
Obelisk: Summoning Minions on a HPC Cluster

Abstract
In scientific research, having the ability to perform rigorous calculations in a bearable
amount of time is an invaluable asset. Fortunately, the growing popularity of distributed
systems at universities makes this a widely accessible resource. However, in order to use
such computing resources, one must understand Linux, parallel computing, and distributed
systems. Unfortunately, most people do not have the time or patience to learn these skills,
indicating that the high performance computing (HPC) cluster has not been abstracted far
enough. The purpose of Obelisk is to facilitate the submission of jobs via an intuitive web
interface, making HPC clusters accessible to all. With the Obelisk web portal, users select
a scientific application, configure parameters, and submit their task to the Obelisk manager.
This will in turn translate the request to a batch job on the HPC cluster and provide the user
with progress information via a status page. Using Obelisk, novice users no longer need to
know the arcane incantations necessary to harness the power of HPC minions and instead
can utilize a straightforward wizard interface.



1 Introduction
To someone that is familiar with Linux, parallel computing, and distributed systems, mak-
ing a high performance computing (HPC) cluster do your bidding is relatively straightfor-
ward: you simply need to know the right commands! However, most people do not have
this type of specialized knowledge, nor should they be expected to learn the seemingly
magical incantations necessary to harness the power of multiple machines. For this reason,
it is almost necessary that a bridge be built between users and the cluster if the awesome
power of HPC systems is to be unleashed. The purpose of our project, Obelisk, is to build
this bridge and to connect users and HPC systems through an intuitive web interface that
automates the creation, submission, and retrieval of scientific computing tasks.

2 Design
An overview of Obelisk is shown in Figure 1. Rather than dealing with arcane Unix com-
mand shells and fighting daemons, Obelisk allows users to simply transcribe their
computational goals and summon minions to perform their bidding via a responsive and
easy-to-use web application.

Figure 1: Obelisk Overview

2.1 Wizard
Often times, when a person wants to perform a task (ie. run a program) on an HPC Cluster,
they know what they want to do, but don’t know how to do it. This is where Wizards
come into play. When a user opens the Obelisk web application, they will confront a list
of predefined applications available on the HPC system. Upon selection of one of these
applications, the user will be redirected to a web page containing a dynamically generated

1



form containing various input fields, such as numbers, strings, files, and check-boxes. Each
of these fields represents parameters for the command the user wishes to execute, and
includes descriptions of their purpose.

Figure 2: Wizard Page

An example of a simple Wizard is shown in Figure 2. As can be seen, each Wizard consists
of a set of Elements specific to the task being specified along with a set of Resources
which define the computational resources required from the HPC system. After filling out
the form, the user may complete the Wizard and continue onto the next step by clicking the
Transcribe button.

2.2 Scroll
When the user clicks on Transcribe, the values in the form are set to the Obelisk web
application, where the data is parsed and analyzed to generate a script that can be under-
stood by the HPC Cluster’s batch system. In Obelisk, this materialized script is referred to
as a Scroll and contains all the necessary magical incantations for executing the user’s
specified job. After this script is generated, the application redirects the user’s web browser
to the corresponding Scroll page as shown in Figure 3. From here, the user can verify
the results of the transcription process and ensure Obelisk has interpreted their intentions
correctly. When the user has approved of the script, they may click Summon to bring the
Scroll to life in the form of a Minion.

2



Figure 3: Scroll Page

2.3 Minion
After summoning a Scroll, the user will be redirected to a Minion page. A Minion is
essentially a personification of a HPC cluster batch job. That is, a Minion corresponds
to a running task in the HPC job scheduler. Each Minion has a workspace, status, and
output. The user can easily check on a job status by consulting with their Minion. When
the Minion has completed the Scroll, its status will be changed to complete, and the
output files will be available for download or viewing as shown in Figure 4.

Figure 4: Minion Page

In summary, in order to mask the complexity of traditional HPC systems, Obelisk provides
an intuitive web interface that allows users to employ Wizards to transcribe Scrolls,
which in turn are used to summon Minions to perform their desired computational tasks.

