moldovan, “A model for parallel processing of production sys-
tems,” in Proc. IEEE Int. Conf Syst., Man, Cybern., 1986, pp. 568-573.

[14] M. F. M. Tenorio and D. I. Moldovan, “Mapping production systems into
multiprocessors,” in Proc. I985 Int. Conf: Parallel Processing, 1985,
pp. 56-62.

[15] H. Won, “On parallel processing of universal rule based expert system,”
in Proc. 1987 Western Con5 Expert Syst., 1987, pp. 136-143.

161 C. Forgy, A. Gupta, A. Newell, and R. Wedig, “Initial assessment of
architectures for production systems,’’ in Proc. 1984 Nut. Conf Artif
Intell., 1984, pp. 116-120.

171 C. Forgy and A. Goopta, “Preliminary architecture of the CMU produc-
tion system machine,” in Proc. Nineteenth Annu. Hawaii Int. Conf: Syst.
Sci., 1986, pp. 194-200.

181 A. 0. Oshisanwo and P. P. Dasiewicz, “A parallel model and architecture
for production systems,” in Proc. I987 Int. Conf: Parallel Processing,
1987, pp. 147-153.

[19] F. Schreiner and G. Zimmermann, “PESA 1-A parallel architecture
for production systems,” in Proc. 1987 Int. Conj Parallel Processing,
1987, pp. 166-169.

[20] R. Ramnarayan, G. Zimmermann, and S. Krolikoski, “PESA-1: A
parallel architecture for OPS5 production system,” in Proc. Nineteenth
Annu. Hawaii Int. Con5 Syst. Sci., 1986, pp. 201-205.

[21] S. J. Stolfo and D. P. Miranker, “DADO: A parallel processor for expert
systems,” in Proc. 1984 Int. Conf: ParallelProcessing, 1984, pp. 74-82.

(221 A. Gupta, “Implementing OPS5 production systems on DADO,” in Proc.
1984 Int. Conf: Parallel Processing, 1984, pp. 83-91.

[23] D. E. Shaw, “NON-VON: A parallel machine architecture for
knowledge-based information processing,” in Proc. Seventh Int. Joint
Conf: Art$ Intell., 1981, pp. 961-963.

[24] A. Gupta, C.L. Forgy, D. Kalp, A. Newell, and M. Tambe, “Parallel
OPS5 on the Encore Multimax,” in Proc. 1988 Int. Conf: Parallel
Processing, vol. 1, 1988, pp. 271-280.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructrure of Cognition. Vol. I : Founda-
tions, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, M A
MIT Press, 1986.

[26] J. Hopfield, “Neurons with graded response have collective computa-
tional properties like those of two-state neurons,’’ Nut. Acad. Sci., pp.
3088-3092, May 1984.

[27] M. A. Sartori and P. J. Antsaklis, “Neural computing and production
systems,’’ in Proc. Third Annu. Symp. Intell. Contr., Aug. 1988.

[28] K. M. Passino, M. A. Sartori, and P. J. Antsaklis, “Neural computing
for numeridsymbolic conversion in control systems,” IEEE Contr. Syst.
Mag., Apr. 1989, pp. 44-52.

[29] -, “Neural computing for information extraction in control systems,’’
in Proc. Twenty-Sixth Annu. Allerton Conf: Commun., Contr., Comput.,
Univ. of Illinois at Urbana-Champaign, Sept. 1988, pp. 1172-1180.

[30] R. P. Lippmann, “An introduction to computing with neural networks,”
IEEE ASSP Mag., Apr. 1987, pp. 4-22.

[31] M.A. Sartori, K.P. Passino, and P. J. Antsaklis, “Artificial neural
networks in the match phase of rule-based expert systems,” in Proc.
Twenty-Seventh Annu. Allerton Conf: Commun., Contr., Comput., Univ.
of Illinois at Urbana-Champaign, Sept. 1989.

[32] -, “An artificial neural network solution to the match phase problem
of rule-based artificial intelligence systems,” Tech. Rep. 89-09-02, Dep.
Elec. Eng., Univ. of Notre Dame, Sept. 1989.

[33] J. McDermott and C. Forgy, “Production system conflict resolution
strategies,” in Pattern-Directed Inference Systems, D. A. Waterman, F.
Hayes-Roth, Eds.

(341 T. Kohonen, “Self-Organization andAssociative Memory, 2nd ed. New
York: Springer-Verlag, 1988.

[35] Z. Kohavi, Switching and Finite Automata Theory. New York:
McGraw-Hill, 1978.

[36] E.J. Lemmon, Beginning Logic.

New York: Academic, 1978.

Indianapolis, IN: Hackett, 1978.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:18 from IEEE Xplore. Restrictions apply.