3



3 Implementation
To implement Obelisk, we used a number of different web development and HPC tech-
nologies. The Obelisk web application itself is written in Python and the Tornado web
framework [4]. It is structured as a RESTful [5] web service that receives HTTP requests
(i.e. GET and POST methods) and processes them via handlers to perform the appropriate
actions. For the front-end user interface, Obelisk utilizes Bootstrap and JQuery to mediate
the interactions between users and the RESTful backend. All of the this activity is tracked
and recorded in a database using the SQLite library, making information pertaining to jobs
readily available to users and the program itself. Finally, batch jobs are submitted and
managed by Torque, an open source project that is often used in HPC clusters for resource
management and allocation. The following is a detailed explanation of how all these com-
ponents are integrated within the Obelisk to achieve the actions described previously in the
Design section.

3.1 WizardHandler
The user begins the process of submitting a job with Obelisk by making a HTTP GET re-
quest to the /wizard/ endpoint. Internally, this is processed by the WizardHandler,
which in this case produces a list of Wizards that the user may run. These Wizards
are generated dynamically from information inside of a collection of YAML files stored
remotely on the web server. When the user selects a Wizard, they are redirected to
/wizard/wizard-name.

Figure 5: Wizard Handler

Once again, this page is handled by the WizardHandler, which parses the correspond-
ing YAML file and produces an HTML form with inputs that determine parameters like re-
sources allocated, queue name, error and output file names, and parameters for the com-
mand to be run. When the user clicks Transcribe, the form is sent back to /wizard/

4



via a POST and its values are converted into a batch script, also called a Scroll, that can
be understood by Torque. This Scroll is stored in a unique directory dedicated to that
Scroll that contains the script and any files uploaded by the user. Likewise, an entry for
the Scroll is recorded in the database which tracks the Scrolls name, path, creation
time and modification time. Once all of this information is stored, the user is then redi-
rected to the Scroll’s page and its contents are displayed. This whole process is outlined
in Figure 5.

3.2 ScrollHandler
As with the Wizards, a list of Scrolls can be viewed at /scroll/, which is pro-
cessed by the ScrollHandler. When the user selects a Scroll from the listings, they
are redirected to /scroll/scroll-id, where they can view the content of the Scroll
and choose to execute the script by clicking Summon as shown in Figure 6. When this but-
ton is clicked, a POST request is made to the current page, and the job is submitted to a
queue with the Torque command, qsub.

Figure 6: Scroll Handler

Before submitting the job to Torque, however, the ScrollHandler will first create a
unique Minion directory and copy the contents of the Scroll directory to this new
Minion workspace. Once this is accomplished, Torque’s qsub command is invoked with
the Scroll generated previously and the current working directory is set to the Minion’s
directory. This approach to materializing new directories for the Scroll and the Minion
allows users to summon multiple Minions from the same Scroll without worrying
about overwriting previous results. Moreover, having separate Minion workspaces pro-
vides sandboxing and isolation for concurrently running batch jobs.

5



3.3 MinionHandler
Like the other handlers, the MinionHandler provides a list of Minions that can be
viewed by going to /minion/. The status and output of any Minion can be viewed by
going to /minion/minion-id as shown in Figure 7. The progress of each Minion
is updated by a timer that periodically executes qstat on the user’s jobs, and the output
files are contained inside of the Minion workspace. When a file is selected, the user is
redirected to an additional MinionFileHandler that serves the file based on its MIME
type.

Figure 7: Minion Handler

3.4 Database
As mentioned above, Obelisk keeps track of Scrolls and Minions with database tables
managed by SQLite. The Scrolls table includes the name, id, path, creation time, and
last modification time of every Scroll. A new row is added every time the user creates
a scroll and the number of times it is used is determined by the number of Minions
with said Scroll as a foreign key. Likewise, a new Minion is added every time the
user summons a Scroll. The Minions status and finish time are updated by the timer
described in the Minion handler section.

This timer process is shown in Figure 8. Once every 5 seconds, the updater is activated
and calls Torque’s qstat command with the user’s UID to only get a listing of the user’s
jobs. This information is then parsed for the Torque job id, job status, and completion time.
If these fields are found, then the job id is used by the updater to lookup the correspond-
ing Minion and update the appropriate job status and completion time. Because of this
approach, Obelisk can accurately report the status of each Minion, even in the cases of
application failure.

6



Figure 8: Database Updater

3.5 DashboardHandler
To tie all of this information together is the DashboardHandler, which provides an
overview of the Wizards, Scrolls, and Minions available on the user’s instance
of Obelisk. From this landing page, the user can jump immediately to a Wizard page
to Transcribe a new Scroll, a Scroll page to Summon a new Minion, or a
Minion page to view the progress of their work.

3.6 Deployment
Currently, to deploy and start Obelisk, a user needs to checkout the source code from our
Bitbucket repository: https://bitbucket.org/pbui/obelisk. Once they have
the source code and have installed the necessary dependencies (ie. Python and Tornado),
they can start it by executing the command python obelisk on the HPC submit node.
When this command is invoked, the web application will be started and the IP address
and port number will be displayed to the user. At the moment, there are no security or
authentication measures implemented, although that is on our list of future improvements.

The benefit of this approach is that it was simple and straightforward, while allow us to
avoid the complications of user authentication and system security. Since the Obelisk ap-
plication is executed by the owner, any jobs submitted to the HPC batch system are also
tied to the user. Unfortunately, the current method of starting Obelisk breaks the facade of
a magical web portal for summoning minions, so we hope to create a system for managing
user instances of Obelisk in the future. This new system will allow users to avoid manually
deploying and invoking Obelisk; instead they would use the a portal setup by the system
administrator for accessing their Obelisk session.

7



4 Evaluation
We have tested the functionality of Obelisk and verified that it in fact works correctly. We
will continue to add more features and fix bugs, but for now we will focus on getting more
Wizards available for demonstration and use. In the future, we will work with domain
scientists and have science faculty and students utilize our project to summon minions for
class assignments and research experiments. In doing so, we will collect data that allows
us to determine the effectiveness of Obelisk and find ways to improve the user experience.

To test Obelisk, we took applications that are typically ran by faculty and students on our
local HPC cluster, and converted them into Obelisk Wizards. By doing so, we were
able to verify that Obelisk is applicable to their computational needs and works properly.
One of these programs is Gaussian, a computational chemistry software suite for electronic
structure modeling [3] that is used both for research and for teaching at our university. The
only step required in creating a Wizard for Gaussian is to create a YAML file outlining its
parameters and dependencies.

icon: ’flask’
elements:

- name: Name
type: string
value: g09
description: Name of scroll

- name: Command
type: string
value: g09
description: Command to execute

- name: File
type: file
value:
description: Com File

formula: ’{Command} < {File} > Log’

Listing 1: Gaussian YAML

The gaussian.yaml can be seen in Listing 1. As can be seen, the Gaussian Wizard
allows for three Elements to be defined by the user: Name, Command, and File. The
first two are string types which correspond to the name of the Scroll to transcribe and the
command to execute when a Minion is summoned. In the HTML form that is generated by
the WizardHandler for this application, these fields will take the form of standard input
text fields. The last Element is the input COM file required by the Gaussian application.
Because it is marked with the file type, the WizardHandler will present the user will
a button they can use to select a local file to upload to Obelisk. The last portion of the
YAML file is the formula, which is the recipe used by the WizardHandler in Obelisk
to transcribe the Elements into a Scroll.

8



After saving the gaussian.yaml file, we simply need to restart Obelisk to load the new
Wizard template. Afterwards, we can open the Wizard web page and fill in the fields.
For this Wizard, we only need to upload a COM file for input into Gaussian. There are
of course other parameters for the Gaussian program, it is by no means a limited piece
of engineering. However, for the sake of simplicity, we will use a limited set of options.
After completing the form, we can summon a Minion to work on the Scroll. The
Minion will eventually finish the Scroll, leaving files containing the results of the job
in its workspace. When this has occured we can sift through the results and discover the
next breakthrough in chemistry.

Figure 9: Gaussian Minion and Output Log

Some of this output can be seen in Figure 9. On the left, we have the Minion web page
which lists the Minion id, Torque job id, project workspace, the executed Scroll, the
status of the Minion, and the start and stop times for the job. Below this, we have a listing
of the files associated with the Minion, including the resulting Log file of which a portion
is shown on the right. Altogether this example serves to show how simple and straightfor-
ward it is for users to create Wizards, which in turn can be used to transcribe Scrolls,
which are later executed by summoned Minions, who carry out the commands of the user
on high performance computing systems.

As we have demonstrated, using Obelisk is relatively straightforward and easy. There are
very few barriers inhibiting researchers and students from obtaining the results they need.
By giving the user complete control over their Wizards, Obelisk provides versatility,
while the web based interface of Obelisk removes the painstaking tedium involved with
manually operating Torque from the Unix command line. Obelisk abstracts this com-
plexity from the user via an intuitive and easy-to-user web application and empowers them
to harness armies of Minions to do their bidding.

9



5 Related Work
Our project is similar to two projects from MICS 2014: “A Web Portal For An Animation
Render Farm” [1] and “On Ramp to Parallel Computing” [2]. Obelisk is different from the
former project in that it does not target a specific application, but rather is a general pur-
pose framework for different types of scientific software. Unlike the latter project, Obelisk
provides wizards for specific scientific applications rather than giving the user a web-based
programming environment. In some sense, Obelisk is a middle ground between the two
projects, providing an flexible and extensible but easy-to-use abstraction for HPC systems.

As evident by the previous work mentioned, this overall approach to constructing web
interfaces to scientific applications or high performance computing systems is an ongoing
trend in the scientific computing community. Ian Foster notes that scientific tools tend to
be difficult to deploy, configure, and utilize effectively and that an alternative to forcing
users to become distributed system experts is to provide different service abstractions and
in particular web service applications [6]. For instance, XSEDE has a large listing of
such ”Science Gateways”, which provide simplified online access to a variety of HPC and
scientific resources around the United States [7]. Our project follows along in this trend by
providing a simple but effective general purpose web service for summoning minions on
HPC systems.

6 Conclusion
It is our belief that Obelisk helps remove some of the technical barriers associated with
scientific computing on HPC clusters. To abstract the complexity of harnessing these vast
amounts of computing resources into a simple but effective interface, we developed Obelisk
as an intuitive web interface to traditional HPC systems. As demonstrated in our paper, the
design of Obelisk is relatively straightforward, while the implementation provides all the
functionality required to describe, submit, execute, and monitor scientific computational
tasks on a high performance computing cluster. By utilizing Obelisk, countless hours can
be saved in the classroom by reducing the time spent teaching groups of students how to
use Linux and its utilities. In the future, we hope to create a library of programs that can
easily be installed on Obelisk and get wider user testing to fine-tune the user experience.

References
[1] John Rankin, Travis Boettcher, and Peter Bui. “A Web Portal For An Animation Render

Farm”. Midwest Instruction and Computing Symposium (MICS2014). Verona, WI.
April, 2014.

[2] Zackory Erickson and Samantha Foley. “On Ramp to Parallel Computing”. Midwest
Instruction and Computing Symposium (MICS2014). Verona, WI. April, 2014.

[3] Gaussian. ”Official Gaussian Website”. http://www.gaussian.com/. 2015.

10



[4] Tornado. ”Tornado Web Server”. http://www.tornadoweb.org/en/stable/. 2015.

[5] C. Pautasso, O. Zimmermann, and F. Leymann. ”Restful web services vs. ”big” web
services: Making the right architectural decision”. In Proceedings of the 17th Inter-
national Conference on World Wide Web, WWW 08, pages 805814, New York, NY,
USA, 2008. ACM.

[6] I. Foster. Service-oriented science. Science, 308(5723):814817, May 2005.

[7] Extreme Science and Engineering Discovery Environment. ”XSEDE Science Gate-
ways”. https://www.xsede.org/gateways-overview. 2015.

11


